Quantum Computing

Instructor: Alexander Razborov, University of Chicago. razborov@cs.uchicago.edu

Course Homepage: www.cs.uchicago.edu/~ razborov/teaching/winter18.html

Winter Quarter, 2018

Homework 3, due March 7

1. Prove or disprove that

$$QC_2(f \circ \wedge^n) \leq \widetilde{O}(QC_2(f \circ \oplus^n)),$$

where $f: \{0,1\}^n \longrightarrow \{0,1\}$ is a total function.

- 2. Let X be an $(N \times N)$ matrix such that $Tr(X\rho) = 1$ for any density matrix ρ . Prove that $X = I_N$.
- 3. Alice and Bob play the following (complete information) game. Alice picks a mixed state ρ in a 1-qubit space, after that Bob picks another mixed state σ , and then Alice pays Bob $D(\rho, \sigma)$ dollars. Determine the value of this game, the best strategy for Alice and describe the set of best responses for Bob.
- 4. Consider the projective measurement 1 T corresponding to the orthogonal decomposition

$$\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \ldots \oplus \mathcal{H}_L$$
.

Describe **explicitly** a decomposition of T as an isometric embedding followed by tracing-out.

¹as we did in class, the classical outcome is discarded