Quantum Computing

Instructor: Alexander Razborov, University of Chicago. razborov@cs.uchicago.edu

Course Homepage: www.cs.uchicago.edu/~ razborov/teaching/spring13.html

Spring Quarter, 2013

Homework 1, due May 7

1. Prove that the TOFFOLI gate can not be realized as a *reversible* circuit with gates acting on at most two bits.

Hint. Reversible gates on two bits have one very special property; identify it.

- 2. For which values $N \leq 11$ does there exist an $N \times N$ unitary matrix in which all entries are $\pm \frac{1}{\sqrt{N}}$?
- 3. We have seen in class how to implement the oracle $V_f: V_f|x\rangle = (-1)^{f(x)}|x\rangle$ using the oracle $U_f: U_f|x,y\rangle = |x,y\oplus f(x)\rangle$.
 - (a) Prove that the opposite is impossible.
 - (b) Implement U_f using the controlled version of V_f , i.e., the operator given by

$$\Lambda(V_f): |x,y\rangle \longrightarrow \begin{cases} |x,y\rangle & \text{if } y = 0\\ (-1)^{f(x)} |x,y\rangle & \text{if } y = 1. \end{cases}$$

4. Prove that an N-dimensional operator A is normal if and only if A^{\dagger} can be represented as a linear combination of $I_N, A, A^2, \dots, A^{N-1}$.

Hint. The solution I have in mind uses Lagrange's interpolation. But you should feel free to shop for a solution in textbooks on linear algebra as well.

5. Prove that $QFT_{mn} \approx QFT_m \otimes QFT_n$ if and only if m and n are relatively prime. Here \approx stands for the unitary equivalence: $A \approx B$ if and only if there exists a unitary operator P such that $B = PAP^{\dagger}$.