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Non-Three-Colourable Common Graphs Exist
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A graph H is called common if the sum of the number of copies of H in a graph G and the number
in the complement of G is asymptotically minimized by taking G to be a random graph. Extend-
ing a conjecture of Erdős, Burr and Rosta conjectured that every graph is common. Thomason
disproved both conjectures by showing that K4 is not common. It is now known that in fact the
common graphs are very rare. Answering a question of Sidorenko and of Jagger, Št’ovı́ček and
Thomason from 1996 we show that the 5-wheel is common. This provides the first example of a
common graph that is not three-colourable.
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W5

Figure 1. The 5-wheel.

1. Introduction

A natural question in extremal graph theory is how many monochromatic subgraphs isomorphic
to a graph H must be contained in any two-colouring of the edges of the complete graph Kn.
Equivalently, how many subgraphs isomorphic to a graph H must be contained in a graph and its
complement?

Goodman [8] showed that for H = K3, the optimum solution is essentially obtained by a
typical random graph. The graphs H that satisfy this property are called common. Erdős [6]
conjectured that all complete graphs are common. Later, this conjecture was extended to all
graphs by Burr and Rosta [2]. Sidorenko [16] disproved Burr and Rosta’s conjecture by showing
that a triangle with a pendant edge is not common. Later Thomason [20] disproved Erdős’s
conjecture by showing that for p � 4, the complete graphs Kp are not common. It is now known
that in fact the common graphs are very rare. For example, Jagger, Št’ovı́ček and Thomason [13]
showed that every graph that contains K4 as a subgraph is not common. If we work with k-
edge-colourings of Kn rather than 2-edge-colourings, we get the notion of a k-common graph.
Cummings and Young [5] recently proved that no graph containing the triangle K3 is 3-common,
a counterpart of the result of Jagger, Št’ovı́ček and Thomason above.

There are some classes of graphs that are known to be common. Sidorenko [16] showed that
cycles are common. A conjecture due to Erdős and Simonovits [7] and Sidorenko [17, 18] asserts
that for every bipartite graph H , among graphs of given density, random graphs essentially
contain the least number of subgraphs isomorphic to H . It is not hard to see that every graph
H with the latter property is common, therefore this conjecture would imply that all bipartite
graphs are common. The Erdős–Simonovits–Sidorenko conjecture has been verified for a handful
of graphs [18, 19, 10, 4], and hence there are various classes of bipartite graphs that are known
to be common. In [13] and [19] some graph operations are introduced that can be used to ‘glue’
common graphs in order to construct new common graphs. However, none of these operations
can increase the chromatic number to a number larger than three, and as a result, all of the known
common graphs are of chromatic number at most 3. With these considerations Jagger, Št’ovı́ček
and Thomason [13] state, ‘We regard the determination of the commonality of W5 [the wheel
with 5 spokes] as the most interesting open problem in the area.’

We will prove in Theorem 3.1 that W5 (see Figure 1) is common. This will also answer a
question of Sidorenko [19]. He showed [19, Theorem 8] that every graph that is obtained by
adding a vertex of full degree to a bipartite graph of average degree at least one satisfying the
Erdős–Simonovits–Sidorenko conjecture is common. Sidorenko further asked whether, in this
theorem, both conditions of being bipartite and having average degree at least one are essential
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in order to obtain a common graph. Our result answers his question in the negative, as W5 is
obtained by adding a vertex of full degree to a non-bipartite graph.

The proof of Theorem 3.1 is a rather standard Cauchy–Schwarz calculation in flag algeb-
ras [14], and is generated with the aid of a computer using semi-definite programming. A similar
approach was successfully applied, for example, in [15], [12], [1], [9] and [11].

2. Preliminaries

We write vectors with bold font, e.g., a = (a(1), a(2), a(3)) is a vector with three coordinates. For
every positive integer k, [k] denotes the set {1, . . . , k}.

All graphs in this paper are finite and simple (that is, loops and multiple edges are not allowed).
For every natural number n, let Mn denote the set of all simple graphs on n vertices up to
isomorphism. For a graph G, let V (G) and E(G), respectively, denote the set of the vertices and
the edges of G. The complement of G is denoted by G∗.

The homomorphism density of a graph H in a graph G, denoted by t(H;G), is the probability
that a random map from the vertices of H to the vertices of G is a graph homomorphism, that is,
it maps every edge of H to an edge of G. If H ∈ M�, G ∈ Mn, and � � n, then t0(H;G) denotes
the probability that a random injective map from V (H) to V (G) is a graph homomorphism, and
p(H,G) denotes the probability that a random set of � vertices of G induces a graph isomorphic
to H . We have the following chain rule (cf. [14, Lemma 2.2]):

t0(H;G) =
∑

F∈M�

t0(H;F)p(F,G), (2.1)

whenever |V (H)| � � � |V (G)|.

Definition. A graph H is called common if

lim inf
n→∞

min
G∈Mn

(t(H;G) + t(H;G∗)) � 21−|E(H)|. (2.2)

It is easy to see that as n → ∞, for a random graph G on n vertices, we have, with high
probability, t(H;G) + t(H;G∗) = 21−|E(H)| ± o(1). Thus, H is common if the total number of
copies of H in G and the complement of G is asymptotically minimized when G is random. Note
also that since t(H;G) and t0(H;G) are asymptotically equal (again, as n → ∞), one could use
t0(H;G) in place of t(H;G) in (2.2), and this is what we will do in our proof.

2.1. Flag algebras
We assume certain familiarity with the theory of flag algebras from [14]. However, for the proof
of the central Theorem 3.1 only the most basic notions are required. Thus, instead of trying to
duplicate definitions, we occasionally give pointers to relevant places in [14].

In our application of the flag algebra calculus we work exclusively with the theory of simple
graphs (cf. [14, §2]). As in [14], flags of type σ and size k are denoted by Fσ

k . The flag algebra
generated by all flags of type σ is denoted by Aσ (cf. [14, §2]). As well as the already defined
model W5 ∈ M6, we need to introduce the following models, types, and flags.
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Figure 2. Types.

We shall work with five types σ0, σ1, . . . , σ4 of size four, which are illustrated in Figure 2. For a
type σ of size k and a set of vertices V ⊆ [k] in σ, let Fσ

V denote the flag (G, θ) ∈ Fσ
k+1 in which

the only unlabelled vertex v is connected to the set {θ(i) : i ∈ V }. We further define fσV ∈ Aσ

by

fσV
def
= Fσ

∅ − 1

|Aut(σ)| ·
∑

η∈Aut(σ)

Fσ
η(V ).

These elements form a basis (for V 	= ∅ and with repetitions, as fσV = fση(V ) for every η ∈ Aut(σ))
in the space spanned by those f ∈ Aσ

k+1 that are both Aut(σ)-invariant and asymptotically vanish
on random graphs; other than that, our particular choice of elements with this property is more
or less arbitrary.

Recall that in [14, §2.2] a certain ‘averaging operator’ �·� was introduced. This operator plays
a central role in the flag algebra calculus.

Let ∗ ∈ Aut(A0) be the involution that corresponds to taking the complementary graph. That
is, we extend ∗ linearly from

⋃
n Mn to A0.

3. Main result

We can now state the main result of the paper.

Theorem 3.1. The 5-wheel W5 is common.

Proof. Let Ŵ5 ∈ A0 be the element that counts the injective homomorphism density of the
5-wheel, that is,

Ŵ5
def
=

∑
F∈M6

t0(W5, F)F.
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We shall prove that

Ŵ5 + Ŵ ∗
5 � 2−9, (3.1)

where the inequality � in the algebra A0 is defined in [14, Definition 6]. An alternative interpret-
ation of this inequality [14, Corollary 3.4] is that

lim inf
n→∞

min
G∈Mn

(
p
(
Ŵ5, G

)
+ p

(
Ŵ ∗

5 , G
))

� 2−9.

Since

p
(
Ŵ5, G

)
=

∑
F∈M6

t0(W5;F)p(F;G) = t0(W5;G)

by (2.1), and, likewise,

p
(
Ŵ ∗

5 , G
)

= p(W5, G
∗) = t0(W5;G

∗),

(3.1) implies Theorem 3.1.
We now give a proof of (3.1). To this end we work with suitable quadratic forms Q+/−

σi defined
by symmetric matrices M+/−

σi and vectors g
+/−
i in the algebras Aσi . The numerical values of the

matrices M+/−
σi and vectors g

+/−
i are given in the Appendix. It is essential that all the matrices

M
+/−
σi are positive definite, which can be verified using any general mathematical software. Next

we define

R :=

(
4∑

i=0

�Q+
σi
(g+

i )�σi

)
+ �Q−

σ1
(g−

1 )�σ1
+ �Q−

σ4
(g−

4 )�σ4
.

We claim that

Ŵ5 + Ŵ ∗
5 = 2−9 + R + R∗. (3.2)

All the terms in (3.2) can be expressed as linear combinations of graphs from M6 and thus
checking (3.2) amounts to checking the coefficients of the 156 flags from M6. We offer a C-code
available at http://kam.mff.cuni.cz/∼kral/wheel which verifies the equality (3.2).

By [14, Theorem 3.14], we have(
4∑

i=0

�Q+
σi
(g+

i )�σi

)
+ �Q−

σ1
(g−

1 )�σ1
+ �Q−

σ4
(g−

4 )�σ4
� 0.

Therefore, (3.2) implies (3.1).

Theorem 3.1 shows that a typical random graph G = Gn, 12
asymptotically minimizes the quant-

ity t(W5;G) + t(W5;G
∗). Extending our method, we convinced ourselves that Gn, 12

is essen-
tially the only minimizer of t(W5;G) + t(W5;G

∗). In terms of flag algebras this means that
the homomorphism φ ∈ Hom+(A0,R) (see [14, Definition 5]) satisfying φ(Ŵ5 + Ŵ ∗

5 ) = 2−9 is
unique.
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The outline of the argument is as follows. Let ρ ∈ M2 denote a graph consisting of a single
edge, let C4 ∈ M4 denote the cycle of length 4, and, as before, let

Ĉ4
def
=

∑
F∈M4

t0(C4;F)F.

The Erdős–Simonovits–Sidorenko conjecture is known for C4 [17], and it implies that Ĉ4 � ρ4

and Ĉ∗
4 � (1 − ρ)4 in A0. Therefore, C4 + C∗

4 � 1/8 (i.e., C4 is common), and, moreover, every
φ ∈ Hom+(A0,R) attaining equality must satisfy φ(ρ) = 1/2 and φ(Ĉ4) = 1/16.

On the other hand, it is shown in [3] that the density of edges and the density cycles of length 4

characterize quasi-random graphs, implying that the homomorphism φ satisfying φ(Ĉ4 + Ĉ∗
4 ) =

1/8 is unique (and corresponds to quasi-random graphs). Therefore, to verify the uniqueness of
the homomorphism φ satisfying φ(Ŵ5 + Ŵ ∗

5 ) = 2−9, it suffices to show that

Ŵ5 + Ŵ ∗
5 � 2−9 +

1

100

(
Ĉ4 + Ĉ∗

4 − 1/8
)
. (3.3)

We have used a computer program to verify (3.3), and it is telling us that this inequality holds
with quite a convincing level of accuracy 10−10. But we have not converted the floating point
computations into a rigorous proof.

4. Conclusion

In this paper we have exhibited the first example of a common graph that is not three-colourable.
This naturally gives rise to the following interesting question: Do there exist common graphs
with arbitrarily large chromatic number?

Appendix: The matrices M+/−
i and the vectors g

+/−
i

Here, we list the numerical values of the matrices M+/−
i and the vectors g

+/−
i . These values are

approximations to the outcome of a numerical SDP computation. They were obtained using a
method similar to the one employed in [15]. We refer the interested reader to [15, Section 4] for
a detailed description of the method.

The vectors g+
i are given by the tuples

g+
0

def
=

(
fσ0

{1}, f
σ0

{1,2}, f
σ0

{1,2,3}, f
σ0

{1,2,3,4}
)
,

g+
1

def
=

(
fσ1

{1}, f
σ1

{3}, f
σ1

{1,2}, f
σ1

{1,3}, f
σ1

{3,4}, f
σ1

{1,2,3}, f
σ1

{1,3,4}, f
σ1

{1,2,3,4}
)
,

g+
2

def
=

(
fσ2

{1}, f
σ2

{2}, f
σ2

{4}, f
σ2

{1,2}, f
σ2

{1,4}, f
σ2

{2,3}, f
σ2

{2,4}, f
σ2

{1,2,3}, f
σ2

{1,2,4}, f
σ2

{2,3,4}, f
σ2

{1,2,3,4}
)
,

g+
3

def
=

(
fσ3

{1}, f
σ3

{2}, f
σ3

{1,2}, f
σ3

{2,3}, f
σ3

{1,2,3}, f
σ3

{2,3,4}, f
σ3

{1,2,3,4}
)
,

g+
4

def
=

(
fσ4

{1}, f
σ4

{1,2}, f
σ4

{1,3}, f
σ4

{1,2,3}, f
σ4

{1,2,3,4}
)
,

and the vectors g−
i are given by

g−
1

def
=

(
Fσ1

{3} − Fσ1

{4}, F
σ1

{1,3,4} − Fσ1

{2,3,4}, F
σ1

{1,3} − Fσ1

{2,3}, F
σ1

{1,3} − Fσ1

{2,4}, F
σ1

{1,3} − Fσ1

{3,4}
)
,

g−
4

def
=

(
Fσ4

{1,2} − Fσ4

{3,4}, F
σ4

{1,3} − Fσ4

{2,3}, F
σ4

{1,3} − Fσ4

{2,4}, F
σ4

{1,3} − Fσ4

{3,4}
)
.

The matrices M+/−
i are listed on the next two pages.
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M+
0

def
=

1

2 · 108
×

⎛⎜⎜⎝
104133330 −67645847 −126443014 −53041562

−67645847 58559244 68999274 28961030

−126443014 68999274 166581934 69653308

−53041562 28961030 69653308 29368489

⎞⎟⎟⎠

M+
1

def
=

1

24 · 108
×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3376427096 −550659377 1175122309 −274818336 −1951510989 133242698 −2978772360 −1118255328

−550659377 3579306230 −2818779263 254758382 1853810147 −3593215008 1149060744 −2243131164

1175122309 −2818779263 2446135762 −153160723 −1883990616 2571244464 −1644918408 1392930672

−274818336 254758382 −153160723 259013952 207245488 −524428416 59129384 −87439632

−1951510989 1853810147 −1883990616 207245488 2026568566 −1339529064 2075124696 −196178016

133242698 −3593215008 2571244464 −524428416 −1339529064 4383894552 −474279456 2753404296

−2978772360 1149060744 −1644918408 59129384 2075124696 −474279456 2987175794 578705400

−1118255328 −2243131164 1392930672 −87439632 −196178016 2753404296 578705400 2302497768

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M+
2

def
=

1

24 · 108
×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4114457904 −2123660510 578302533 2402100408 1609339896 −4979381511 −1073916061 −711542544 −108075291 −311854200 −1172726832

−2123660510 4697332052 −146727648 −2893487330 −831349224 5132020824 1140828192 −2533278088 −3120849612 586989168 −2130186959

578302533 −146727648 2842930424 −2377739616 2453284752 −1134538157 949692648 −2122945241 799767696 −646840455 −1452441435

2402100408 −2893487330 −2377739616 5029589784 −1305679056 −3694198620 −1628657160 2987352093 −17138568 174993936 1346820763

1609339896 −831349224 2453284752 −1305679056 2899169976 −3008866416 227603736 −2158976640 1272333144 −824389152 −1468496784

−4979381511 5132020824 −1134538157 −3694198620 −3008866416 9045922946 1585531176 −492543642 −2720802624 1167719184 119548200

−1073916061 1140828192 949692648 −1628657160 227603736 1585531176 1198933584 −594013398 −787158072 −14360286 −864511462

−711542544 −2533278088 −2122945241 2987352093 −2158976640 −492543642 −594013398 4445640792 1152146526 408353664 3139157376

−108075291 −3120849612 799767696 −17138568 1272333144 −2720802624 −787158072 1152146526 4353119928 −778415544 2410765872

−311854200 586989168 −646840455 174993936 −824389152 1167719184 −14360286 408353664 −778415544 430490652 217228440

−1172726832 −2130186959 −1452441435 1346820763 −1468496784 119548200 −864511462 3139157376 2410765872 217228440 3407087808

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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M+
3

def
=

1

24 · 108
×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1770465360 −40788068 770354664 −280179622 −1109635560 −593033461 −1434435065

−40788068 503182008 −377074674 −65682192 −316936632 337167432 −405260664

770354664 −377074674 942288720 −5442408 −584215338 −635915808 −299584920

−280179622 −65682192 −5442408 90869472 187091280 −48623352 356458176

−1109635560 −316936632 −584215338 187091280 1325422128 196268064 1280101992

−593033461 337167432 −635915808 −48623352 196268064 706802676 −31363774

−1434435065 −405260664 −299584920 356458176 1280101992 −31363774 1763018404

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M+
4

def
=

1

12 · 108
×

⎛⎜⎜⎜⎜⎜⎝
6589068 −137160 60408 −3635796 −5354976

−137160 3975070 −399180 −720636 −1388043

60408 −399180 3506988 −1778640 −3413616

−3635796 −720636 −1778640 5107716 3969708

−5354976 −1388043 −3413616 3969708 12276592

⎞⎟⎟⎟⎟⎟⎠

M−
1

def
=

1

48 · 108
×

⎛⎜⎜⎜⎜⎜⎝
1871684759 828164352 153135600 2205677647 32494800

828164352 647325323 122226960 1702274830 23569680

153135600 122226960 32894794 317036160 988560

2205677647 1702274830 317036160 4533494520 62236800

32494800 23569680 988560 62236800 7445060

⎞⎟⎟⎟⎟⎟⎠

M−
4

def
=

1

24 · 108
×

⎛⎜⎜⎝
371929992 −665160 31885344 6896381

−665160 4952616 15347271 −425892

31885344 15347271 420643536 5244336

6896381 −425892 5244336 1704738

⎞⎟⎟⎠
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[12] Hladký, J., Král’, D. and Norine, S. (2009) Counting flags in triangle-free digraphs.

arXiv:0908.2791.
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