Honors Discrete Mathematics

Instructor: Alexander Razborov, University of Chicago
razborov@uchicago.edu
Course Homepage: www.cs.uchicago.edu/~razborov/teaching/autumn23.html

Autumn Quarter, 2023

Prove all of your answers with reasonable degree of mathematical
rigor (feel free to ask us when in doubt). If you work with others
put their names clearly at the top of the assignment, everyone must
turn in their own independently written solutions. Shopping for
solutions on the Internet is strongly discouraged. But if you accidentally
stumble across it, then it will be accepted as long as you cite
the source and explain the solution in your own words.

Homework 1, due October 11

1. Let \( a_n \overset{\text{def}}{=} \sqrt{1 \cdot 2 + 2 \cdot 3 + \ldots + n(n+1)} \) (\( n \geq 1 \)). Prove that
\[
\frac{1}{2} n(n + 1) < a_n < \frac{1}{2} (n+1)^2.
\]

2. A function \( f : \mathbb{N} \rightarrow \mathbb{N} \) satisfies the following two properties:
\[
f(n) = n - 7 \quad \text{if} \quad n > 49
\]
\[
f(n) = f(f(n + 8)) \quad \text{if} \quad n \leq 49.
\]
Compute \( f(9) \).

3. Prove or disprove the following. Let \( f, g, f', g' : \mathbb{N} \rightarrow \mathbb{N} \) be functions
such that \( f(n) \leq O(g(n)) \), \( f'(n) \leq O(g'(n)) \), \( \forall n(f(n) > f'(n)) \) and
\( \forall n(g(n) > g'(n)) \). Then \( f(n) - f'(n) \leq O(g(n) - g'(n)) \).

4. For a linear (or partial) ordering \((S, \leq)\), \((S, \leq^\top)\) is its dual obtained
from \((S, \leq)\) by reversing directions: \( a \leq^\top b \) iff \( b \leq a \). Which of the
following ordered sets:
\[
(\mathbb{N}, \leq), (\mathbb{Q}, \leq), (\mathbb{R}_{>0}, \leq), (\mathbb{R}_{\geq0}, \leq)
\]
are *self-dual*, that is isomorphic to their own duals (and why)?

5. Prove that there does not exist any partial ordering of [4] that has precisely 17 different total extensions.