Quantum Computing

Instructor: Alexander Razborov, University of Chicago. razborov@cs.uchicago.edu

Course Homepage: www.cs.uchicago.edu/~ razborov/teaching/spring13.html

Spring Quarter, 2013

Homework 2, due May 23

1. Prove that for any two quantum states $|\phi\rangle$ and $|\psi\rangle$ in the same dimension,

 $|\langle \phi | \psi \rangle| \ge 1 - \frac{|| |\phi \rangle - |\psi \rangle ||^2}{2}.$

2. Let f be the Boolean function in $2n^2$ variables x_{ij}, y_{ij} $(1 \le i, j \le n)$ defined as follows: $f(\vec{x}, \vec{y}) = 1$ iff there exist $i, j \in \{1, ..., n\}$ such that $x_{ij} = y_{ij} = 1$ while $x_{ij'} = y_{ij'} = 0$ for any other $j' \ne j$.

Compute the sensitivity $\mathbf{s}(f)$ and the block sensitivity $\mathbf{b}s(f)$ of this function.

3. $\text{CLIQUE}_{3,N}$ is the Boolean function in $\binom{N}{2}$ variables encoding an N-vertex graph that outputs one if and only if this graph contains a triangle. Prove that

$$\Omega(N) \le Q_2(\text{CLIQUE}_{3,N}) \le O(N^{3/2}).$$

4. Let

$$f(x,y) = \begin{cases} 1 & \text{iff } x \le y \le x + 2013 \\ 0 & \text{otherwise} \end{cases}$$

(we view x and y as integers in $\{0, 1, \dots, 2^n - 1\}$). Prove that the determinstic communication complexity of this predicate is $\Omega(n)$.