Quantum Computing

Instructor: Alexander Razborov, University of Chicago. razborov@cs.uchicago.edu

Course Homepage: www.cs.uchicago.edu/~ razborov/teaching/winter18.html

Winter Quarter, 2018

Homework 2, due February 22 at the beginning of the class. LaTeX submissions are strongly encouraged and accepted until Friday 12pm.

- 1. Let \mathcal{H} be a Hilbert space with $\dim(\mathcal{H}) \geq 2$. Does there exist a Hermitian bi-linear¹ mapping $C: \mathcal{H} \times \mathcal{H} \longrightarrow \mathcal{H}$ such that for any two states (unit vectors) $u, v \in \mathcal{H}$, C(u, v) is again a unit vector?
- 2. Let us call a Boolean string a_1, \ldots, a_N mid-Western if there exists at least one index C such that $a_C = a_{C+1} = 1$ while $a_M = 0$ for any other M with $|C M| \leq \sqrt{N}$. Let $MW_N(X_1, \ldots, X_N)$ be the characteristic function of the set of all mid-Western strings.
 - Determine its sensitivity and block-sensitivity within a multiplicative constant.
- 3. Prove that $\widetilde{\deg}_{0.01}(F) \leq O(\widetilde{\deg}(F))$ for any total function F, where $\widetilde{\deg}_{\epsilon}$ is defined just as $\widetilde{\deg}$, replacing 1/3 with ϵ .
- 4. Let $Q_0(F)$ and $Q_1(F)$ be the quantum query complexity with no error (the algorithm must output the correct value with probability 1) and with one-sided error (no error on 1-inputs and error $\leq 1/3$ on 0-inputs), respectively.
 - Find a total function $F(X_1, ..., X_N)$ that exhibits a super-linear gap between $Q_0(F)$ and $Q_1(F)$.
- 5. $CLIQUE_{k,N}$ is the Boolean function in $\binom{N}{2}$ variables encoding an N-vertex graph that outputs one if and only if this graph contains a

¹see Problem 3 in the previous homework

complete subgraph on \boldsymbol{k} vertices. Prove that

$$\Omega(N) \le Q_2(\text{CLIQUE}_{3,N}) \le O(N^{3/2}).$$