
Quantum Computing

Instructor: Alexander Razborov, University of Chicago.
razborov@cs.uchicago.edu

Course Homepage:
http://people.cs.uchicago.edu/~razborov/teaching/winter21.html

(Mostly) Winter Quarter 2011, Spring Quarter 2013 and Winter
Quarter 2021

Contents

1 Classical and Quantum computation: circuit model 4
1.1 Reversible Computation . 4
1.2 Probabilistic Computation . 8
1.3 Crash Course in Linear Algebra 10

2 Early Quantum Algorithms 14
2.1 Deutsch algorithm (1985) . 14

2.1.1 Black-box model . 14
2.1.2 Ingredients of Deutsch Algorithm 14
2.1.3 The First Try . 15
2.1.4 Successful Try: Interference 16

2.2 Deutsch-Josza algorithm (1992) 17
2.3 Simon’s algorithm (1994) . 19

3 BQP ⊆ PP 21

4 Famous Quantum Algorithms 22
4.1 Grover’s search algorithm (1996) 22

4.1.1 A Geometrical Interpretation 23
4.1.2 Some Details . 24

4.2 Factoring: Shor’s Algorithm 26
4.2.1 Reductions . 26
4.2.2 Linear Algebra . 28
4.2.3 Part 1: Phase Estimation Algorithm 29

1

http://people.cs.uchicago.edu/ ~razborov/teaching/winter21.html

4.2.4 Part 2: How to Construct |uk〉? 31
4.3 Discrete Logarithm . 32
4.4 Hidden Subgroup Problem . 32

4.4.1 First Application - Symmetric Group 33
4.4.2 Second Application - Dihedral Group 33

5 Quantum Probability 34
5.1 “Tracing out” or “partial measurement” 36
5.2 Superoperators . 37

6 Quantum Complexity Theory: black-box model 38
6.1 Hybrid method: optimality of Grover’s search 39
6.2 Quantum Query Complexity vs. Other Complexity Measures 41
6.3 Ambainis’s Adversary Method 46
6.4 Quantum Query Complexity and Formula Size 49

7 Quantum Communication Complexity 49
7.1 Probabilistic Communication Complexity 50
7.2 Quantum Communication Complexity 51
7.3 Decomposition of quantum protocols 54
7.4 Lower bound for QC2(IP2) 55
7.5 Lower bound for QC2(DISJ) 57
7.6 Generalizations of the discrepancy method 59
7.7 Direct products . 59

8 Quantum Error-Correcting Codes 60
8.1 Operator-sum representation of superoperators 60
8.2 Projective Measurements . 61
8.3 Quantum Information Theory 61

8.3.1 Error Correcting Codes in Classical Information Theory 61
8.3.2 Correcting Against Quantum Bit Flip 62
8.3.3 Correcting Against Quantum Phase Flip 62
8.3.4 Correcting Against Simultaneous Bit and Phase Flip . 63

8.4 Conditions for the Recovery Operator 63
8.5 Stabilizer Codes . 68

8.5.1 Definition and some Examples 68
8.5.2 Conditions on Pauli subgroups 70
8.5.3 Error Correcting properties of VS 71

2

9 Extra Material: Quantum Interactive Proofs 74
9.1 Classical Merlin-Arthur Proofs 74
9.2 Quantum Merlin-Arthur Proofs 75

9.2.1 Two Examples . 75

3

Lecture 1
Scribe: Yuan Li, University of Chicago.

Date: April 2, 2013

In this course, we will cover the following 3 topics.

1. Circuit (Turing) computations.

2. Black-box models.

3. Communication complexity.

And we will also talk about Quantum information, density matrices, and
error-correcting codes.

1 Classical and Quantum computation: circuit model

1.1 Reversible Computation

In the classical computation world, Turing machine is probably the most
popular computation model. Bernstein and Vazirani (1987) defined Quan-
tum Turing machine. However, it’s not a popular model in the quantum
world, and we will deal with quantum circuit most of the time.

Let’s recall the definition of circuit in the classical computation world.
Let

f : {0, 1}∗ → {0, 1}∗

be a function to be computed, where {0, 1}∗ denotes the set of all finite
binary strings. For circuits, the input length is fixed, and thus we consider
the slice of f , that is, let

fn : {0, 1}n → {0, 1}m(n)

(we assume for simplicity that the output size m depends only on the size
of the input n). We say that a sequence of circuits {Cn} computes f if
Cn(x1, . . . , xn) = fn(x1, . . . , xn) for every n.

Let P be the class of functions computable in polynomial time (in |x|)
on a Turing machine. Equivalently, function f is in P, if {fn} is computable
by uniform polynomial size circuits (“uniform” refers to the fact that the
circuits itself should be easily constructible; we do not dwell into further
details here).

In the classical model, we usually draw a circuit in the top-down or
buttom-up fashion. To induce the definition of quantum circuit, let’s draw

4

it in a different way – from left to right. Then the size of a quantum circuit
is defined to be the number of gates, which coincides with the definition in
classical circuit. Here comes our first assumption, which is different from
classical circuits.

Postulate #1. All gates used in our circuits have the same number of
input and output wires.

For example, our circuit may look like

x1 NOT · · ·

x2
U1

U2

· · ·
x3 · · ·

x4 NOT · · ·
x5 · · ·

Notice that the wire x3 does not go through gate U2, that is, U2 is not
applied to x3. Here, gates U1 and U2 might look like this.

x
U

x ∧ y
y x ∨ y

However, the above gate viewed as a function from {0, 1}2 → {0, 1}2
is not a permutation. (To see this, it’s impossible to have x ∧ y = 1 and
x ∨ y = 0.)

Now comes our second postulate.
Postulate #2. All gates are reversible (permutations), and thus the

circuit is reversible.
For example, the following is a NOT gate.

x NOT ¬x

The following gate is called TOFFOLI gate, and it’s easy to check the
reversiblity (in fact, it is an involution).

x

U

x

y y

z z ⊕ (x ∧ y)

The following gate flips y and z if x is 1, otherwise nothing is changed.

x

U

x

y (x ∧ z) ∨ (¬x ∧ y)

z (x ∧ y) ∨ (¬x ∧ z)

5

Let f : {0, 1}n → {0, 1}n be a function. If f is not a permutation, it’s
clear that f can not be computed by a reversible circuit. If it is, then the
problem is how to compute f given a prescribed set of gates? It seems that
the quantum computing cares little about it in this exact form because the
following concepts make a variant of this question way more natural.

Let f : {0, 1}n → {0, 1}m be an arbitrary function. Define the controlled-
f

f⊕ : {0, 1}n+m → {0, 1}n+m

by

f⊕(x1, . . . , xn, y1, . . . , ym)

= (x1, . . . , xn, y1 ⊕ f1(x), . . . , ym ⊕ fm(x)).

In particular, f⊕(x1, . . . , xn, 0, . . . , 0) = (x1, . . . , xn, f1(x), . . . , fm(x)). f⊕ is
reversible (e.g because it is an involution).

Under this notation,
NOT = 1⊕,

where 1 is the function in 0 arguments that outputs 1, and

TOFFOLI = (x ∧ y)⊕.

Define
CNOT = (NOT)⊕,

which looks like the following.

x
U

x

y ¬x⊕ y

Or sometimes (there’s a bit of confusion in the literature), it refers to the
following:

x
U

x

y x⊕ y
In quantum computing, we often employ extra bits to help the compu-

tation, which are called ancilla bits. For example, if we are using L ancilla
bits, we should compute a function that does the following:

(x1, . . . , xn, 0
m+L)→ (x1, . . . , xn, f1(x), . . . , fm(x), 0L)

(and may behave arbitrarily on other inputs).

6

We will assume that ancilla bits can be employed in reversible (and later
quantum) computation.

Now, we have finished our definition of a reversible circuit. A natural
question is, can it simulate classical circuit? The following theorem gives an
affirmative answer.

Theorem 1. If f : {0, 1}n → {0, 1}m is computable by a circuit of size L,
then we can compute f⊕ by a reversible circuit with L+m ancilla bits, and
size 2L+m.

Proof. By construction. Given a circuit C computing f , let’s construct a
reversible circuit. For each gate AND, OR, and NOT in C, let’s create a
(fresh!) ancilla bit for the output wire. For example, if there is a gate in C
which is the AND of wire x and y, then we introduce an ancilla bit z and a
TOFFOLI gate as follows.

x

U

x

y y

z z ⊕ (x ∧ y)

Given the input
(x1, . . . , xn, 0, . . . , 0),

after this procedure, we obtain a quantum circuit Q outputting

(x1, . . . , xn, f1(x), . . . , fm(x),Garbage, 0, . . . , 0),

where “Garbage” denotes by-products produced during the computation,
which correspond to the intermediate wires in the original circuit, stored in
ancilla registers.

Next, we copy the outputs f1(x), . . . , fm(x) to the last m bits, which can
be done by applying m CNOT gates, and thus we get

(x1, . . . , xn, f1(x), . . . , fm(x),Garbage, f1(x), . . . , fm(x)).

Finally, we need to clear the “garbage”. Here comes a very cute trick
which will be often used in quantum computing. Let’s appy Q−1, which is
obtained by reversing Q (both the gates and the order of the computation
are reversed). Here, we take the advantage of reversiblity, and it’s easily
checked that both QQ−1 and Q−1Q are the identity map. Now, we get the
desired output:

(x1, . . . , xn, 0, . . . , 0, f1(x), . . . , fm(x)).

The number of ancilla bits used is L + m, and the number of quantum
gates is 2L+m.

7

Lecture 2
Scribe: Ian Alevy, University of Chicago.

Date: April 4, 2013

1.2 Probabilistic Computation

As a model of probabilistic computation we suppose that our Turing ma-
chine M is allowed to flip a coin at any time during the computation.
A language L ⊂ {0, 1}∗ will be identified with its characteristic function
f : {0, 1}∗ → {0, 1} such that f(x) = 1 if and only if x ∈ L. Now we can
define probabilistic complexity classes.

Definition 2. The complexity class BPP (bounded-error probabilistic poly-
nomial time) is the set of all languages L for which there exists a probabilistic
Turing machine M such that

x ∈ L =⇒ P [M accepts x] ≥ 2/3

x 6∈ L =⇒ P [M accepts x] ≤ 1/3

and M runs in polynomial time in |x|.

The ”B” in the acronym refers to the assumption that the error proba-
bility, p = P [M accepts x] for x 6∈ L (or vice versa), is bounded away from
1/2. To be consistent we will always set p = 1/3. However, the choice of p
is irrelevant as long as there is some fixed (or even an inversely polynomial
in n) ε > 0 such that p = 1/2 − ε. One can use the Chernoff Bound to re-
duce the error probability dramatically by repeating the algorithm a small
number of times. We can form a larger complexity class if we remove the
restriction that p is bounded strictly below 1/2.

Definition 3. The complexity class PP (probabilistic polynomial time) is
the set of all languages recognizable with error probability p < 1/2, i.e., when
we can achieve any advantage (even if arbitrarily small!) over a random coin
toss.

We can simulate M with a deterministic Turing machine, Md, if the
machine has access to a binary string in which the results of coin tosses
are stored. A new variable r is introduced into the characteristic function,
f(x, r) to represent the probabilistic dependence on the binary string. If
the inputs are of the form x ∈ {0, 1}m then we can represent probability
distributions on inputs as vectors (px) of length 2m, where px denotes the

8

probability of the binary string x. The two standard assumptions for proba-
bility distributions are px ≥ 0 and

∑
x px = 1. Both the inputs and outputs

to the circuits are random vectors. Circuits naturally act on probability dis-
tributions, and this is an example of a push-forward measure. We, however,
will need a matrix representation of this action.

Any reversible computation is equivalent to the action of a permutation
matrix on a probability vector. Permutation matrices have entries in the set
{0, 1} and exactly one nonzero entry in each row and each column. As an
example consider the case m = 1 with p0 = p and p1 = q. The NOT gate
can be represented by its action as(

0 1
1 0

)(
p
q

)
→
(
q
p

)
.

Likewise the CNOT gate is represented by
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



p00
p01
p10
p11

→

p00
p01
p11
p10

 .

There is an analogy between this and the interpretation of (non-unitary!)
quantum computation as an application of superoperators to arbitrary den-
sity matrices (probability distributions being just diagonal density matri-
ces), but we will discuss this much later in the course.

Definition 4. A nonnegative matrix such that every column and every row
sums to one is called a doubly stochastic matrix.

As an example, let us simulate in this formalism the natural instruction
“with probability 1/2 apply the CNOT gate, and with probability 1/2 do
not do anything”. With probability of p = 1/2 the gate is

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


and with probability q = 1− p = 1/2 the gate is

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

9

The probabilistic CNOT is the normalized linear combination of these ma-
trices,

1

2




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

+


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 =


1 0 0 0
0 1 0 0
0 0 1/2 1/2
0 0 1/2 1/2

 .

Notice that this is a convex combination of permutation matrices. In fact
this is a characterization of doubly stochastic matrices.

Theorem 5 (Birkhoff-von Neumann). A matrix is doubly stochastic if and
only if it is a convex combination of permutation matrices.

1.3 Crash Course in Linear Algebra

We identify R2n =
⊗n

i=1R
2, where

⊗
denotes the tensor product. In this

course we use the computer science notion of the tensor product. If L is
a vector space with basis {e1, . . . en} and M is a vector space with basis
{f1, . . . f`} then L⊗M is a vector space with basis {ei⊗fj |i = 1, . . . , n, j =
1, . . . , `}. The existence of a natural basis makes the computer science defini-
tion simpler to work with than abstract mathematical notions. The standard
basis for R2 is denoted {e1, e2} and therefore the standard basis for R2n is
{
⊗n

i=1 exi}xi∈{1,2}.
The CNOT gate defined above is not sufficient because as written it

only acts on 2 bits and we need the gates to act on all n bits. Using
the tensor product notation we can decompose R2n = R2I ⊗R2co−I , where
I ⊆ {1, 2, . . . , n} and co−I = {1, 2, . . . , n}\I. Now we can write the CNOT

gate acting on all of R2n by defining the action on R2I in the usual manner
and the action on R2co−I as the identity.

To study quantum computation, we need to work in the complex vector
space C2n =

⊗n
i=1C

2 equipped with the inner product

〈α, β〉 =
∑
x

α∗xβx

for vectors α = (αx|x ∈ {0, 1}n) and β = (βy|y ∈ {0, 1}n) in C2n . Here
α∗x denotes the complex conjugate of αx. For now we will work over finite
dimensional vector spaces. In this case the inner product space is in fact
simply a finite dimensional Hilbert space, H.

For a linear operator T we write T † to denote the conjugate transpose of
T obtained by taking the complex conjugate of every entry of the transpose

10

of T . This operation is also referred to as the Hermitian conjugate or adjoint
operator. Notice that for permutation matrices we have P TP = I, and, more
generally, for real orthogonal matrices UTU = I. Generalizing even further,
a matrix with complex entries is called unitary if U †U = I. It is an exercise
to verify that the set of all unitary matrices is a group under the operation of
matrix multiplication. Every quantum computation can be represented by a
unitary matrix, that’s why unitary operators are of the utmost importance
in this course.

Exercise 6. If U, V are unitary operators on the vector spaces L and M
respectively, then U ⊗ V acts on L ⊗M . Show that the tensor product of
unitary operators is unitary.

The Pauli group consists of the four unitary matrices

I =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

along with their multiples by scalars from {±1,±i}. I, σx, σy, σz form a
linear basis for the set of all 2 × 2 matrices. This group is very important
in physics, and we will often see its elements featured in our course.

The norm in H is

|α| = 〈α, α〉1/2 =

(∑
x

|αx|2
)1/2

.

A vector α is called unit if |α| = 1. Notice that unitary matrices preserve
unit vectors because for a unitary matrix U we have

〈Uα,Uα〉 = (Uα)†Uα = α†U †Uα = α†α = |α|2.

This is analogous to the case of doubly stochastic matrices in which the
property of being a probability distribution is preserved. A pure state is
an arbitrary unit vector α, i.e. the one satisfying

∑
x |αx|2 = 1. For the

time being, pure states will be identified with the states of a quantum me-
chanical system. If α represents such a state, then px = |αx|2 represents
the probability that the system is found in the classical state x after a com-
plete measurement. The quantity |αx| is referred to as the amplitude of x.
Unitary matrices preserve amplitudes, hence they also preserve pure states.

Exercise 7. A matrix U is unitary if and only if it preserves unit vectors.

11

Dirac’s Notation

Dirac’s notation presumably simplifies the notation for tensor products. We
write

|x〉 :=
n⊗
i=1

exi

and refer to this as a ”ket-vector” or ”ket”. We write the inner product of
two kets, |φ〉 , |ψ〉 as 〈φ|ψ〉 and refer to 〈φ| as a ”bra-vector” or ”bra”. This
notation can be interpreted as 〈φ| = |φ〉†, where |φ〉 is a column vector. To
see how this notation helps us we note that

|0〉 ⊗ |1〉 = |01〉 ,

where e0 = |0〉, e1 = |1〉, and e01 = |01〉. The tensor product operation is
just concatenation, although we will sometimes resort to the unabridged ⊗
notation when warranted. The application of a linear operator U to a vector
is written as U |φ〉. We also write

〈ψ,Uφ〉 = 〈ψ |U |φ〉 .

Notice that unitary operators (as, for that matter, any square matrix) have
the property 〈

ψ|T †|φ
〉

= 〈φ|T |ψ〉∗

(remember that replacing bra with ket automatically conjugates entries).
Etc. The best way to get used to Dirac’s notation is to contemplate over
one or two concrete calculations performed with its help.

The Hadamard gate, H, is one of the most important gates in quantum
computing. It is a 2× 2 matrix defined in terms of its action

H |0〉 =
1√
2

(|0〉+ |1〉)

H |1〉 =
1√
2

(|0〉 − |1〉) .

This is represented by the unitary matrix

H =
1√
2

(
1 1
1 −1

)
.

Lecture 3
Scribe: Young Kun Ko, University of Chicago.

Date: April 7, 2013

12

Geometrically, this can be seen as a reflexion: H2 = I.

Theorem 8. Every unitary operator can be realized as a product of unitary
operators acting on 1 or 2 qubits.

We will not prove this theorem as its approximate version (see Definition
11) turns out to be way more important.

Recall the definition of controlled operator in the classical world.

Definition 9. Let f : {0, 1}n → {0, 1}m. Then the controlled version of f ,
denoted f⊕ : {0, 1}n+m → {0, 1}n+m acts as follows

(x1, . . . , xn, y1, . . . , ym) 7→ (x1, . . . , xn, y1 ⊕ f1(x), . . . , ym ⊕ fm(x))

We can extend this definition to the quantum world.

Definition 10. Let U be a unitary operator. Then the controlled version
of U , denoted Λn(U) acts as follows

Λn(U) |x〉 ⊗ |y〉 =

{
|x〉 ⊗ |y〉 if x1 . . . xn = 0

|x〉 ⊗ U |y〉 otherwise.

Under the above definition, well-known gates can be seen as controlled
operators.

Λ1(σx) = CNOT

Λ2(σx) = TOFFOLI. (up to negation)

Definition 11. A set of gates Q is universal if every unitary operator on a
fixed number of qubits can be approximated within ε using poly(log2(1/ε))
number of gates in Q.

Definition 12. A language L is in BQP if there exists a polynomially sized
circuit Q such that

• x ∈ L ⇒ P [Q accepts x] ≥ 2/3

• x /∈ L ⇒ P [Q accepts x] ≤ 1/3,

where P [Q accepts x] =
∑

y1=1 |αy|2 for UQ
∣∣x, 0L〉 =

∑
y αy |y〉.

Theorem 13. Universal bases exist:

1.

{
H,K =

(
1 0
0 i

)
,K−1 =

(
1 0
0 −i

)
,CNOT,TOFFOLI

}
. Up to nor-

malization, all entries are {±1,±i}.

2.

{
H,CNOT, T =

(
1 0

0 ei
π
4

)}
. Note that T 2 = K.

13

2 Early Quantum Algorithms

Sketched by Pratik Worah in 2011.
Scribe: Jue Xu, University of Chicago.

Date: January 16, 2018

2.1 Deutsch algorithm (1985)

2.1.1 Black-box model

Deutsch algorithm solves a kind of the most elementary problem ”black-box
model”, which is also called Oracle model or query model. The black-box
function in Deutsch algorithm is a one-bit Boolean function:

f : {0, 1} → {0, 1}

the input is a bit 0 or 1 and the output is also a bit 0 or 1. We don’t know
the inside circuitry of this black-box function, but we can query it to obtain
its output. It is easy to observe that there are four Boolean functions in one
variable:

f1(0) = 0, f1(1) = 1; f2(0) = 1, f2(1) = 0;

f3(0) = 0, f3(1) = 0; f4(0) = 1, f4(1) = 1.

According to the value of f(0)⊕ f(1), these four functions can be classified
as below:

• Balanced functions: f1(x) = x, f2(x) = x̄ ⇐⇒ f(0) ⊕ f(1) = 1, i.e.,
the output is related with the input

• Constant functions: f3(x) = 0, f4(x) = 1 ⇐⇒ f(0) ⊕ f(1) = 0, i.e.,
the output has no relation with the input

2.1.2 Ingredients of Deutsch Algorithm

Now, the problem can be formulated as follows:

Input: A Boolean function f : {0, 1} → {0, 1} given as a black-box.

Problem: We want to determine the value of f(0)⊕f(1), equivalently,
judge whether the function is constant or balanced.

The classical algorithm requires querying this black-box function
twice to solve this problem, while, in the quantum world, Deutsch
algorithm only needs one query! All ingredients we need to implement
Deutsch algorithm are

14

• The initial state |01〉 with two qubits: the first qubit can be regarded
as the target qubit and the second one is the control qubit, which
are required by the reversibility of controlled function (discussed in
Lecture 1).

• Hadamard gates H (introduced in Lecture 2) are used to apply Dis-
crete Fourier Transform over Z2 (we will talk about this connection
in more detail later), or in physical words, to generate interference.

• A black-box operator Uf : |x, y〉
Uf7−→ |x, y ⊕ f(x)〉

|x〉
Uf

|x〉
|y〉 |y ⊕ f(x)〉

• A measurement operator: projector P = |0〉 〈0| + |1〉 〈1| (again, the
general theory of measurements will be discussed later in the course).

2.1.3 The First Try

Before giving the right algorithm, we will show an unsuccessful try and
discuss why it doesn’t work.

Now the initial state is |00〉. We could start with the following transfor-
mation:

|0〉 H
Uf

|0〉
• Apply Hadamard gates to the first qubit of the initial state |00〉.

• Apply oracle operator Uf once.

|00〉 H⊗I7−→ 1√
2

(|0〉+ |1〉)⊗ |0〉 =
1√
2

(|00〉+ |10〉)

Uf7−→ 1√
2

(|0, f(0)〉+ |1, f(1)〉).

Now, information-theoretically we are in a good shape: states corresponding
to our four functions are pairwise different. But where do we go from here?
How to extract this information quantumly? It turns out that this is in fact
impossible: angles between these states are sort of erratic while in order to
be successful we want states leading to the same answer to coincide (well,
up to a global phase change) and states leading to different answers to be
orthogonal. With this guiding principle in mind, we can now fix our attempt:
the key to success is to produce interference.

15

2.1.4 Successful Try: Interference

We modify our circuit by applying a NOT gate to the second qubit of the
initial state |00〉.

|0〉 H
Uf

H

|0〉 NOT H

That is, we created in the second register a new state |φ〉 defined as follows:

|0〉 NOT H
|0〉−|1〉√

2

df
= |φ〉 .

This new state has the following property:

|x〉 ⊗ |φ〉
Uf7−→ (−1)f(x) |x〉 ⊗ |φ〉 , x ∈ {0, 1}

which can be easily verified by direct calculation. This property will make
a big difference in the result due to the magic of interference. Let’s see it:

|01〉 H⊗H7−→ 1√
2

(|0〉 |φ〉+ |1〉 |φ〉)

Uf7−→ 1√
2

[(−1)f(0) |0〉+ (−1)f(1) |1〉]⊗ |φ〉

H⊗I7−→ ± |f(0)⊕ f(1)〉 ⊗ |φ〉 .

We can see that after applying Uf operator, the first qubit of the state
depends on which category this black-box function belongs to

1√
2

[(−1)f(0) |0〉+(−1)f(1) |1〉] =

{
± 1√

2
[|0〉+ |1〉] ≡ ±H |0〉 , f is balanced

± 1√
2
[|0〉 − |1〉] ≡ ±H |1〉 , f is constant,

and note that in accordance with our principle above, these two states are
orthogonal. With the fact that H2 = I, we can get an amazing final state
by applying Hadamard gate to the first qubit

H⊗I7−→

{
±H2 |0〉 ⊗ |φ〉 = ± |0〉 ⊗ |φ〉 , f is balanced

±H2 |1〉 ⊗ |φ〉 = ± |1〉 ⊗ |φ〉 , f is constant,

which can be succinctly written as

± |f(0)⊕ f(1)〉 ⊗ |φ〉 .

Now, we measure the first qubit in the basis |0〉 and |1〉. We will get |0〉 if
and only if f is a constant function, otherwise, it is a balanced function.

16

Figure 1: Geometrical interpretation of the transformation on the first qubit

(a) Apply Hadamard
gate to the initial state

|1〉

|0〉

H |0〉

(b) Apply Uf opera-
tor. The red line
represents the constant
function and the blue
one represents balanced
function

H |1〉

−H |1〉

H |0〉

−H |0〉

(c) Apply the Hadamard
gate again

H2 |0〉

−H2 |0〉

H2 |1〉

−H2 |1〉

Lectures 4-5
Scribe: Tatiana Orlova, University of Chicago.

Date: January 18 and 20, 2011

2.2 Deutsch-Josza algorithm (1992)

Deutsch-Josza algorithm is a generalization of Deutsch algorithm we
studied in the previous lecture.

Suppose we are given a Boolean function in 2n inputs

f : {0, 1}n → {0, 1}.

We consider two types of Boolean functions. First, a constant function, as in
the previous lecture. Second, a balanced function, which is a function that
outputs as many zeros as ones (2n−1 zeros and 2n−1 ones) over its input
set. For example, in the simplest case n = 2, all Boolean functions are well
defined by these two types, and, moreover, we are in the situation of Section
2.1.

Given f(x), we want to determine whether it is constant or balanced.
We can try to solve this problem deterministically. Clearly, if we make 2n−1

queries we might get unlucky and get all 0s or all 1s. Thus, we need to
know at least 2n−1 + 1 values of f(x) to decide whether it is constant or
balanced, which simply means too many queries! We would like to see if
using quantum computation can help us significantly reduce the number of
queries.

17

Similar to the Deutsch algorithm we will first prepare the state |φ〉:

|0〉 NOT H
|0〉−|1〉√

2

df
= |φ〉 .

Recall, that the Uf -operator is defined by

Uf : |x, y〉 7−→ |x, y ⊕ f(x)〉 .

The initial state of the circuit is

|0n〉 |φ〉 .

We then perform the following transformations (/n stands for duplicating a
state n times)

|0〉 /n H⊗n
Uf

H⊗n

|φ〉

|0n〉 |φ〉 H
⊗n
7−→ 1

2n/2

∑
x

|x〉 |φ〉
Uf7−→ 1

2n/2

∑
x

|x〉 |f(x)〉 − |f(x)⊕ 1〉√
2

=
1

2n/2

∑
x

(−1)f(x) |x〉 |φ〉 ,

where the sum is over all all binary strings x ∈ {0, 1}n. Note, that

(−1)f(x)
|f(x)〉 − |f(x)⊕ 1〉√

2
≡ |φ〉

regardless of f(x).
The transformation

U∗f : |x〉 7−→ (−1)f(x) |x〉

changes the phase of any vector according to f(x) and, unlike Uf does not
use ancilla bits. So, we simply moved from one representation to another,
and, in fact, in future we will often be using this alternate form of feeding
f to our algorithms.

Discrete Fourier Transform

H⊗n |x〉 =
1

2n/2

∑
y

(−1)〈x,y〉 |y〉 ,

18

where x, y are strings of length n, and 〈x, y〉 is ordinary inner product (over
Z or F2).

H⊗n
1

2n/2

∑
x

(−1)f(x) |x〉 =
1

2n

∑
x,y

(−1)f(x)+〈x,y〉 |y〉 .

We measure first n qubits and look at the coefficient α0 corresponding
to |0n〉 . The value α0α

?
0 can be interpreted as the probability of getting 0n

as the result of this measurement.

α0 =
1

2n

∑
x

(−1)f(x) =

{
±1, if f(x) is constant;

0, if f(x) is balanced.

Thus, the quantum Deutsch-Josza algorithm requires only a single query
versus an exponential number of queries in classical deterministic case. It
does not have this much advantage over the classical probabilistic computa-
tion, that provides a correct answer with probablility 1 − 1

2n by using only
O(n) queries. This fact makes the result of this section a little bit less excit-
ing :) In the next section we will discuss the first example of an exponential
gap between classical and quantum computation.

2.3 Simon’s algorithm (1994)

The problem can be formulated as follows.

Input: A function
f : {0, 1}n → {0, 1}m,

where m can possibly be larger than n.

Promise: There exists s ∈ {0, 1}n such that f(x) = f(y) if and only
if x = y or x = y + s. (See Figure 2 for an intuitive interpretation of
s.)

Problem: We want to determine this value of s.

The Simon’s problem is a part of the class of problems known as the
hidden subgroup problems. In order to demonstrate the significance of the
problems in this class we will give a few examples. Solving this problem for
Z, which is an infinite abelian group, will imply solving integer factorization
problem. For the Dihedral group, the smallest non-abelian group, the result

19

Figure 2: Function f(x) has the same values on the edges that share the red
direction.

is unknown. For the symmetric group the problem implies an efficient algo-
rithm for the graph isomorphism problem. We will discuss all this in more
details in Section 4.4 below.

The solution scheme will be extremely similar to what we already did.
Now the initial state will be

|0n, 0m〉 .

We then perform the following transformations:

|0〉 /n H⊗n
Uf

H⊗n

|0〉 /m

|0n, 0m〉 H
⊗n
7−→ 1

2n/2

∑
x∈{0,1}n

|x, 0m〉
Uf7−→ 1

2n/2

∑
x∈{0,1}n

|x, f(x)〉 H
⊗n
7−→

H⊗n7−→ 1

2n

∑
x,y∈{0,1}n

(−1)〈x,y〉 |y, f(x)〉

=
1

2n

∑
y∈{0,1}n

 ∑
x∈{0,1}n

(−1)〈x,y〉 |y, f(x)〉

 .

Note, that since f(x) is not injective, terms |y, f(x)〉 in the final sum
come in pairs and those with the opposite sign will cancel each other out.
To show this, we consider coefficients of |y, z〉 for all z ∈ {0, 1}m, such that
f(x) = z, and f(x+ s) = z. We have

(−1)〈x,y〉 + (−1)〈x+s,y〉 = (−1)〈x,y〉(1 + (−1)〈s,y〉).

20

If 〈s, y〉 = 1, i.e., s and y are not orthogonal then

(−1)〈x,y〉(1 + (−1)〈s,y〉) = 0.

At the end we have a uniform superposition |y, z〉 , such that y ⊥ s. We then
repeat the experiment from scratch multiple times to recover s.

The Simon’s algorithm is a good example of “quantum magic” - interfer-
ence, or cancelations. When we send our queries to f(x), values that would
appear with high probability might cancel out because of interference.

3 BQP ⊆ PP

We want to show that
BQP ⊆ PP.

One characterization of languages in PP is this: L ∈ PP if and only if for
all x ∈ L we have #{y : A(x, y)} −#{y : R(x, y)} > 0, and for all x 6∈ L we
have #{y : A(x, y)} −#{y : R(x, y)} < 0, where x, y ∈ {0, 1}n are strings of
polynomial range, and A,R are polynomially time computable. The way to
think of this definition is that {y : A(x, y)} and {y : R(x, y)} are accepting
and rejecting confgiruations respectively, and when y is such that neither of
them happens (that typically will be the most frequent case), we toss a fair
coin.

Consider a quantum circuit C with gates of the following types: {H,K,CNOT,TOFFOLI}.
At every particular time it executes one quantum operator. Thus, the whole
computation is the product of the quantum operators

U4 · · ·

U1
U3

· · ·

Ut· · ·

U2 · · ·
· · ·

Ut . . . U2U1

∣∣x, 0L〉 =
∑
y

αy |y〉

We would like to compute coefficients αy. To do this we sum up the
corresponding positions in quantum operators

αy =
∑

|z1〉,...|zt−1〉

〈y|Ut|zt−1〉 〈zt−1|Ut−1|zt−2〉 . . .
〈
z1|U1|x1, 0L

〉
.

21

Note that if y and zt are basis vectors then

〈y|Ut|zt〉 = Ut[y, zt].

The matrix entries of our operators, except for Hadamard gate, are from
the set

{0,±1,±i}.

So that the resulting values remain in this set, since it is closed under mul-
tiplication. Only the Hadamard gate creates nontrivial coefficients

1√
2
{±1}.

But the number of Hadamard gates in C is known in advance and does not
depend on the input.

Denote this number by h. We have

αy =
∑

|z1〉,...,|zt−1〉

1

2h/2
f(z1, . . . , zt−1, x, y),

where f ∈ {0,±1,±i} is efficiently computed. The amplitude is

αyα
?
y =

1

2h

∑
|z1〉,...,|zt−1〉
|z′1〉,...,|z′t−1〉

f(z1, . . . , zt−1, x, y)f?(z′1, . . . , z
′
t−1, x, y).

We have

αyα
∗
y =

1

2h+1

(
#

{
~z, ~z ′ : f(z, x, y)f?(z′, x, y) = 1

}
−#

{
~z, ~z ′ : f(z, x, y)f?(z′, x, y) = −1

})
.

This gives us the desired predicates A and R and hence finishes the proof.

4 Famous Quantum Algorithms

4.1 Grover’s search algorithm (1996)

We begin with a simple case (when the solution is known to be unique) that,
however, already contains all essential ideas. The general case is sketched
below in Section 4.1.2.

22

Input: f : [N] → {0, 1}, where [N] stands for a domain of size N,
which in particular could be binary strings of length log2N.

Promise: There exists a unique w such that f(w) = 1.

Problem: We want to find this w.

Theorem 14. There exists a quantum algorithm that performs search in
time O(

√
N).

We will see in Section 6.1 that this bound is tight.

4.1.1 A Geometrical Interpretation

Consider a standard superposition

|ψ〉 =
1√
N

∑
x

|x〉 .

Let |w〉 be the unknown unit vector we want to find. Define

|ψ Bad〉
df
=

1√
N − 1

∑
x 6=w
|x〉 .

The vectors |ψ〉 and |ψ Bad〉 generate a plane (2-dimensional subspace).
Clearly,

|ψ〉 =

√
N − 1

N
|ψ Bad〉+

1√
N
|w〉 ,

and the vector ∣∣ψ〉 =

√
N − 1

N
|w〉 − 1√

N
|ψ Bad〉 .

is orthogonal to |ψ〉. In other words, {|ψ〉 ,
∣∣ψ〉} is an orthogonal basis in

the subspace generated by the vectors |ψ〉 and |ψ Bad〉 . Denote the angle
between |ψ〉 and |ψ Bad〉 by θ, then

|ψ Bad〉 = cos θ |ψ〉 − sin θ
∣∣ψ〉 .

From the inner product
〈
ψ Bad|ψ

〉
, we find

sin θ =
1√
N
,

and thus

θ ≈ 1√
N
.

Consider two geometrical transformations:

23

1. Refection on the line defined by |ψ Bad〉 - this transformation corre-
sponds to U∗f ;

2. Reflection on the line defined by |ψ〉 - we denote this transformation
by V.

Key Idea: Define a new transformation, Grover Iterate, G
df
= V U∗f .

It is a composition of U∗f and a reflection V, and results in a rotation by 2θ.

If we apply this operator to a unit vector precisely b
√
N π

4 c times we will

rotate this vector by ≈ π
2 . Thus, if we apply Grover Iterate b

√
N π

4 c times
to |ψ〉 it will become “almost” |w〉 .

4.1.2 Some Details

We now fill in the details. Here we assume that all objects from [N] =
{1, 2, . . . , N} are binary strings. We would like to construct a unitary oper-
ator V with the following properties

V |ψ〉 = |ψ〉

and
V (|x〉 − |y〉) = |y〉 − |x〉 .

We first apply DFT (or Hadamard matrices)

H⊗n |x〉 =
1

2n/2

∑
y

(−1)〈x,y〉. |y〉

Let U0 be a unitary operator such that

U0 |0〉 = |0〉

and
U0 |x〉 = − |x〉 .

Thus, U0 flips the phase of all non-zero vectors. We leave the explicit con-
struction of U0 as an exercise.

We now apply U0 to the H⊗n |x〉 and obtain

U0H
⊗n |x〉 =

1

2n/2
(2 |0〉 −

∑
y

(−1)〈y,x〉 |y〉)

24

Finally, we apply n Hadamard gates again

H⊗nU0H
⊗n |x〉 =

1

2n

(
2 |ψ〉 −

∑
y,z

(−1)〈y,x〉(−1)〈y,z〉 |z〉

)
.

Terms where |z〉 6= |x〉 will cancel out. So, we have

H⊗nU0H
⊗n |x〉 =

1

2n
(2 |ψ〉 − 2n |x〉) = − |x〉+

2

2n
|ψ〉 .

Let us check

H⊗nU0H
⊗n |ψ〉 = (− |ψ〉+ 2 |ψ〉) = |ψ〉

H⊗nU0H
⊗n(|x〉 − |y〉) = |y〉 − |x〉 .

|0〉 /n H⊗n
Uf

V = H⊗nU0H
⊗n ·

|1〉 H · · ·

execute Grover operator b
√
N π

4 c times

Now we briefly discuss what to do when there is more than one solution,
and, moreover, their number

` = #{w : f(w) = 1}

is not even known in advance.
But let us assume for a second that ` is known. What should we do?

It depends on the value of `. If ` is really large (` ≥ 10−2N), we apply
the probabilistic algorithm. If ` is small (` < 10−2N) then we apply a
straightforward generalization. We replace w in (|w〉 , |ψ〉) with the sum of
all good values of w. It is easy to check that

sin θ =

√
`

N
.

We then apply Grover Iterate b
√

N
`
π
4 c times.

In case the value of ` is not known, we fix a constant C = 1.001 > 1
and assume ` = 1, dCe, dC2e, . . . , dCte, where t = O(logN). We then iterate

Grover operator b
√

N
`
π
4 c times for each value of ` and then distinguish

25

between good and bad answers. Clearly, as ` gets larger the number of
iterations gets smaller,√

N

1
+

√
N

C
+

√
N

C2
+ . . . = O(

√
N).

Even if we do not know the real value of `, in one of ourO(logN) experiments
it will be guessed with sufficiently good accuracy.

Lectures 6-7
Scribe: Denis Pankratov, University of Chicago.

Date: January 25 and 27, 2011

4.2 Factoring: Shor’s Algorithm

4.2.1 Reductions

In the factoring problem we are given a composite integer N ∈ Z, and we
are tasked with finding a nontrivial factor of N . Note that if we can solve
this problem, we can completely factor any integer N in at most logN
steps. Recall that primality testing is in P , as well as computing gcd of two
numbers, so we assume that these procedures are readily available to us.
First we show how to reduce factoring to the order finding problem: given
N, a ∈ N such that (N, a) = 1, find minimum r ∈ N such that r > 0 and
ar ≡ 1 mod N . In the rest of this section on Shor’s Algorithm, the notation
r, a and N will be always used in this sense.

Suppose N = pn1
1 p

n2
2 . . . pntt for some primes pi. We may assume that

none of the pi is 2, otherwise simply divide N by 2 as many times as possible.
Furthermore we can check if N has only one prime divisor, i.e., if N = pz for
some odd prime p and integer z, since in this case z ≤ logN and we simply
need to check that N1/z is an integer prime. Hence, in the rest we assume
that N has all odd prime factors, and at least two different primes. We
have Z∗N ∼= Z∗

p
n1
1
× · · · × Z∗

p
nt
t

and Z∗
p
ni
i

∼= Z
p
ni−1
i (pi−1)

. Therefore if a ∈ Z∗N
we can write it as a = (a1, . . . , at) and ord(a) = lcm(ord(a1), . . . , ord(at)).
Now, assume that we have access to an order finding black box B, which on
input N, a outputs the minimal r such that ar ≡ 1 mod N . For an integer
a chosen from ZN uniformly at random P (B(N, a) is even) ≥ 1/2. Keep
picking a until we get an even r, i.e., r = 2s for some s ∈ Z. (Observe that
if we accidentally pick a such that (a,N) 6= 1 we are done). Then we have
a2s ≡ 1 mod N and (as−1)(as+ 1) ≡ 0 mod N . as 6≡ 1 mod N since r is
minimal, and if either (as−1, N) or (as+1, N) is a nontrivial factor of N we

26

are done. The only problem occurs when as ≡ −1 mod N , but probability
that this happens is at most 1/2t−1 (this is where we use the fact that N is
not a prime power). This completes the reduction.

Instead of solving the order finding problem directly, we will develop a
quantum algorithm to output a rational σ such that for some k (unknown
to us), we have ∣∣∣∣σ − k

r

∣∣∣∣ < 1

2N2
. (1)

Claim 15. Once we have σ (as above) we can reconstruct r.

Proof. Take σ − bσc, invert it and repeat to get the continued fraction ex-
pansion of σ:

σ = n0 +
1

n1 + 1
n2+

1
...

.

Note that since σ ∈ Q, the above procedure converges. If we truncate the
continued fractions of σ at some level we obtain k/r (see e.g. [1, Theorem
A4.16]).

Claim 16. There is at most one pair k′, r′ (in the reduced form) satisfying
equation (1).

Proof. Suppose that we have k′, r′ such that∣∣∣∣σ − k′

r′

∣∣∣∣ < 1

2N2
. (2)

Then from (1) and (2) we obtain∣∣∣∣kr′ − k′rrr′

∣∣∣∣ < 1

N2
.

And consequently,

|kr′ − k′r| < rr′

N2
≤ 1.

Since k, k′, r, and r′ are integers, we have kr′ = k′r. It follows that k = k′

and r = r′, since (k′, r′) = (k, r) = 1.

27

4.2.2 Linear Algebra

First, we review some background from Linear Algebra.

Definition 17. A matrix H ∈Mn(C) is called Hermitian if H = H†.

Definition 18. A matrix U ∈Mn(C) is called unitary if U † = U−1.

The above two notions are special cases of the following.

Definition 19. A matrix A ∈ Mn(C) is called normal if it commutes with
its adjoint, i.e. AA† = A†A.

Theorem 20 (Spectral Decomposition Theorem). Any normal matrix A
has a decomposition

A = PΛP †, (3)

where P is unitary and Λ is diagonal.

Observe that Spectral Decomposition Theorem implies that the eigen-
values of Hermitian matrices are real, and eigenvenvalues of unitary matrices
lie on a unit circle in the complex plane.

Given N ≤ 2n and a < N with (a,N) = 1, define operator Ua as follows.

Ua : |x〉 7→
{
|xa mod N〉 if x ∈ [0, N − 1]
|x〉 if x ≥ N

where x ∈ {0, 1}n.
Observe that Ua is a permutation and is clearly computable in polyno-

mial time. Since, U ra is an identity operator, all eigenvalues of Ua are rth

roots of unity, i.e., of the form e2πik/r. Now, we describe some of the eigen-
vectors of Ua that we will need for Shor’s Algorithm (all others are obtained
in a similar way by shifting this formula to cosets of the subgroup in ZN
generated by a).

|uk〉 =
1√
r

r−1∑
s=0

e−2πiks/r|as mod N.〉

It is straightforward to check that Ua|uk〉 = e2πik/r|uk〉. The rest of Shor’s
Algorithm splits into two parts:

Part 1: If we have eigenvectors |uk〉, what do we do with them?

Part 2: How do we get vectors |uk〉?

28

4.2.3 Part 1: Phase Estimation Algorithm

Consider a more general setting: given a unitary matrix U and an eigenvec-
tor |ψ〉 such that U |ψ〉 = e2πiω|ψ〉 for some ω ∈ R, estimate ω to arbitrary
accuracy (think: ω = k/r, |ψ〉 = |uk〉, U = Ua). It turns out we won’t be
able to solve it for arbitrary unitary operators. We need one more condition
on U , which will come naturally as we develop the algorithm.

If U is a unitary operator acting on |y〉 define its controlled version,
denoted by c− U by

c− U |0〉|y〉 = |0〉|y〉
c− U |1〉|y〉 = |1〉U |y〉. .

Note that this generalizes previously defined notion of a controlled-f oper-
ator (in which case c− U is simply a permutation matrix).

Observation 21. If U is computable by a small circuit then c − U is also
computable by a small circuit.

Proof. Note that for any two unitary operators U, V , we have c − UV =
(c − U)(c − V). Since our basis is universal, we can introduce new more
complicated gates (controlled version of gates in the basis) and produce the
desired circuit with a small increase in size.

Now, we want to generalize it further and construct c−Ux, which given
x ∈ {0, 1}t (interpreted as an integer in binary) computes

c− Ux : |x〉|y〉 7→ |x〉Ux|y〉.

The circuit shown in Figure 3 achieves this task (of all the gates shown on
this picture, we keep those that correspond to 1 in the binary expansion of
x).

Observe that in order for the above circuit to be small, we need U2t be
efficiently computable. This is the additional requirement on the unitary
matrix U we mentioned at the beginning of the section. Observe that in our
case, U2t

a |x〉 = |xa2t mod N〉 can be efficiently computed using the repeated
squaring algorithm.

We will need one last ingredient for the phase estimation algorithm. It
is the quantum Fourier transform, defined as follows.

QFTm : |x〉 7→ 1√
m

m−1∑
y=0

e2πixy/m|y〉,

29

•
•

•
|x〉 ... •

c− U c− U2 c− U4 c− U2t
· · ·

|y〉

Figure 3: Circuit to compute c− Ux.

where x, y ∈ Zm and m � N . It is easy to check that the inverse of this
operator is defined in the following manner.

QFT−1m : |x〉 7→ 1√
m

m−1∑
y=0

e−2πixy/m|y〉.

In these notes we are omitting how to prepare QFTm.
The circuit representing the phase estimation algorithm is shown in Fig-

ure 4.
Performing the computation, we obtain

|0〉|ψ〉 7→ 1√
m

∑m−1
x=0 |x〉|ψ〉

7→ 1√
m

∑
x |x〉Ux|ψ〉

= 1√
m

∑
x e

2πiωx|x〉|ψ〉.

Finally, we obtain

|0〉|ψ〉 7→ 1

m

∑
x,y∈Zm

e2πiωx−2πixy/m|y〉|ψ〉. (4)

We measure the first register. Let p(y) be the amplitude in front of |y〉|ψ〉,
i.e.,

p(y) =
1

m

∑
x

e2πix(ω−y/m).

30

QFTm

c− Ux

QFT−1m
|0〉

|ψ〉

Figure 4: Phase estimation algorithm.

Clearly, there exists at least one y such that |ω− y/m| ≤ 1/2m. We provide
an informal argument that for such y we have p(y) > 0.1 (an analytical
expression in a closed form can be found e.g. in [2, Section 7.1.1]). Assume
that 0 ≤ ω − y/m ≤ 1/2m and consider a unit circle on the complex plane.
Each term in the expression for p(y) represents a unit vector rotated counter
clockwise by an angle 2π(ω−y/m). So after m steps, we’ll move by an angle
at most π. If it is in fact less than π/2, then the average of the terms will
have a large real part. If it is greater than π/2, then the average of the
terms will have a large imaginary part.

By choosing m = N2 we obtain the desired result.

4.2.4 Part 2: How to Construct |uk〉?

Recall, that the eigenvectors of interest to us are of the form

|uk〉 =
1√
r

r−1∑
s=0

e2πisk/r|as mod N〉.

We cannot construct individual vectors |uk〉, but we can construct their
uniform superposition 1/

√
r
∑r

k=0 |uk〉 = |1〉. We will get a uniform super-
position of expressions in (4). There will be no cancellation between different
values of k, because we measure only the first register. So we can use the
Phase Estimation Algorithm with |ψ〉 = |1〉, and we will get an estimate of
a phase for a random value of k, but this is all we need for our purposes.

31

4.3 Discrete Logarithm

Another problem from the domain of cryptography is a so-called “Discrete
Logarithm problem”: given N, a, b ∈ N with N a prime, find t such that
at ≡ b mod N . Unlike cryptosystems based on factoring (when there is a
small amount of “trapdoor” information allowing legitimate users to use it),
this problem is believed to be hard even for Boolean circuits (that is, “no
trapdoor” property).

To solve this problem efficiently on a quantum computer we will apply
Shor’s order-finding algorithm (even though in this case the order can be
easily computed as r = N − 1). Here we have two operators

Ua : |x〉 7→ |xa mod N〉, and Ub : |x〉 7→ |xb mod N〉.

Note that if we apply order-finding algorithm to both Ua and Ub acting on a
specific vector then we get a good estimate σ ≈ k/(N−1) and σ′ ≈ `/(N−1).
Since b ≡ at mod N we have Ub = U ta and ` = kt. Consequently we can
estimate t ≈ σ′/σ. The only problem is that if we apply Ub after Ua we
lose the vector |uk〉. The solution to this problem is to apply Ua and Ub in
parallel.

There is a physical justification for the validity of this argument. Namely,
we can measure information partially. The part we measure gets destroyed,
but we can continue with the rest as if nothing happened. This idea will be
developed later.

The validity of the circuit solving the discrete logarithm problem can be
also confirmed with the following direct computation:

|0〉|ψ〉|0〉 7→ 1

m2

∑
x1,x2,y1,y2∈Z

e2πiω1x1−2πix1y1/me2πiω2x2−2πix2y2/m|y1〉|ψ〉|y2〉.

Here, ω1 = k/(N − 1) and ω2 = kt/(N − 1). Then the amplitude in front of
|y1〉|ψ〉|y2〉 is

p(y1, y2) =
1

m2

∑
x1,x2

p(y1)p(y2),

where p(y1) and p(y2) are as in Shor’s algorithm. Thus if p(y1) > 0.1 and
p(y2) > 0.1 then p(y1, y2) > 0.01, so we can measure y1, y2, take rounded
value of y2/y1 as t, check if it works, and repeat if needed.

4.4 Hidden Subgroup Problem

The problems solved by Simon’s Algorithm, Shor’s Algorithm, and Discrete
Logarithm Algorithm can be phrased as instances of a more general Hidden

32

Subgroup Problem.

Simon’s Algorithm Given a finite abelian group G = Zk2 and some func-
tion f such that for a subgroup H ≤ G of index 2 we have f(x) = f(y)
if and only if x ∈ yH, the goal is to find H. (yH denotes the y-coset
of H).

Shor’s Algorithm Given G = Z and f(x) = ax mod N the goal is to find
a hidden subgroup H = rZ. Again, f(x) = f(y) if and only if x ∈ yH.

Discrete Logarithm Given G = Zr × Zr and f(x, y) = axby mod N , the
goal is to find a hidden subgroup H = {(x, y) | x+ ty = 0} generated
by (−t, 1).

Theorem 22 (Kitaev, 95). If G is a finitely generated abelian group and
H ≤ G is a finite index subgroup then Hidden Subgroup Problem (HSP) for
G is solvable by a polytime quantum algorithm.

We will not give a proof of this theorem, it can be found e.g. in [3,
Section 13.8].

A major open problem is to solve HSP for non-abelian groups. The
progress for non-abelian case has been rather limited, but the motivation
for studying non-abelian case is quite compelling. There are two great ap-
plications.

4.4.1 First Application - Symmetric Group

If HSP were solved for Sn (symmetric group of order n!), we could solve the
graph isomorphism problem as follows. Given graphs G1 and G2, each on n
variables, consider group S2n. For σ ∈ S2n define f(σ) = σ(G1 ∪G2), i.e., σ
acts on the vertices of G1 ∪G2 by permuting them. Then f(σ1) = f(σ2) if
and only if σ−12 σ1 ∈ Aut(G1 ∪G2). Once we know Aut(G1 ∪G2) (say, by a
list of generators L) we can decide if two graphs are isomorphic by checking
whether there exists a permutation in L that moves all vertices from G1 to
G2.

4.4.2 Second Application - Dihedral Group

Dihedral group, denoted D2n, is defined as a group of symmetries of a regular
n-gon. The order of D2n is 2n. Let r be a counter clockwise rotation by
2π/n counter clockwise, and s be a reflection through vertex 1 and n/2 if n
is even or the center of the opposite edge if n is odd. Then D2n consists of ri

33

and sri for 0 ≤ i ≤ n−1. In a sense, D2n is very close to being abelian, since
[D2n : Zn] = 2. Observe that D2n contains many involutions (subgroups of
order 2), and it is not known if one can detect a subgroup of order 2.

Shortest Vector Problem (SVP) in lattices Zn ⊂ Rn is to find a shortest
non-zero vector in a lattice, i.e. min{|v| | v ∈ Zn \ {0}}. Ajtai and Dwork
[4] showed how to create a public-key cryptographic system whose security
could be proven using only worst-case hardness of a certain version of SVP.
This was the first result that used worst-case hardness to create secure sys-
tems. However, if you can solve HSP (in a sense) for D2n then you can break
SVP (almost) [5]. Let us describe one of the technicalities here.

Most of the current approaches to HSP for non-abelian groups use the
operator Uf only via the following algorithm known as the coset sampling
algorithm (that is a reasonable assumption due to the absolutely generic
nature of the function f). Consider f : G → Z, where G is a group and Z
is an arbitrary set, |Z| = N , and a subgroup H ≤ G, L = |H|. Since Uf :
|x, 0〉 7→ |x, f(x)〉, we have Uf : 1/

√
N
∑

x |x, 0〉 7→ 1/
√
N
∑

x |x, f(x)〉. We
“measure the second register” and obtain value of f(x) = y, we then continue
the computation. Intuitively, we expect to obtain a uniform superposition
of all x in a “random” coset of H, i.e. 1/

√
L
∑

f(x)=y |x〉.
In the next section we show how to make these notions precise.

Lecture 8
Scribe: Kenley Pelzer, University of Chicago.

Date: February 1, 2011

5 Quantum Probability

Deficiencies of the current formalism of unitary operators:
1. Probability distributions (dealing with randomness) over pure states

need to be considered.
2. A problem with building quantum computers is the issues with noise

and decoherence; we need a way to describe quantum noise (because no
system is completely isolated from the environment). The unitary model is
not up to the challenge; we need to consider mixed states.

3. We need to consider partial measurement (tracing out).
We start with a set of unitary (pure) states and their probabilities:

(p1, |ψ1〉) , (p2, |ψ2〉) , . . .

34

Each |ψ〉 is also an exponential sum:

|ψ〉 =
∑
x

αx|x〉.

This is messy, so we want something more concise: there is an invariant that
we can work with.

If two (possibly mixed) states have the same invariant, they are physi-
cally indistinguishable (in our world, this means that they are computation-
ally indistinguishable).

A density matrix is such an invariant.

|ψ〉|ψ〉 ← tensor product (unit vector in a larger space)

〈ψ|ψ〉 ← scalar product

ρψ = |ψ〉〈ψ| = density operator for state ψ (also called the “outer
product”)

ρψ (x, y) = αxα
∗
y if |ψ〉 =

∑
x αx |x〉 .

Three important properties of density matrices:
(a) Any density matrix is Hermitian.
(b) Trace of a density matrix is 1.
(c) A density matrix is positive semidefinite (its eigenvalues are non-

negative).
Definition: A density matrix is any square matrix that satisfies all of the

conditions (a)-(c) listed above.
If we take a convex combination of density matrices, we get another

density matrix.
So we can sum density matrices with corresponding probabilities:

ρ = p1|ψ1〉〈ψ1|+ ...+ pt|ψt〉〈ψt|.

ρ is a density matrix. We apply a unitary operation on both sides:

UρψU
† = U |ψ〉〈ψ|U † = |Uψ〉〈Uψ| (by definition of bra-ket rules)

We can do many more great things now, like half of a unitary operation,
giving

ρ 7→ 1
2ρ+ 1

2UρU
†.

35

Another thing is depolarization at the rate η defined as

Eη (ρ) = (1− η) ρ+
η

N
IN ,

where IN is the identity matrix.
Many more noise channels can be found in [1, Section 8.3]; some of them

will also be considered in Section 8 below.
Another way to create the identity matrix is to say that each state occurs

with probability 1
N if there are N states. This is the mathematical equivalent

of a “completely depolarized” (or “totally random”) state.
Two things to NOT mix up:

|x1〉, p = 1
N , |x2〉, p = 1

N , ..., |xN 〉, p = 1
N with density matrix 1

N IN

versus the uniform superposition

ψ =
1√
N

∑
x

|x〉

with density matrix

1

N


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .

If you apply a measurement immediately, these two density matrices
give equivalent results, but after applying a unitary operator, we get very
different results (as we have already seen many times before).

5.1 “Tracing out” or “partial measurement”

Take the pure state 1√
2

(|00〉+ |11〉). Upon measuring (and then discarding)

the second register, we intuitively should get the mixed state(
|0〉, 1

2

)
,

(
|1〉, 1

2

)
.

In the vector space HA ⊗HB,

ψ =
∑
a,b

αab|a〉|b〉

∑
a,b

|αab|2 = 1.

36

Denoting
∑

a |αab|2 by pb, with probability pb we get

1
√
pb

∑
a

αab|a〉.

∑
b

[
pb
∑
a1,a2

(
1

pb
αa1,bα

∗
a2,b|a1〉〈a2|

)]
=

This corresponds to the density matrix∑
a1,a2,b

αa1bα
∗
a2b|a1〉〈a2|

=
∑

a1,a2,b1,b2

(
αa1b1α

∗
a2b2 |a1〉〈a2|〈b1|b2〉

)
.

Thus, TrB (|a1〉〈a2| ⊗ |b1〉〈b2|) “should” be defined as

|a1〉〈a2| · 〈b2|b1〉.

This operation is called “tracing out”. It is a good exercise to check that
this operator indeed takes density matrices to density matrices.

5.2 Superoperators

All examples of quantum operations we have seen so far share the following
properties: they are linear operators that act on matrices, take matrices
of one size to matrices of another (possibly, different) size and take density
matrices to density matrices. This is “almost” the right definition of a super-
operator or an operator “physically realizable” in nature, for the completely
right one see e.g. [1, Section 8.2.4]. We will see one more (and sometimes
more useful) definition in Section 8.

A superoperator is not necessarily reversible.

Lecture 9
Scribes: Kenley Pelzer and Tatiana Orlova, University of Chicago.

Date: February 8, 2011

If you want to measure noise, we need to know distance between two
different states.

In unitary world, pure states are just unit vectors, so ”distance” is angle
between them (there’s hardly any other choice).

37

Probability distributions:
Statistical difference (`1) is represented by a diagonal matrix:
p1 0 0 0
0 p2 0 0

0 0
. . . 0

0 0 0 pn

−


q1 0 0 0
0 q2 0 0

0 0
. . . 0

0 0 0 qn

 =


a1 0 0 0
0 a2 0 0

0 0
. . . 0

0 0 0 an

 .

Given an event E, the difference between the probability of the event E
in two different distributions can be bounded by:

|Pp (E)− Pq (E) | ≤ 1

2

N∑
i=1

|ai.|

This is the statistical distance between two distributions; note that we must
take absolute value since

N∑
i=1

ai = 0.

Assume now that ρ and σ are density matrices. It would be tempting to
define the trace distance between them simply as

D (ρ, σ) = Tr (|ρ− σ|) ,

but we want to be able to measure in an arbitrary basis. Thus, we let

D (ρ, σ) = max
U

Tr
(
|U (ρ− σ)U †|

)
,

where the maximum is taken over all unitary matrices U .

Theorem 23. If T is an arbitrary superoperator, then for any pair of density
matrices:

D (T (ρ) , T (σ)) ≤ D (ρ, σ) .

The proof is omitted and can be found e.g. in [1, Section 9.2.1].

6 Quantum Complexity Theory: black-box model

In the general black-box problem, we are typically given a function f :
[N] → {0, 1}. While the set [N] can actually be of arbitrary nature, in
many interesting cases it is comprised of binary strings. To commemorate
this fact, we use lower case letters x, y, z etc. for its elements (and we will
typically represent the function f by its truth-table X = (X1, . . . , XN),
where Xx = f(x)).

38

6.1 Hybrid method: optimality of Grover’s search

In the search problem we want to find x ∈ {1, 2, . . . , N} such that f(x) = 1.
We have shown that Grover’s search algorithm solves this problem by making
O(
√
N) queries to the black-box Uf (see Theorem 14 in Section 4). We now

show that this result is the best possible.

Theorem 24. Grover’s search algorithm is optimal, i.e., every quantum
black-box search algorithm requires Ω(

√
N) queries.

The proof of the above theorem follows directly from the same lower
bound for the corresponding decision problem. We now state the decision
problem and then prove the lower bound for it.

LetX
df
= (X1, . . . , XN), where Xx ∈ {0, 1}, such that Xx = f(x) for all x ∈

[N]. We will denote by X0 an all-zero string, i.e. the string (X1, . . . , XN),
such that Xx = 0 for all x ∈ [N], and by Xx the string (X1, . . . , XN), such

that Xy =

{
1, if y = x;

0, otherwise
. In other words, Xx is the string that contains

precisely one 1 in the xth place. We want to compute the following function

F (X)
df
=

{
0, if X ≡ X0;

1, if X ∈ {Xx}x∈[N].
.

oracle query


oracle result

workspace



Uf

U1

Uf

· · ·

Uf

Ut

· · ·
... · · ·

· · ·
· · ·
· · ·

... · · ·

Figure 5: Quantum circuit for black-box query computation.

Theorem 25. Computing F (X) requires Ω(
√
N) queries to the black box

Uf .

39

Proof. Let ∣∣ψxj 〉 df= UjUXxUj−1 . . . U1UXx |ψ〉 ,

and

|ψj〉
df
= UjUj−1 . . . U1 |ψ〉

(note that UX0 is the identity operator).

We want to look at the distance ||
∣∣∣ψxj 〉 − |ψj〉 || (where || · || stands for

Euclidean norm). For j = 0 this distance is 0. When j goes from 0 to t, the
distance must change from 0 to 1% for any fixed x as our circuit must be
able to distinguish between X0 and Xx. We want to prove that the distance
cannot change by more then a certain amount that depends on t. This will
bound the number of times we have to apply the operator Uf in order to
successfully solve the problem.

First of all, since unitary operators preserve distances, we can assume
w.l.o.g. that Uj+1 is the identity operator which implies |ψj+1〉 = |ψj〉. Let
|ψj+1〉 = |ψj〉 =

∑
y αy,j |y〉 |φy〉, where αy,j ≥ 0,

∑
y α

2
y,j = 1 and ||φy|| = 1.

On Figure 5, |y〉 corresponds to the first register, and |φy〉 is the combina-
tion of oracle result and workspace. Also, let |ψxj 〉 =

∑
y α

x
y,j |y〉 |φxy〉, and

|ψxj+1〉 =
∑

y α
x
y,j+1 |y〉 |φ̃xy〉, where again αxy,j ≥ 0, coefficients do not change,

i.e. αxy,j+1 = αxy,j for all y, and |φ̃xy〉 =
∣∣φxy〉 unless y = x. For y = x, we

have no control over what happens to |φ̃xx〉 when changing from the state
|ψxj 〉 to |ψxj+1〉, except for the fact that the length is preserved (and it will
be important).

The first obvious idea to try is the triangle inequality

|| |φj+1〉−
∣∣φxj+1

〉
|| ≤ || |φj〉−

∣∣φxj 〉 ||+|| ∣∣φxj 〉−∣∣φxj+1

〉
|| ≤ || |φj〉−

∣∣φxj 〉 ||+2αxx,j .

That is good, but for certain reasons that will become clear later, we
would like the above inequality to depend only on values |αx,j | (without the
superscript x). For this purpose we split our Hilbert space L into a direct
sum of two subspaces

L =

⊕
y 6=x
Ly

⊕ Lx.
In the subspace

⊕
y 6=x Ly all operators act identically. In the subspace Lx

we have

||αx,j |φx〉 − αxx,j |φxx〉 ||+ αx,j ≥ αxx,j ≥ ||αx,j |φx〉 − αxx,j+1|φ̃xx > || − αx,j .

40

(We did use for this calculation that αxx,j+1 = αxx,j !) This gives us the desired
bound in L

|| |ψj+1〉 −
∣∣ψxj+1

〉
|| ≤ || |ψj〉 −

∣∣ψxj 〉 ||+ 2αx,j

(An exercise!) Summing this over all x and taking into account the Cauchy-

Schwartz inequality
∑

x αx,j ≤
√
N ·

∑
x α

2
x,j =

√
N , we get the estimate∑

x

|| |ψj+1〉 −
∣∣ψxj+1

〉
|| ≤

∑
x

|| |ψj〉 −
∣∣ψxj 〉 ||+ 2

√
N.

Then, by induction, ∑
x

|| |ψxt 〉 − |ψx〉 || ≤ 2t
√
N.

Since the left-hand side, as we already observed, is Ω(N), the proof is com-
pleted.

Lectures 10 and 11
Scribe: Philip Reinhold, University of Chicago

Date: February 10 and 15, 2011

6.2 Quantum Query Complexity vs. Other Complexity Mea-
sures

While Simon’s Algorithm demonstrates the feasibility of exponential quan-
tum speedup in black-box query complexity for at least one problem, an-
other approach has shown that for another class of problems, the best one
can achieve is a polynomial speedup. Namely, Simon’s problem dealt with
a predicate which was only defined on certain inputs, specifically that the
input function f satisfied ∃s∀x∀y(f(x) = f(y)↔ x = y ∨ x⊕ y = s). In the
case that the input to Simon’s algorithm did not satisfy this promise, the
output is not well defined. We will now see that when we forbid the last
feature, the situation changes dramatically.

Definition 26. A property F : {0, 1}N → {0, 1} is total if its output is
defined for all inputs {0, 1}N .

Definition 27. For a property F under the black-box model, D(F) is the
deterministic complexity, i.e., the number of calls to the black box that
must be made (in the worst-case) with a deterministic classical algorithm
to determine the property.

41

Note that in this definition we do not count the internal work of the
algorithm, only the number of queries.

Definition 28. For a property F under the black-box model, Q2(F) is the
bounded-error quantum complexity, i.e., the number of calls to the black box
that must be made with a quantum computer such that the probability of
returning the correct answer is at least 2/3.

We have the following theorem relating these two (and a few other)
measures.

Theorem 29. For any total property F , D(F) ≤ O(Q2(F)6).

Proof. We have

deg(F) ≤ D(F) ≤ O(C(1)(F)bs(F))

≤ O(s(F)bs(F)2)

≤ O(bs(F)3)

≤ O(d̃eg(F)6)

≤ O(Q2(F)6).

Fleshing out the content of this proof will be the following supporting
concepts and theorems; for historical attributions of all these pieces see e.g.
the survey [6].

Definition 30. A one-certificate for F : {0, 1}N → {0, 1} is an assignment
c : S → {0, 1} for some S ⊆ [N] such that for all inputs X that are consistent
with c, F (X) = 1. An input to F , X is consistent with c iff ∀i ∈ S(Xi = ci).

The one-certificate complexity, C(1)(F) is the minimum value such that
for all inputs X on which F (X) is true, there exists a cerificate c such that
X is consistent with c and |c| ≤ C(1)(F).

Definition 31. A function F : {0, 1}N → {0, 1} is sensitive on B ⊆ [N]
for input X iff flipping the values Xv for v ∈ B flips the output of F , i.e.,
F (X) 6= F (X ⊕ B). Let the block sensitivity of F , bs(F) be the size of the
largest set of pairwise disjoint non-empty blocks Bi such that for some
input X, F is sensitive on Bi for X, for i from 1 to bs(F).

Theorem 32. D(F) ≤ C(1)(F)bs(F).

42

Proof. We show this by presenting an algorithm whose steps are based on a
single certificate (that is, use at most C(1) queries), which converges on an
answer after at most bs(F) steps.

At each stage we pick a certificate c : S → {0, 1} of size at most C(1)(F)
which is consistent with those Xi already queried (if there is no consistent
c, output 0 and stop). We then query Xv for all previously unqueried v ∈ S.
If X is consistent with c, output 1 and stop. If we have not terminated after
bs(F) steps, pick any input Y consistent with those Xv queried, and output
F (Y).

The claim is that for any two inputs Y, Y ′ as above we necessarily have
F (Y) = F (Y ′) (and thus in particular F (Y) = F (X)). If we assume not, we
can show that there are disjoint subsets of the input on which F is sensitive,
B1, B2, . . . , Bb+1, where b = bs(F).

Let ci for i ∈ [b] be the certificates whose indices were queried in the
algorithm. Let Y, Y ′ be as above; assume w.l.o.g. that F (Y) = 0, F (Y ′) = 1.
Let the certificate for Y ′ be cb+1. Let Bi for i ∈ [b+1] be the set of variables
on which ci and Y disagree. Then, ∀i(F (Y ⊕ Bi) = 1), which shows that
F is sensitive on Bi at the input Y . To show that these sets are pairwise
disjoint, consider two certificates used, ci and cj , where i < j. For all
variables v ∈ Bi, Xv = Yv 6= ci(v). However, having queried v in step i,
the certificate cj would be picked to be consistent on v, so even if v is in
the domain of cj , then Xv = cj(v). Hence, in any case we have v /∈ Bj .
Therefore, Bis form a disjoint set of b+ 1 blocks on which F is sensitive at
the input y, which is a contradiction.

Definition 33. The sensitivity of F , s(F) is the number of variables of
the input X on which a flip guarantees a flip in F (X). It is equivalent
to the block sensitivity with the additional restriction that |Bi| = 1, so
s(F) ≤ bs(F).

Theorem 34. C(1)(F) ≤ O(s(F)bs(F)).

Proof. Let bsX(F) ≤ bs(F) be the size of a maximal set of disjoint blocks
Bi such that F is sensitive for X on all Bi. Furthermore, let these blocks be
minimal in |Bi|. It follows that c :

⋃
iBi → {0, 1}, c(i) = Xi, is a certificate

for X, since if not, there would be another sensitive block BbsX(F)+1 defined
as those input variables not in

⋃
iBi on which X is still sensitive. Since these

blocks are minimally sized, X ⊕Bi must be sensitive on v for all v ∈ Bi, so

43

|Bi| ≤ sX⊕Bi(F) ≤ s(F). Hence

|c| =
bs(F)∑
i=1

|Bi| ≤ s(F)bs(F).

It is a big open problem to determine whether s(F) and bs(F) are always
polynomially related; for a comprehensive survey on this problem see [7].

The next theorem requires the symmetrization technique. Let p : RN →
R be a multilinear polynomial. Let a permutation π ∈ SN be a rearrange-
ment of the variables composing the input to p, i.e., π(X) = (Xπ1 , Xπ2 , . . . , XπN).
The symmetrization of p is the average of p over all permutations of the in-
puts, i.e.

psym(X) =

∑
π∈Sn p(π(X))

N !
.

Lemma 35. psym(X) can be equivalently (for X ∈ {0, 1}N) written as a
single-variate polynomial q(|X|).

Proof. Let p(X) : RN → R be a multilinear polynomial. Let Pj denote the
sum of all products of j input variables Xi. There are

(
N
j

)
terms in this

sum. Since psym is symmetrical, it can be written as

psym(X) = a0 +
N∑
i=1

aiPi.

On inputs X ∈ {0, 1}N , the only terms contributing to the sum Vi are those
which are 1. With |X| ≡

∑
iXi, there are

(|X|
i

)
such terms, leaving Pj with

the same value. Thus

psym(X) = q(|X|) ≡ a0 +
∑
i

ai

(
|X|
i

)
.

Definition 36. The approximate degree of F , d̃eg(F) is the smallest degree
of a multi-linear polynomial which approximates F . More formally

d̃eg(F) = min
p

{
deg(p) | ∀x ∈ {0, 1}N , |p(x)− F (x)| ≤ 1

3

}
.

44

Furthermore, this theorem relies on a result of Ehlich, Zeller, Rivlin and
Cheney.

Lemma 37. If a polynomial p is bounded, i.e., ∀i ∈ [N], b1 ≤ p(i) ≤ b2,
and ∃x ∈ [0, 1](|p′(x)| ≥ c) then

deg(p) ≥
√

cN

c+ b2 − b1
.

Theorem 38. bs(F) ≤ O(d̃eg(F)2).

Proof. Let p be a polynomial that approximates F , and let Bi be a family of
bs(F) = b blocks on which F is sensitive. Let Y = (Y1, . . . , Yb) be a b-variate
variable. For some input X where F (X) = 0, define Z = (Z1, . . . , ZN) such
that Zv = Xv ⊕ Yj if v ∈ Bj , and Zv = Xv if v 6∈ B1 ∪ . . . ∪ Bb (thus,
in particular, when Y = ~0, Z = X). Define q(Y) = p(Z), making q(Y) a
b-variate polynomial of degree deg(p).

Note that since p is bounded in {0, 1}N , so is q (in {0, 1}b). Furthermore

|q(~0)− 0| = |p(X)− F (X)| ≤ 1/3

(by the definition of d̃eg(F)), and for any input Y with Hamming weight
|Y | = 1, we have

|q(Y)− 1| = |p(X ⊕Bi)− F (X ⊕Bi)| ≤ 1/3,

since F (X) flips when flipping block Bi.
Let r(|Y |) = qsym(Y) be the single-variate polynomial obtained from

symmetrizing q as in Lemma 35. Since r is obtained as an average over the
possible inputs of q, the aforementioned properties translate to r, namely
r(n) ∈ [0, 1] (n ∈ {0, 1, . . . , N}), r(0) ≤ 1/3, r(1) ≥ 2/3. By the mean value
theorem we have |p′(x)| ≥ 1/3 for some x in [0, 1].

Using this value as c, and the [−1/3, 4/3] bound for r in Lemma 37 we

have

√
1
3
b

1
3
+14/3−(−1/3) =

√
b
6 ≤ deg(r) ≤ deg(p). So bs(F) ≤ O(d̃eg(F)2).

Theorem 39. d̃eg(F) ≤ O(Q2(F)).

Proof. Write a quantum circuit as an alternating series of arbitrary unitary
transformations (Uj) and queries to the input X (UX), see Figure 5. The
output of this circuit can be written as

∑
k∈K α

X
k |k〉 where K is the set

of possible output strings. We first claim that for any fixed k, αXk can be

45

written as a multilinear polynomial in the variables X = (X1, . . . , XN) with
deg(αXk) ≤ Q2(F).

Write the state of the circuit just after applying the jth query to X as
|ψj〉. Then |ψj+1〉 = UjUX |ψj〉 (cf. the proof of Theorem 25). Write without
loss of generality that the query UX maps |k〉 = |y, b, z〉 to |y, b⊕Xy, z〉. Then
we have the formula

UX

∑
y,b,z

αXy,b,z |y, b, z〉

 =
∑
y,b,z

(αXy,b,z(1−Xy) + αXy,b⊕1,zXy) |y, b, z〉 ,

which implies that the degree of the polynomials αXy,b,z can increase by at
most 1 from applying the operator UX . And the unitary transformation Uj
does not depend on X at all, therefore it will output a polynomial of the
same degree as its input.

It follows that the amplitudes αXt at the tth step will be a polynomial of
degree at most t. The probability of observing any basic state is pk = |αXk |2,
a polynomial of degree at most 2t.

Remark 1. Whether the bound of Theorem 29 can be improved is a major
open problem. Some of the intermediate steps in this chain of inequalities
are known to be tight, and some are not, we again refer to the survey [6] for
further details.
Remark 2. The bound in Theorem 39 is called polynomial method. This
is our second technique for proving quantum lower bounds in the black-box
model; we will review one more in the next lecture.

Lectures 12 and 13
Scribe: Pooya Hatami, University of Chicago

Date: February 16 and 17, 2011

6.3 Ambainis’s Adversary Method

Let F : {0, 1}N → {0, 1} be a Boolean function. Consider sets X ,Y ⊆
{0, 1}N such that:

• ∀X ∈ X : F (X) = 1, and

• ∀Y ∈ Y : F (Y) = 0.

Let R ⊆ X × Y be a binary relation. Defining b and b′ as follows

b = max
X∈X ,z∈[n]

|{Y |R(X,Y) ∧Xz 6= Yz}| ,

46

b′ = max
Y ∈Y,z∈[n]

|{X|R(X,Y) ∧Xz 6= Yz}| ,

we have the following theorem.

Theorem 40 (Ambainis).

Q2(F) ≥ Ω(
|R|√
|X ||Y|bb′

).

Proof. Let |ψXj 〉 be the state just after the jth call to the oracle when the
computation is led byX. Similar to what we have seen in the Hybrid Method
(Theorem 25) and Polynomial Method (Theorem 39), we have

|ψXj 〉 =
∑
z

αXz,j |z〉|φXz,j〉.

We will study the following sum

Wj :=
∑

(X,Y)∈R

|〈ψXj |ψYj 〉|.

Notice that W0 = |R|.
Suppose the algorithm A has the property that for any input Z the

probability of guessing the correct answer is at least 1− ε. This means that
the final stage of A can correctly distinguish |ψXt 〉 from |ψYt 〉 for any X,Y
with F (X) 6= F (Y) (in particular, when (X,Y) ∈ R) with probability at
least 1−ε. Intuitively, it should be clear that it implies that the states

∣∣ψXt 〉
and

∣∣ψYt 〉 can not be too close to each other; the following theorem makes
this intuition precise.

Theorem 41 ([2, Theorem 9.2.1]). Any procedure that on input |ψZ〉 guesses
whether Z = X or Z = Y will guess correctly with probability at most
1 − ε = 1

2 + 1
2

√
1− δ2, where δ = |〈ψX |ψY 〉|. This probability is achievable

by an optimal measurement.

By the above theorem we know that we must have

|〈ψXt |ψYt 〉| = δ ≤ 2
√
ε(1− ε),

and thus Wt ≤ 2
√
ε(1− ε)|R|, which for ε < 1/2 is less than |R|. Therefore

it suffices to prove that Wj+1 ≥Wj − 2
√
|X ||Y|bb′.

Lemma 42. Wj+1 ≥Wj − 2
√
|X ||Y|bb′.

47

Proof. From the definition of Wj we know that

|Wj+1 −Wj | ≤
∑

(X,Y)∈R

|〈ψXj+1|ψYj+1〉 − 〈ψXj |ψYj 〉|.

We also know that

|ψXj+1〉 = |ψXj 〉 − 2
∑

z:Xz=1

αXz,j |z〉|φXz,j〉,

and
|ψYj+1〉 = |ψYj 〉 − 2

∑
z:Yz=1

αYz,j |z〉|φYz,j〉

(as in the similar argument on page 40, we assume w.l.o.g. that the interlac-
ing constant operator Uj+1 is identity). Note that unlike the Hybrid proof
(see page 40), we do use here the specific form of the operators UX , UY ,
although I suspect it can be avoided.

It follows that∣∣〈ψXj+1|ψYj+1〉 − 〈ψXj |ψYj 〉
∣∣ ≤ 2

∑
z:Xz 6=Yz

|αXz,j ||αYz,j |〈φXz,j |φYz,j〉.

Thus it suffices to bound

2
∑

(X,Y)∈R

∑
z:Xz 6=Yz

|αXz,j ||αYz,j | ≤ 2
√
|X ||Y|bb′.

We know that

2|αXz,j |.|αYz,j | ≤ r|αXz,j |2 +
1

r
|αYz,j |2,

thus providing

2
∑

(X,Y)∈R

∑
z:Xz 6=Yz

|αXz,j ||αYz,j |

≤ r
∑

(X,Y)∈R

∑
z:Xz 6=Yz

|αXz,j |2 +
1

r

∑
(X,Y)∈R

∑
z:Xz 6=Yz

|αYz,j |2 ≤ rb|X |+
1

r
b′|Y|.

Finally choosing r =
√

b′|Y|
b|X | finishes the proof.

This also concludes the proof of Theorem 40.

48

6.4 Quantum Query Complexity and Formula Size

Let F : {0, 1}N → {0, 1} be a Boolean function. It is known that

L(F) ≥ Ω

(
|R|2

|X ||Y|

)
, (5)

where L(F) is the formula size of F , and X,Y and R are as previously
defined. It is also easy to see that Q2(F) ≤ L(F) (by induction on L(F)).
Theorem 40 in the case when b = b′ = 1, implies that

Q2(F) ≥ Ω

(
|R|√
|X ||Y|

)
. (6)

Inequalities (5) and (6) lead to the belief that Q2(F) ≤ O(L(F)1/2).
Grover’s search algorithm corresponds to the case when F is a single OR
function, therefore this conjecture can be viewed as a far far reaching gen-
eralization of his result.

In a recent breakthrough, Ambainis et. al. [8] almost proved this by
showing that

Q2(F) ≤ L(F)
1
2
+o(1).

7 Quantum Communication Complexity

Suppose we have two parties Alice and Bob and a Boolean function F :
{0, 1}N ×{0, 1}N → {0, 1}. Consider a setting in which Alice has a Boolean
string X ∈ {0, 1}N and Bob has a Boolean string Y ∈ {0, 1}N , and their
goal is to compute the value of F (X,Y) by communicating as few bits as
possible. Alice and Bob agree on a communication protocol beforehand.
Having received inputs, they communicate in accordance with the protocol.
At the end of the communication one of the parties declares the value of the
function F . The cost of the protocol is the number of bits exchanged on the
worst-case input.

Definition 43. The deterministic communication complexity of F , denoted
by C(F), is the cost of an optimal communication protocol computing F .

The topic of classical communication complexity was introduced and
first studied by Andrew Yao in 1979 [9]. The following is a simple obser-
vation which is implied by the definition of deterministic communication
complexity.

49

Observation 44. Let F : {0, 1}N × {0, 1}N → {0, 1} be a non-trivial
Boolean function, meaning that it depends on all its variables. Then we
have

C(F) ≤ N.

Definition 45. For a Boolean function F : {0, 1}N × {0, 1}N → {0, 1}, the
communication matrix of F is a {0, 1}N by {0, 1}N matrix, denoted by MF ,
where MF (X,Y) = F (X,Y).

We have the following rank lower bound for C(F) due to Mehlhorn and
Schmidt [10].

Theorem 46 (Mehlhorn and Shmidt [10]). For any Boolean function F :
{0, 1}N × {0, 1}N → {0, 1} we have

C(F) ≥ log2 rk(MF).

Definition 47. Define EQN : {0, 1}N ×{0, 1}N → {0, 1} to be the Boolean
function where EQN (X,Y) = 1 if X = Y , and EQN (X,Y) = 0 otherwise.

We have the following lower bound on the communication complexity of
the EQN function immediately following from Theorem 46.

Observation 48. We have

C(EQN) ≥ N.

7.1 Probabilistic Communication Complexity

For a Boolean function F : {0, 1}N × {0, 1}N → {0, 1}, let the two-way
error probabilistic communication complexity of F be denoted by C2(F).
Formally, it is defined similarly to C(F), with the difference that the protocol
is allowed to use random coins and is allowed to err with probability ≤ 1/3
for each input (X,Y). Then we have the following upper bound on the
probabilistic communication complexity of the function EQN .

Theorem 49 (Rabin and Yao).

C2(EQN) ≤ O(logN).

Proof. Let p ≥ 3N be a prime number which is only slightly greater than
3N . Let E be an encoding of Boolean strings by low-degree polynomials
over Fp. The exact choice of this encoding does not matter, so we simply let

E(X) =
∑N

i=1Xiξ
i ∈ Fp[ξ]. Consider the following probabilistic protocol:

50

1. Alice chooses z ∈ Fp at random and sends (z, E(X)(z)) to Bob, where

E(X)(z) =
∑N

i=1Xiz
i.

2. Bob checks if E(X)(z) = E(Y)(z), and outputs 1 if and only if it is
the case.

If X = Y , then Bob always computes the correct value of EQ(X,Y)
at the last step. If X 6= Y , then E(X) and E(Y) differ for at least 2p/3
out of p possibilities since their difference is a non-zero polynomial of degree
≤ N ≤ p/3 and thus can have at most p/3 roots in Fp. So the probability
that E(X) and E(Y) differ in the z-th coordinate and hence Bob correctly
computes the value of EQ(X,Y) is at least 2

3 , as desired.
It is easy to see that the number of bits transmitted in this protocol is

O(logN).

7.2 Quantum Communication Complexity

Almost 15 years elapsed before the same pioneer, Andrew Yao, thought of
asking how the situation of communication complexity might change in the
quantum computation world [11].

Let X and Y be two sets, and F : X × Y → {0, 1} be a Boolean func-
tion. We will be working with HA ⊗ C ⊗ HB, where HA, HB and C are
Hilbert spaces, which represent Alice’s work space, Bob’s work space, and
communication channel respectively. A quantum communication protocol
is defined as follows:

(IA ⊗ UY,t)(UX,t ⊗ IB) · · · (IA ⊗ UY,1)(UX,1 ⊗ IB)|φ0〉, (7)

where UX,i are arbitrary unitary operators on HA ⊗ C that depend only on
Alice’s input X, and UY,i are described dually. The cost of the protocol
is t · log2 dim(C); the idea behind this measure is that we have t rounds of
communication, with log2 dim(C) qubits sent in each of them. The quantum
communication complexity of a function F (again, with error probability
1/3) is equal to the cost of the most efficient quantum protocol to compute
F and is denoted by QC2(F).

There have been different models of quantum communication complex-
ity. While almost all of them are essentially equivalent, one important dis-
tinction that does not have any analogue in the black-box model is that of
prior entanglement, depending on whether the initial vector |φ0〉 in (7) is
arbitrarily entangled or simply has the form |0a〉 ⊗

∣∣0b〉⊗ |0c〉.
The straightforward analogue of Theorem 29 can not be true since Obser-

vation 48 and Theorem 49 already imply an exponential separation between

51

C(F) and C2(F). Thus, a sensible thing to ask is if C2(F) and QC2(F) are
polynomially related. For partial functions this is known to be not true [12],
and for total functions this is a major open problem:

Conjecture 50. C2(F) ≤ QC2(F)O(1) for totally defined functions F .

In the rest of this block we will discuss this conjecture for a natural class
of total functions F where progress is being made, and that might be more
tractable than the general case.

Definition 51. For two functions F : {0, 1}N → {0, 1}, and g : {0, 1} ×
{0, 1} → {0, 1}, the function F ◦ gN is defined as follows

F ◦ gN := F (g(X1, Y1), g(X2, Y2), . . . , g(XN , YN)).

The F ◦ gN functions are called block-composed functions and are widely
studied. Many authors also consider even more general case, when each
block consists not of a single (qu)bit, but of a constant number of them. For
the purpose of our discussion, however, the one-qubit case suffices.

Following are well-studied examples of block-composed functions:

1. EQ(X,Y) =
∧
z(Xz = Yz).

2. IP(X,Y) =
⊕

z(Xz ∧ Yz).

3. DISJ(X,Y) =
∨
z(Xz ∧ Yz).

The following simple theorem relates quantum communication complex-
ity of block-composed functions to the quantum complexity measure Q2.

Theorem 52 (Buhrman,Cleve and Wigderson 98 [13]). We have

QC2(F ◦ gN) ≤ O(Q2(F) logN).

Proof. In this case we will have a communication channel of dimension O(N)
(that is, representable by O(logN) qubits), and only Alice will have a work
space. We will use an efficient black box protocol to compute F , and during
the process, for every query

Ug : |x, s, 0〉 7→ |x, s⊕ g(Xx, Yx), 0〉,

Alice will compute Ug in her work space after providing Xx to Bob and
getting back g(Xx, Yx) from Bob in the communication channel.

52

- |x, s, 0〉|0, 0, 0〉 7→ (Alice) |x, s, 0〉|Xx, x, 0〉;

- |x, s, 0〉|Xx, x, 0〉 7→ (Bob) |x, s, 0〉|Xx, x, g(Xx, Yx)〉;

- |x, s, 0〉|Xx, x, g(Xx, Yx)〉 7→ (Alice) |x, s, g(Xx, Yx)〉|Xx, x, g(Xx, Yx)〉;

- |x, s, g(Xx, Yx)〉|Xx, x, g(Xx, Yx)〉 7→ (Alice) |x, s⊕g(Xx, Yx), g(Xx, Yx)〉|Xx, x, g(Xx, Yx)〉;

- |x, s⊕g(Xx, Yx), g(Xx, Yx)〉|Xx, x, g(Xx, Yx)〉 7→ |x, s⊕g(Xx, Yx), 0〉|0, 0, 0〉,

where the last step can be done by the Garbage Removal Lemma (Theorem
1). The cost of the protocol is O(Q2(F) logN).

The following conjecture (that we purposely state in a little bit loose
form) states that we cannot in fact do much better than that:

Conjecture 53. There is no better way to compute block-composed func-
tions other than computing G’s in parallel and computing F of the outputs
at the end.

Razborov confirmed the above conjecture for the case when F is a sym-
metric Boolean function [14]. Note that we also trivially have the classical
analogue of Theorem 52: C2(F ◦ gN) ≤ O(R2(F)), where R2(F) is the
randomized decision-tree complexity of the predicate F . Since R2(F) and
Q2(F) are polynomially related by Theorem 29, Conjecture 53 does imply
Conjecture 50 for block-composed functions.

Lectures 14,15
Scribe: Pratik Worah, University of Chicago.

Date: 22, 23 February, 2011

Now we study a technique (discrepancy method) for lower bounds on
QC2. We conclude with a sketch of some ideas involved in more advanced
proofs based on generalizing the discrepancy method.

Note that we will work under the context described in Section 7 where
the input is simply |0a, 0b, 0c〉 and no prior entanglement is present1. The
output is written to the channel in the end. As in Definition 45, given a
function F : X × Y → {0, 1} denote by MF (MF (X,Y) = F (X,Y)) the
communication matrix of F in the quantum model2. More precisely,

1Most of the material, however, can be generalized to the case with prior entanglement
as well – see [14, Remark 4] for details.

2Let |X | = |Y| = N , and so N = log2 N .

53

Definition 54. The quantum communication complexity with bounded-error
probability of a function F : X × Y → {0, 1} denoted by QC2(F) is the cost
of the most efficient quantum protocol (cf. Section 7) to compute F such
that the probability of computing the correct answer is at least 2

3 .

We will denote by PF the matrix of probailities of acceptance for F (i.e.,
PF (X,Y) is the probability that the protocol accepts). Then, in the matrix
notation, our acceptance condition can be written as3 `∞(MF − PF) ≤ 1

3 .

7.3 Decomposition of quantum protocols

We now assume that the channel has only one qubit. This simplifies the
expressions in the next theorem, and it is well-known that it does not restrict
the power of the model much. The following observation abstracts out the
structure of PF .

Theorem 55. Given F : X × Y → {0, 1} and PF as before, we have

PF =

22QC2(F)∑
i=1

Ri,

where Ri are real rank 1 matrices of the form Ri = CiD
T
i (we write DT

instead of D† for real matrices) such that `∞(C), `∞(D) ≤ 1.

Proof. We start by proving a lemma regarding the structure of the quantum
state.

Lemma 56. The final state of a t step quantum communication protocol (7)
is expressible as ∑

c∈{0,1}

2t∑
i=1

Aci(X)⊗ |c〉 ⊗Bci(Y), (8)

where Ai, Bi are (complex) vectors with `2 norm ≤ 1.

Proof. The proof will be by induction on the length of the protocol t. In the
base case t = 0 the vectors Ac1, Bc1 are unit vectors so the lemma is true.

Suppose the lemma holds for t− 1 steps and suppose that Alice applied
(UX,t⊗IB). Since UX,t is unitary it preserves `2 norm, so taking projections
implies ∃Aci0, Aci1 with `2 norm at most that of Aci such that

(UX,t ⊗ IB)(|Aci〉|c〉)|Bci〉 = (|Aci0〉|0〉+ |Aci1〉|1〉)|Bci〉. (9)

3`∞(A) = maxi,j |A(i, j)|.

54

Therefore the number of terms in our sum increases by at most a factor of
2. Observe that this suffices to prove the lemma.

Given Lemma 56, we can calculate PF as follows (assuming |1〉 is accept-
ing).

PF (X,Y) =
2t∑

i,j=1

〈A1i(X), A∗1j(X)〉〈B1i(Y), B∗1j(Y)〉.

Therefore PF has the form
∑2t

i,j=1Ci,jD
T
i,j . Since ||A1i||2 , ||B1i||2 ≤ 1, C,D

(viewed simply as vectors of length 22t) will have `∞ norm ≤ 1. Moreover,
rk(CD) ≤ min(rk(C), rk(D)) implies rk(Ri) ≤ 1. Hence the proof follows.

As a corollary, we obtain the log rank bound for QC (zero-error version
of QC2).

Corollary 57. QC(F) ≥ Ω(log rk(MF)).

In the following, we discuss methods for obtaining lower bounds on
QC2(F).

7.4 Lower bound for QC2(IP2)

We now change MF to a ±1 valued matrix while keeping `∞(MF − PF)
bounded by at most a small enough constant say ε. This will also require
replacing PF with JN − 2PF , where JN is an all-one matrix. But this linear
transformation does not affect the validity of Theorem 55, up to a small
multiplicative increase in the number of terms, and this is the only property
of PF we are going to use (in particular, we will not need that it is non-
negative).

Definition 58. Define the Frobenius product of two matrices A and B by
〈A,B〉 :=

∑
i,j A

∗
ijBij .

Let us write MF as PF + ∆ where `∞(∆) ≤ ε. Observe that

N 2 = 〈MF ,MF 〉 = 〈MF ,∆〉+ 〈MF , PF 〉. (10)

Since the first term in the RHS is at most εN 2, the second term has to be
Ω(N 2). Theorem 55 gives (for QC2(F) = k)

〈MF , PF 〉 =
22k∑
i=1

〈MF , Ri〉 =
22k∑
i=1

〈MF , CiD
T
i 〉. (11)

55

Note that for a single term in the last sum

〈MF , CD
T 〉 =

N∑
j,k=1

MF (j, k)(CDT)(j, k) =
N∑

j,k=1

CjMF (j, k)Dk = CTMFD.

Since `∞(C), `∞(D) ≤ 1, we have ||C|| , ||D|| ≤
√
N (recall that ||·|| stands

for the `2-norm). Therefore by definition of spectral norm (that we will also
denote simply by ||·||),

∣∣∣∣CTMFD
∣∣∣∣ ≤ N ||MF ||.

Hence returning to the original equation (11),

〈MF , PF 〉 ≤
22k∑
i=1

∣∣∣∣CTi MDi

∣∣∣∣ ≤ 22kN ||MF || .

Since, as we observed above, 〈MF , PF 〉 ≥ Ω(N 2), we conclude

22k ≥ Ω

(
N
||MF ||

)
. (12)

The lower bound method above is known as the discrepancy method. In
summary we showed that for a relation like (10) to hold with small `∞(∆),
〈MF , PF 〉 must be large. Using this fact and the properties of our quantum
model we obtained the desired lower bound.

As an example, consider the function F = IP2 i.e., F (X,Y) =
⊕N

z=1(Xz∧
Yz).

Observation 59. For F = IP2, ||MF || =
√
N .

Proof. The inner product matrix MF is an orthogonal matrix, up to a nor-
malizing factor (specifically a Hadamard matrix). Therefore all its eigenval-
ues are

√
N in absolute value.

The above discussion therefore implies:

Theorem 60 ([15]). QC2(IP2) = Ω(N).

As an aside, the following is an open problem in this area (see [16, Section
8] for more details).

Conjecture 61. If F ∈ AC0 then ||M || is large for any large submatrix M
of MF .

A consequence of this would be that the “naive” discrepancy bound (12)
provably does not work for functions in AC0. In the next two subsections
we discuss its generalizations that can do the job.

56

7.5 Lower bound for QC2(DISJ)

In this subsection the aim is to study lower bounds on QC2(F ◦ ∧N) for
block-composed functions (cf. later half of Section 7) with symmetric F .

Tight estimates of the approximate degree (see Definition 36) of sym-
metric Boolean functions were obtained by Paturi [17] in terms of Γ, a quan-
tity which depends on whether F changes values near N

2 or far from N
2 . For

brevity, we identify F with its univariate representation [0, 1 . . . , N]→ {0, 1}
(cf. Lemma 35).

Definition 62. Γ0(F) and Γ1(F) are defined as follows:

Γ0(F) := max

{
k | 1 ≤ k ≤ N

2
, F (k) 6= F (k − 1)

}
;

Γ1(F) := max

{
n− k | N

2
≤ k ≤ N,F (k) 6= F (k + 1)

}
.

Razborov [14] proved the following bound for symmetric F .

Theorem 63. QC2(F ◦ ∧N) = Θ̃(
√
NΓ0(F) + Γ1(F)).

In case of F being the disjointness predicate (i.e., F = ∨) we have Γ0 = 1
and Γ1 = 0 so QC2(DISJ) = Ω̃(

√
N) [14]. The following discussion briefly

gives the ideas involved in this proof.

Definition 64. The trace norm of a real symmetric matrix A is defined as
||A||tr =

∑n
i=1 |λi(A)|.

This can also be defined for general matrices; one would replace eigen-
values by singular values. But the alternative characterization of the above
definition given below covers this case as well.

Observation 65. For an arbitrary matrix A

||A||tr = max
B
{〈A,B〉| ||B|| = 1}.

Proof. (for symmetric matrices) Since trace of a matrix (denoted Tr) and
spectral norm are invariant under conjugate transforms and since 〈A,B〉 =
Tr(A†B) we can diagonalize A (which is symmetric) to obtain

〈A,B〉 = Tr

 λ1(A)B11 · · · λ1(A)BN1
... · · ·

...
λN (A)B1N · · · λN (A)BNN

 .

57

Now ||B|| ≤ 1 implies |Bii| ≤ 1 in any orthogonal basis, in particular in
the one chosen above that diagonalizes A. Therefore by Definition 64,
LHS≥RHS in the statement above. Note that LHS=RHS when B is a
diagonal matrix (in our basis) with non-zero entries appropriately chosen
from the set {±1}. Hence the proof follows.

As a by-side remark (included mostly for educational purposes), this is
a partial case of the following general paradigm.

Definition 66. The dual norm denoted ||| · |||∗ of a norm |||.||| is defined as

|||A|||∗ = sup{〈A,B〉 | |||B||| ≤ 1}.

The observation above implies that the spectral norm and trace norm
are dual norms. In general, Tr(A∗B) ≤ |||A|||∗|||B||| so in particular we have

〈MF , PF 〉 ≤ ||PF ||tr ||MF || .

Hence if we upper bound the trace norm of P and spectral norm of F then
we can derive a contradiction to the decomposition in (10).

Unfortunately, this simple approach does not suffice for the disjointness
function as its spectral norm

||MF ||

is large. Instead, [14] introduced the approximate trace norm

||A||t̃r := min{||B||tr |`∞(A−B) ≤ ε}.

The following is not hard to prove.

Theorem 67 ([14]). We have

QC2(F) = Ω

(
log
||MF ||t̃r
N

)
.

All that remains is to develop methods for bounding ||MF ||t̃r from below,
and this innocent-looking task turned out to be rather difficult.

58

7.6 Generalizations of the discrepancy method

These ideas were gradually developed and used in [11, 15, 18]; the exposition
below follows [14, Section 5.2].

Let µ be a N ×N matrix so that

〈MF , µ〉 = 〈P, µ〉+ 〈∆, µ〉

and such that 〈∆, µ〉 ≤ `∞(∆)`1(µ) ≤ cN 2. Earlier we had µ = MF in the
normal discrepancy menthod (so that `1(MF) = N 2), but now we are free
to choose µ subject to the following constraints:

1. `1(µ) ≤ 1.

2. 〈MF , µ〉 ≥ 2
3N

2.

3. ||µ|| is as small as possible.

[14] erroneously claimed that no such µ can exist when F = DISJ and
developed instead another method of “multi-dimensional” discrepancy. We
can not go into much details here, but the general idea is to test MF not
against a single matrix µ, but against a whole (finite) family of such matrices.

Using his pattern matrix method, Sherstov [19] showed that in fact a
single µ with the desired properties exist, that resulted in another proof of
Theorem 63. While simpler than the original one, it is still too complicated
to be included here.

Note that even more proof methods using different norms with desirable
properties are known. Linial and Shraibman [20] use the norm γ2 defined
as follows.

Definition 68. Given matrix A, let

γ2(A) = min
XY=A

(max
||x||2=1

`∞(Xx) · max
||y||1=1

||Y y||2).

It can be shown that γ2(A) ≥ ||A||tr (therefore it maybe easier to lower
bound than the trace norm) but γ2 is not invariant under conjugation. [20]
uses γ2 norm (and its many variants) to obtain quantum communication
complexity lower bounds (including weaker lower bounds for DISJ).

7.7 Direct products

Sometimes it is possible to save resources by solving many instances of a
problem together as opposed to solving each instance naively. Multiplying

59

two n × n matrices provides an example - a matrix-vector multiplication
takes n2 operations, and thus one might expect that multiplying a matrix
by n independent vectors should take n3 operations. However, using fast
matrix multiplication algorithms [21] one can solve the same problem in
o(n3) operations. Of course most of the times one is not so lucky and then
it is a challenge to prove that naive solving of the separate instances is the
best that can be done (cf. Conjecture 53). Such theorems are known as
direct product theorems. But the following is still open.

Question 69. Given Fi : Xi × Yi → {0, 1} for i = 1, .., t, define in a
natural manner the function (F1 × ... × Ft)(X1 × ... × Yt) → {0, 1}t. Is
QC2(F1 × ...× Ft) '

∑t
i=1QC2(Fi)?

Note that a similar direct product result is known for the γ2 norm [22].

Lecture16
Scribe: Youlian Simidjiyski, University of Chicago.

Date: February 24, 2011

8 Quantum Error-Correcting Codes

Goal: Given a single qubit, we wish to preserve it in the presence of noise.
We introduce noise into our system by applying various superoperators to
the density matrix corresponding to our input. Three such superoperators
corresponding to particular noisy channels are given below (here η > 0 is a
real parameter called noise rate).

Depolarizing channel Eη(ρ) = (1− η)ρ+ η
2I2.

Bit flip channel Eη(ρ) = (1− η)ρ+ η

(
0 1
1 0

)
ρ

(
0 1
1 0

)
.

Phase shift channel Eη(ρ) = (1−η)ρ+η

(
1 0
0 α

)
ρ

(
1 0
0 α∗

)
for some

α ∈ S1. We will be using the case where α = −1, so that this becomes
the phase flip channel.

8.1 Operator-sum representation of superoperators

Every physically realizable superoperator has the normal form:

T (ρ) =
∑
k

EkρE
†
k, satisfying

∑
k

E†kEk = I

60

(the three noisy channels considered above make a very good example).
Operators {Ek} are called operation elements.

The condition that
∑

k E
†
kEk = I stems from our earlier requirements

on superoperators. Namely from the requirement that ∀ρ, tr(ρ) = tr(T (ρ)).
This requirement implies

tr(T (ρ)) = tr

(∑
k

EkρE
†
k

)
=
∑
k

tr(EkρE
†
k) =

∑
k

tr(E†kEkρ) = tr(
∑
k

(
E†kEk)ρ

)
,

and tr(ρ) = tr(
∑

k(E
†
kEk)ρ) holds for all ρ if and only if

∑
k E
†
kEk = I.

8.2 Projective Measurements

Given a Hilbert spaceH = C1⊕C2⊕· · ·⊕C`, consider projections P1, P2, . . . P`
onto Ci. Projections satisfy the properties

1. P 2
i = Pi = PiP

†
i ;

2.
∑

k P
†
kPk =

∑
k Pk = I.

Thus, we have a superoperator mapping ρ 7→
∑

k P
†
kρPk, which is called

projective measurement.

8.3 Quantum Information Theory

Definition 70. Given a state ρ and noisy channel Eη, a Recovery Operator,
R is a superoperator satisfying R(Eη(ρ)) = ρ for all ρ.

Given a general noisy channel (that is, an arbitrary superoperator), it is
not possible to find such an R. One good reason is that the trace distance
inequality (23) on the noise operator yields D(Eη(ρ), Eη(ρ′)) ≤ D(ρ, ρ′), and
if the inequality is strict, then inversion is not possible by a superoperator.
However, we can hope to recover against specific classes of errors.

8.3.1 Error Correcting Codes in Classical Information Theory

Repetition codes: Suppose that a bit x gets flipped during transmission
with probability p < .5, independently of all others. If we first map x 7→
(x, x, x) before transmission, and we reconstruct by majority vote, then the
probability of failed reconstruction is 3p2−2p3(� p). This cannot be trivially
implemented in quantum computation due to the no cloning theorem (There

61

is no superoperator T which sends |φ〉〈φ| to |φ〉〈φ|⊗|φ〉〈φ|. One of the many
possible proofs is based on Theorem 23).

Most codes in classical information theory are linear codes. The setup
for such schemes is as follows. Let n > m, and consider C ⊂ {0, 1}n. We
encode {0, 1}n in C by an injective mapping, typically including introducing
some redundancy for decoding. We use a similar scheme for the quantum
case.

Let C ⊂ H be defined over a field of characteristic 0, and let dim(C) = 2,
since we are only interested in single qubits. We will encode ρ in C.

8.3.2 Correcting Against Quantum Bit Flip

Suppose that we are given a pure state on one qubit, φ = a|0〉+b|1〉. We first
map φ to a pure state on three qubits by sending φ 7→ a|000〉+ b|111〉. Note
that since these states are entangled, we have not violated the no cloning
theorem. We now send each qubit across the channel E . This yields a mixed
state, ρ, because of the possibility of bit flips.

Consider now the projection operators P0, P1, P2, and P3, which project
onto the subspaces in H that are generated by (|000〉, |111〉), (|100〉, |011〉),
(|010〉, |101〉), and (|001〉, |110〉) respectively. Then the map ρ 7→

∑3
k=0(UkPkρP

†
kU
†
k)

(where Uk is the bit flip operator corresponding to the error detected by a
given Pk) defines a superoperator which decodes ρ with probability 3p2−2p3

as in the classical case.
Physically, we have applied the projective measurement (see Section 8.2)

followed by taking so-called syndrome represented in our case by the operator
Uk (Note that the whole point of this procedure is that the operators Uk are
different for different subspaces). For these reasons, this decoding procedure
is sometimes called syndrome measurement. We will see in the proof of
Theorem 72 that it is actually universal.

8.3.3 Correcting Against Quantum Phase Flip

Once we can correct against quantum bit flip, correcting against quantum
phase flip is easy by first transforming into the Hadamard basis, given by
(1√

2
)(|0〉 + |1)〉 and (1√

2
)(|0〉 − |1〉). Phase shift in the standard basis is bit

flip in the Hadamard basis, so there is no work to be done.

62

8.3.4 Correcting Against Simultaneous Bit and Phase Flip

With the bit flip and phase flip correcting techniques in hand, composing the
two codes immediately yields a 9-qubit code that prevents against a channel
that could perform both bit flips and phase flips. In addition to correcting
bit and phase flip errors, Shor’s code actually corrects against arbitrary
errors on a single qubit. For more information about this particular code,
consult [1, Section 10.2].

Now we develop a general mathematical technique (called discretization
of errors) that allows us to reduce error-correcting of a huge (typically con-
tinuous) class of errors to correcting a finite set of errors, in many cases
possessing a nice structure.

Lecture 17
Scribes: Youlian Simidjiyski and David Kim, University of Chicago.

Date: March 1, 2011 and May 23, 2013

8.4 Conditions for the Recovery Operator

Recall that given a quantum code C ⊂ H, we say a noise operator E is
recoverable if there is a recovery operatorR such that for all density matrices
ρ generated within C, R(E(ρ)) = ρ.

Question 71. What are necessary and sufficient conditions for the existence
of a recovery operator R?

We will ultimately show that given a channel E(ρ) =
∑

k EkρE
†
k and an

encoding scheme mapping our input space onto C ⊂ H as above, then the
following theorem holds:

Theorem 72 (Quantum Error Correction Conditions). Let E be a noise
operator with operation elements {Ek}, and let C be a quantum code. If
P is the projection operator onto C, then a recovery operator R exists iff
PE†iEjP = αijP for some (Hermitian) matrix with entries αij .

We will prove two more theorems first. Assume we have a density matrix
generated from an ensemble of pure states {pi, |φi〉},

∑
i pi = 1, such that

ρφ =
∑

i pi |φi〉 〈φi|.

Assume we have another ensemble of pure states {qj , |ψj〉},
∑

j qj = 1,
such that it generates

ρψ =
∑

j qj |ψj〉 〈ψj |.

63

With slight abuse, we introduce a new notation: let |φ̃i〉 =
√
pi |φi〉 for

i = 1, ..., n, and |ψ̃j〉 =
√
qj |ψj〉 for j = 1, ...,m. Then it is easy to see that

ρφ =
∑

i pi |φi〉 〈φi| =
∑

i |φ̃i〉〈φ̃i|;

ρψ =
∑

j qj |ψj〉 〈ψj | =
∑

j |ψ̃j〉〈ψ̃j |.

If we assume that the the two density matrices are the same (ρφ = ρψ),
what can we say about these states? Assume that n = m, as we can simply
pad any one of the sets with pure states having 0 probabilities.

Theorem 73. Given two ensembles of pure states {pi, |φi〉} and {qj , |ψj〉},
they generate the same density matrix ρφ = ρψ iff there exists a unitary

matrix U such that |ψ̃j〉 =
∑

i uij |φ̃i〉.

Proof. We form two matrices A = [|φ̃1〉...|φ̃n〉], and B = [|ψ̃1〉...|ψ̃n〉], where
the (normalized) pure states form the columns. Then ρφ =

∑
i |φ̃i〉〈φ̃i| =

AA†, and ρψ = BB†. We want to show that they are equal iff there exists
a unitary U such that B = AU .

Assume such a U exists. Then BB† = (AU)(U †A†) = AA†, as U is
unitary.

Conversely, assume that AA† = BB†. Then both are Hermitian, non-
negative, and diagonalizable. Without loss of generality, we can assume that

AA† = BB† =

d1 ...
dn

 , di ≥ 0. Thinking in terms of geometry, for

non-zero di’s the rows of A must be orthogonal, each with length
√
di. The

same argument applies to B as well. So both sets of row vectors can be
normalized to form orthonormal bases, and we can have a unitary U such
that B = AU .

For the next theorem, we make the same assumption m = n.

Theorem 74 (Unitary Invariants). Two superoperators ρ 7→
∑n

k=1EkρE
†
k

and ρ 7→
∑n

`=1 F`ρF
†
` in operator-sum form are equal iff there exists a uni-

tary matrix U such that F` =
∑

k uk`Ek.

64

Proof. Given U as above, then∑
`

F`ρF
†
` =

∑
`,k,k′

uk`EkρE
†
k′u
∗
k′`

=
∑
k,k′

EkρE
†
k′

∑
`

uk`u
∗
k′`

=
∑
k,k′

EkρE
†
k′δkk′

=
∑
k

EkρE
†
k,

where u∗k` is the term k, ` in U †, and
∑

k,k′ uk,`u
∗
k′,` = δkk′ because U is

unitary.
Conversely, assume we have the equality for all ρ, that is

E(ρ) =
∑
`

F`ρF
†
` =

∑
k

EkρE
†
k.

Let H be the Hilbert space on which these operators act, and assume
we have a basis {|x〉}. Let dim(H) = N and pk = 1

NTr(E†kEk) (so that∑
k pk = 1). Define maximally entangled states |φk〉 in H⊗H by

|φk〉 =
1
√
pk

∣∣∣φ̃k〉 ,
where ∣∣∣φ̃k〉 =

1√
N

∑
x

|x〉Ek |x〉 .

Take the probability distribution (pk, |φk〉) on these states. Then this en-
semble will generate the density matrix

∑
k

∣∣∣φ̃k〉〈φ̃k∣∣∣ =
1

N

∑
k

(∑
x

|x〉Ek |x〉

)(∑
y

〈y| 〈y|Ek†
)

=
1

N

∑
x,y

(
|x〉 〈y| ⊗

∑
k

Ek |x〉 〈y|E†k

)

=
1

N

∑
x,y

|x〉 〈y| ⊗ E(|x〉 〈y|).

We can interpret this as taking the operator to every position in the n by n
matrix.

65

Let also
∣∣∣ψ̃`〉 = 1√

N

∑
x |x〉F` |x〉. Then a similar calculation applied to

F` gives the same density matrix, so ∃U such that
∣∣∣ψ̃`〉 =

∑
k uk`

∣∣∣φ̃k〉 by

the previous theorem. So we have ∃U such that∑
x

|x〉F` |x〉 =
∑
x

|x〉
∑
k

uk`Ek |x〉 .

They will have to cancel out on each of the basis vectors, and thus, we have
F` =

∑
k uk`Ek with the same unitary U .

Let A be any square matrix. Consider A†A. This is clearly Hermitian,
positive-semidefinite, and so we can diagonalize A†A and define

√
A†A by

√
A†A =


√
λ1 0 · · · 0
0

√
λ2 · · · 0

... 0
. . .

...
0 · · · 0

√
λN

 .

Lemma 75 (Polar Decomposition). Given a matrix A, there exists a unitary
U such that A = U

√
A†A. Thus, any matrix can be decomposed as the

product of a hermitian matrix and a unitary matrix.

Proof. A proof of the Polar Decomposition Lemma can be found in a stan-
dard linear algebra text, or in [1, Theorem 2.3].

Proof of Theorem 72. First we show that the conditions are necessary. Sup-
pose we have a noise operator E with operational elelments {Ei} and a re-
covery operator R which has operation elements {Fk}. If P is the projector
onto C, the quantum encoding space, then we have∑

i,k

FkEiPρPE
†
iF
†
k = PρP. (13)

Let Q = I − P be the projection onto the subspace C⊥ orthogonal to C.
Due to (13), the two sets of operational elements {FkEiP,Q} and {P,Q}
(with necessary paddings) define the same superoperator, namely the pro-
jective measurement corresponding to the decomposition H = C ⊕C⊥. If we
apply Theorem 74, we have FkEiP = cP+dQ. We can simply multiply both
sides by Q on the right to see that d = 0. This gives us FkEiP ∼ P . For
every other j, we also have FkEjP ∼ P . If we now sum PE†iF

†
kFkEjP ∼ P

over all possible values of k, then we have PE†iEjP ∼ P as desired, as

{F †kFk} sum to I. It is obvious that the constant factors are Hermitian.

66

We now show the sufficiency of the conditions. First apply Theorem 74
in order to see that we can choose an equivalent set of operation elements
so ithat the matrix α is diagonal with non-negative entries. We will assume
that α is diagonal for the remainder of the proof.

Now observe that by the polar decomposition,

EkP = Uk

√
PE†kEkP =

√
αk,kUkP,

where we have applied the fact that P 2 = P .
Now consider Pk = UkPU

†
k , the projection onto UkC, the image subspace

of EkP. Using the fact that the matrix α is diagonal, we can conclude that
U`C and UkC are pairwise orthogonal, as

PkP` = UkPU
†
kU`PU

†
` ∼ Uk(PE

†
kE`P)U †` = 0.

So, the image spaces of Pk and P` are orthogonal because Pk and P` are
projectors.

Thus, we can decompose E into
∑

k Pk+Q, where the Q portion projects
onto parts of H that C does not map into under the error map E .

We can now recover our original ρ by the syndrome measurement using
operators Pk and U †k . Mathematically:

R(E(ρ)) =
∑
j,k

U †kPkEjPρPE
†
jPkUk

=
∑
j,k

U †k(UkPU
†
k)EjPρPE

†
j (UkPU

†
k)Uk

=
∑
j,k

PU †kEjPρPE
†
jUkP

=

∑
j,k(PE

†
kEjP)ρ(PE†jEkP)

αk,k

=

∑
k(αk,kP)ρ(αk,kP)

αk,k

=
∑
k

αk,kPρP.

and since ρ ∈ C, and P is the projector onto C, we reach our conclusion that
R(E(ρ)) ∼ ρ. This completes the proof that our conditions are sufficient for
R to exist.

67

Lecture 18
Scribe: Olga Medrano Mart́ın del Campo, University of Chicago.

Date: March 25th, 2021

8.5 Stabilizer Codes

8.5.1 Definition and some Examples

We consider first the Pauli Group G1, which is an abstract group generated
by the 2× 2 Pauli matrices

G1 = 〈X,Y, Z〉 = {I,X, Y, Z} · {±1} · {±i}. (14)

Since X,Y, Z are matrices, it is fruitful to also think of G1 as a group
of linear operators acting in a single qubit Hilbert space. We can generalize
this notion to Hilbert spaces with n qubits, in which the following linear
operators

Xi, Yi, Zi, i = 1, 2, . . . , n

are tensor products of Pauli matrices and identity matrices, and act only on
the ith qubit among n of them. That way, we can define the Pauli group
Gn based on its generators:

Gn = 〈Xi, Yi, Zi, i = 1, 2, . . . , n〉

Remark. The groups Gn and Gn1 are not isomorphic as abstract groups!
In particular, we have that X1Y1Z1 acts by multiplication by −i, so it is a
constant matrix which is not equal to the identity matrix. Thus in Gn we
e.g. have the relation X1Y1Z1 = X2Y2Z2 that obviously does not hold in
Gn1 .

Definition 76. Given a subgroup S ≤ Gn of the n-th Pauli Group, we
obtain a corresponding stabilizer code

VS = Stab(S) := {v ∈ H : ∀ g ∈ S, gv = v}.

Example. In a 2 qubit Hilbert space, we compute Stab(Z1Z2), the
stabilizer code for Z1Z2. Since for all |ab〉 (a, b ∈ {0, 1}) we have

Z1Z2(|ab〉) = (−1)a+b · |ab〉 ,

then, in terms of the basis {|00〉 , |01〉 , |10〉 , |11〉} of H2, the signs of the coef-
ficients for |00〉 , |11〉 would remain unchanged, whereas the signs of |01〉 , |10〉
would be flipped. With this we can tell that

Stab(Z1Z2) = Span(|00〉 , |11〉).

68

Example. In the same Hilbert space, we compute Stab(X1X2). The
following describes the action of X1X2 in H2 with respect to the basis
{|00〉 , |01〉 , |10〉 , |11〉}:

X1X2(α) = X1X2 (α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉) =

α11 |00〉+ α10 |01〉+ α01 |10〉+ α00 |11〉 ;
then, a necessary and sufficient condition for α to be in the stabilizer code
is the matching of the pairs of coefficients α00 = α11 and α10 = α01. Thus,

Stab(X1X2) = Span(|00〉+ |11〉 , |01〉+ |10〉).

Example. In a 3 qubit Hilbert space, we compute Stab(Z1Z2, Z2Z3, Z1Z3).
The action of Z1Z2 with respect to the basis {|abc〉 , a, b, c ∈ {0, 1}} is given
by:

Z1Z2

 ∑
a,b,c∈{0,1}

αabc |abc〉

 =
∑

a,b,c∈{0,1}

(−1)a+bαabc |abc〉

then, for α to be in the stabilizer code we must have αabc = −αabc = 0
whenever a+b is odd. With a similar observation in the other two operators
Z2Z3 and Z1Z3, each of the basis elements which are not |000〉 or |111〉
must have zero coefficient. Conversely, these two basis elements are in the
stabilizer code, hence

Stab(Z1Z2, Z1Z3, Z2Z3) = Span(|000〉 , |111〉);

note the above is the bit flip code, which was mentioned in previous lectures.

Exercise 77. Show that in a 3 qubit Hilbert space, Stab(X1X2, X2X3, X1X3)
is the phase flip code.

Example. In a 2 qubit Hilbert space, we compute Stab(〈X1X2, Z1Z2〉).
This stabilizer code has to be contained in both

Stab(X1X2) = Span(|00〉+ |11〉 , |01〉+ |10〉)

and
Stab(Z1Z2) = Span(|00〉 , |11〉).

Then, for α to be in the stabilizer code, it must be in the span of |00〉+ |11〉.
Conversely, this vector is in the sabilizer code of both operators, thus in the
stabilizer code of the subgroup generated by them:

Stab(〈X1X2, Z1Z2〉) = Span(|00〉+ |11〉).

69

Remark. Shor’s 9 qubit code is the stabilizer of a subgroup of G9; can
you tell which subgroup this is?

8.5.2 Conditions on Pauli subgroups

With the same setting as before, S ≤ H2n , one observation we do before
anything else is that, whenever −I2n ∈ S, the study of this group becomes
a bit pointless to our interest, because the stabilizer code is just the trivial
subspace. Indeed, for any |v〉 ∈ H2n ,

|v〉 ∈ Stab(S) ⇒ |v〉 = − |v〉 ⇒ |v〉 = 0

Then, an assumption from now on will be that −I2n 6∈ S. The next obser-
vation gives us a very rich property of our subgroups:

Lemma 78. For every element g of the Pauli Group Gn, g2 = ±1.

Proof. Since the subset of generators {Xi} acts independently on each of
the n qubits, and the same happens for {Yi}, {Zi}, it will suffice to prove
this statement for n = 1. This readily follows from the relations

X2 = Y 2 = Z2 = I

and the description (14) of G1.

Recalling the assumption that our subgroup S does not contain −I2n ,
we must have g2 = 1 for any g ∈ S. An implication of this is that S is itself
an Abelian group. Indeed, for any g, h ∈ S:

g−1h−1gh = ghgh because g = g−1and h = h−1

= (gh)2

= 1 thus gh = hg.

S being an Abelian and finite group, it must be a product of cyclic
groups, and since every element has order 1 or 2, then

S ' Zn−k2 for some 0 < k ≤ n.

In fact, we have the following very useful property of S:

70

Theorem 79. If S ≤ Gn is a Pauli Subgroup as above, then dim(Vs) = 2k.

Remark. Note how this statement fits the examples we worked on in
the previous part of this lecture:

• In Example 1, n = 2 and n−k = 1, so dim(Stab(Z1Z2)) = 2k = 21 = 2.

• In Example 2, n = 2 and n− k = 1, so dim(Stab(X1X2)) = 2k = 21 =
2.

• In Example 3, it might seem that, n = 3 and n−k = 3 so we should get
the dimension of the stabilizer to be 20 = 1. This is however not the
case, because the three generators Z1Z2, Z2Z3, Z1Z3 are dependent, so
n− k = 2 and dim(Stab(Z1Z2)) = 21 = 2.

• In Example 4, n = 2 and n − k = 2 because the two generators are
independent. Then, the dimension of the stabilizer is 20 = 1.

8.5.3 Error Correcting properties of VS

We aim to answer the question which asks what elements of Gn can we
correct against by the stabilizer code. This is an important question, because
once we can correct against certain Pauli matrices, by discreditization of
error we can correct against several others.

In the same setting, for a Pauli subgroup S ≤ Gn let’s define

N(S) := {g ∈ Gn : g−1Sg = S}

C(S) := {g ∈ Gn : g−1hg = h ∀ h ∈ S}

which we will call, respectively, the normalizer and the centralizer of S. Note
that the second object is smaller because it imposes a stricter condition,
which is pointwise fixation of the elements of S. Also, conjugation by any
element of S does not alter S. So, we have (since S is Abelian)

S ⊆ C(S) ⊆ N(S).

Just by using that g2 = ±1 for all g ∈ Gn, we get

h−1g−1hg = ±hghg = ±1 ⇒ g−1hg = ±h;

But both h and −h can not be in the subgroup by the assumption that
−I2n 6∈ S, which implies g−1hg = h for every element of the normalizer of
S. Therefore,

C(S) = N(S).

71

Theorem 80. Let {Ei} be a collection of Pauli errors, Ei ∈ Gn, and let

P : H2n → Vs

be the projector into the stabilizer code. Then we have PE†iEjP ∼ P when-
ever either of these two conditions hold:

a) E†iEj ∈ S;

b) E†iEj 6∈ N(S);

as a consequence, if for all i, j one of the two conditions above hold, then it
is possible to find an error correction against these Pauli errors.

Part of the strength of this theorem is that by using it, we can cover
a wide family of codes. For instance, a good way to check that Shor’s 9
qubit code can corrected against any single qubit error is to check the above
condition to hold on any pair of Pauli matrices which generate this code. In
order to prove this theorem, we will need to prove first the following Lemma:

Lemma 81. The operator Q on H2n defined as follows

Q :=
1

|S|
∑
g∈S

g

is equal to the projector P : H2n → Vs.

Proof. It suffices to show Q|VS = idVS , and Q|V ⊥S = 0. We show each of
these identities.

If v ∈ VS , then gv = v for all g ∈ S. Then,

Qv =

 1

|S|
∑
g∈S

g

 v =
1

|S|
∑
g∈S

gv =
1

|S|
∑
g∈S

v = v = idVsv

If v ∈ V ⊥S , then 〈v, VS〉 = 0, so for every g ∈ S we have

〈gVS , gv〉 = 〈VS , gv〉 = 0.

If we take the average over all g ∈ S of the above expression, then we get
that 〈VS , Qv〉 = 0, namely that Qv ∈ V ⊥S . But also Qv ∈ VS , because

∀g̃ ∈ S, g̃(Qv) =
1

|S|
∑
g∈S

g̃gv =
1

|S|
∑
g∈S

gv = Qv.

Therefore, it has to be that Qv = 0, proving that Qv = 0 for all v ∈ V ⊥S
and thus our lemma.

72

Proof. We have Ei and Ej satisfy one of the two conditions a), b), and our

goal is to show that PE†iEjP is a scalar multiple of P .

a) If E†iEj ∈ S, then for every v ∈ H2n we have the following

(PE†iEjP)v = PE†iEj(Pv) = P (Pv) = Pv

because Pv ∈ VS has to be unchanged by E†iEj , and P 2 = P . This

shows that PE†iEjP = P .

b) If h := E†iEj 6∈ N(S), then let us consider the following double sum:

PhP =
1

|S|2
∑

g1,g2∈S
g1hg2.

Now, we recall that, by the properties of Pauli groups, any two ele-
ments either anticommute or commute. But h 6∈ N(S) = C(S) implies
that there exists some element g∗ ∈ S such that it anticommutes with
h:

h−1g∗h = −g∗ ⇔ g∗h = −hg∗
Using this element we can apply a useful trick which is often seen in
the mathematical field of Representation Theory, and essentially reads
as g∗S = S = Sg∗:

PhP =
1

|S|2
∑

g1,g2∈S
g1hg2

=
1

|S|2
∑

g1,g2∈S
(g1g∗)hg2

=
1

|S|2
∑

g1,g2∈S
g1(g∗h)g2

=
1

|S|2
∑

g1,g2∈S
g1(−hg∗)g2

= − 1

|S|2
∑

g1,g2∈S
g1h(g∗g2)

= −PhP

All in all, we showed that PhP = −PhP = 0, which is still a scalar
multiple of the projector P .

73

Lecture 19
Scribe: Olga Medrano Mart́ın del Campo, University of Chicago.

Date: March 25th, 2021

9 Extra Material: Quantum Interactive Proofs

Interactive proof classes combine two important notions, which are those of
the class BPP and the class NP. The first class, we recall, is defined upon the
acceptance conditions: L is a language in BPP if there exists polynomially
computable f(x, y) such that if the string r is chosen at random,{

Pr[f(x, r) = 1] ≥ 2
3 when x ∈ L

Pr[f(x, r) = 1] ≤ 1
3 when x 6∈ L

;

The class NP , we also recall is defined upon the acceptance conditions: L
is a language in NP if there exists polynomially computable f(x, y) such
that for every x ∈ L there exists a certificate s, with its length polynomial
in that of x, such that f(x, s) = 1. Next, we will explain how to combine
these two notions.

9.1 Classical Merlin-Arthur Proofs

The setting is the following:

• Merlin is an advisor of Arthur, and his goal is to convince Arthur that
x ∈ L, where L is a language;

• Merlin gives a certificate s to Arthur, supposedly to be a proof that
x ∈ L;

• Merlin is not trustworthy, so the proof might be wrong. To decide
whether he accepts it or not, Arthur tosses a coin, and based on the r
he decides whether to believe in Merlin or not.

Acceptance conditions: We say that a language L is in MA (as in Merlin
Arthur) if there exists a polynomially time computable function f(x, r, s)
such that {

if x ∈ L,⇒ ∃ s : Pr[f(x, r, s) = 1] ≥ 2
3

if x 6∈ L,⇒ ∀ s : Pr[f(x, r, s) = 1] ≤ 1
3

74

9.2 Quantum Merlin-Arthur Proofs

The setting is similar to our classical case, except now instead of a function
we need a quantum circuit, and instead of a proof we require a state |φ〉.

Acceptance conditions: We say a language L is in QMA (Quantum-
Merlin-Arthur) if there exists a quantum circuit Q acting on the composite
Hilbert space HA ⊗HM such that{

if x ∈ L,⇒ ∃ |φ〉 : Pr[Q(|x〉 ⊗ |φ〉) = 1] ≥ 2
3

if x 6∈ L,⇒ ∀ |φ〉 : Pr[Q(|x〉 ⊗ |φ〉) = 1] ≤ 1
3

In other words, when the word is in the language, Merlin will be able to
convince Arthur with high probability, but if the word isn’t in the language,
no matter what Merlin does, it will be unlikely that Arthur will accept Mer-
lin’s advice.

Note that in the definition above, φ is not specified to be a pure or mixed
state. It can be either; Merlin can have a mixed state which can be repre-
sented by a probability distribution among states:

(p1, |φ1〉), . . . , (pt, |φt〉),

so that a mixed state would be a convex linear combination of pure states;
by linearity of the quantum circuit in the φ′is, being able to choose one
probabilistic distribution implies some φi can be chosen such that the above
conditions hold. Note how we do not need to introduce a random element
within the Quantum circuit; the randomness component of this process is
hardwared into Q itself.

9.2.1 Two Examples

Example: 2-local Hamiltonian. We can have a large Hamiltonian H given
by a 2n×2n Hermitian matrix, which, as in the Second Postulate of Quantum
Mechanics describes the evolution of our isolated quantum system. 2-locality
means that H can be explicitly written as a sum H =

∑
iHi in which every

Hi is a Hermitian matrix depending on ≤ 2 qubits. Thus, H has a succinct
representation even if its size is huge.

Then, we have a promise problem through which we want to find out
whether H is positive semi definite or far from it. More precisely, we want

75

to answer the following:

A =

{
Yes, if H is far from being positive semi definite: λmin ≤ −1

No, if H is positive semi definite: λmin ≥ 0

Theorem: 2-local Hamiltonian is inQMA (and moreover, isQMA-complete).

The idea is simply to replace, like in Schrödinger’s equation, the Her-
mitian matrix H with the unitary matrix Q = e−itH , where t is a small
parameter. This (or rather its approximation that we are able to achieve)
will be Arthur’s verification procedure. Negative “energies” λ will translate
into eigenvectors |φ〉 of Q with eigenvalues µ = e−itλ that will satisfy, as
long as t is chosen wisely, Im(µ) > 0. The honest Merlin will simply report
such an eigenvector |φ〉.

The actual implementation of these ideas is a bit technical and beyond
the scope of this course.

Example 2: Group non-membership. The setting is the following:

• G is a finite group, represented as a group of permutations.

• We have a subgroup H = 〈h1, . . . , hk〉 ≤ G.

• The question being asked is whether a given g ∈ G is in this subgroup
H.

Proving that g ∈ H is in NP is easy: slightly cheating, a proof of this
would only be an expression of g as a word, or product, in the elements
h1, . . . , hk.

Now, our setting is, that quantum Merlin also wants to be able to prove
to Arthur the opposite, that is g 6∈ H. To do this, we first consider the
uniform superposition of all the elements in the subgroup:

|H〉 =
1√
|H|

∑
h∈H
|h〉 ,

We also consider the unitary operator Ug which permutes the elements of
the group, in the same way as in Shor’s Factoring algorithm:

Ug : |h〉 7→ |hg〉 ,

and its controlled version, acting as Ug only when the first control bit is 1:

U cg :

{
|0h〉 7→ |0h〉
|1h〉 7→ |1(hg)〉

76

Then, we have the following action of U cg on |+〉 ⊗ |H〉, where we recall,

|+〉 = 1√
2
(|0〉+ |1〉):

|+〉 ⊗ |H〉 7−→ |0H〉+ |1Hg〉√
2

And then, applying the Hadamard gate to the above state, we get

|0〉
2
⊗ (|H〉+ |Hg〉) +

|1〉
2
⊗ (|H〉 − |Hg〉).

If we measure the first qubit, we have two possibilities yielding us different
outcomes:

• g ∈ H implies Hg = H, so the right summand is zero and the first
qubit has measurement probability of 1 at 0.

• g 6∈ H implies that the states |H〉 and |Hg〉 are orthogonal. Then,
P (0) = P (1) = 0.5; namely, the probabilities of obtaining 0 or 1 in the
measurement of our first qubit are equal.

If we ever come accross a measurement of the first qubit to be 1, that
has to mean g 6∈ H. Conversely, g 6∈ H will be accurately displayed by our
measurement with probability 1/2.

This solution works as long as Merlin will give us the state |H〉 (that we
are incapable of producing by ourselves). However, Merlin can be dishonest
and cheat, that is attempt to give us a state |φ〉 which is far from |H〉.
Showing that our problem is in QMA amounts to showing how we can
catch him. Again, we are only able to outline here some rough ideas of the
proof.

If Merlin is reasonably honest, that is provides us with a state |φ〉 that
is close enough to |H〉, then we are still in a good shape as 1 will come up
with high probability. It is also relatively easy to design a simple test to
catch Merlin cheating but the problem is that our test will be guaranteed to
succeed with relatively low probability (of order 1/k). Then the No-Cloning
Theorem provides Merlin with more possibilities of cheating – he knows we
may not repeat our test! The solution is to request Merlin to do this for us
and to come up not only with a single certificate |φ〉, but with several copies
of it |φ〉 ⊗ |φ〉 ⊗ . . . ⊗ |φ〉. Then, we would need to perform two additional
tests, namely:

• Non-entanglement test, to make sure that the certificates provided by
Merlin are not completely or nearly completely entangled.

77

• Consistency test, which with high probability detects if Merlin tries to
feed up with a composite state |φ1〉 ⊗ . . . ⊗ |φk〉 in which many pairs
|φi〉, |φj〉 are not close to each other.

And, as always, the catch is that we do not tell Merlin in advance which
one of this bunch of tests we are going to perform (remember No-Cloning!)
but decide only after he commits himself to the certificate, by flipping a
(quantum) coin.

Acknowledgement

I wish to express my sincere gratitude to all scribes in 2011, 2013 and 2021
whose effort and contributions made this project possible. My thanks are
also due to Leonardo Coregliano for the thorough proof checking he did in
2015 that has greatly helped to improve the presentation.

References

[1] M. A. Nielsen and I. L. Chuang. Quantum computation and quantum
information. Cambridge University Press, 2000.

[2] R. Laflamme P. Kaye and M. Mosca. An Introduction to Quantum
Computing. Oxford University Press, 2007.

[3] A. Kitaev, A. Shen, and M. Vyalyi. Classical and quantum computation.
American Math. Society, 2002. Extended version of a book originally
published in Russian.

[4] Ajtai M and C. Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. In Proceedings of the 29st ACM STOC,
pages 284–293, 1997.

[5] O. Regev. Quantum computation and lattice problems. SIAM Journal
on Computing, 33(3):738–760, 2004.

[6] H. Buhrman and R. de Wolf. Complexity measures and decision tree
complexity: a survey. Theoretical Computer Science, 288:21–43, 2002.

[7] P. Hatami, R. Kulkarni, and D. Pankratov. Variations on the sensitivity
conjecture. Theory of Computing Library, Graduate Surveys, 4:1–27,
2011.

78

[8] A. Ambainis, A. M. Childs, B. W. Reichardt, R. Spalek, and S. Zhang.
Any AND-OR formula of size N can be evaluated in time N1/2+o(1) on
a quantum computer. SIAM Journal on Computing, 39(6):2513–2530,
2010.

[9] A. Yao. Some complexity questions related to distributive computing.
In Proceedings of the 11th ACM Symposium on the Theory of Comput-
ing, pages 209–213, New York, 1979. ACM Press.

[10] K. Mehlhorn and E. M. Schmidt. Las Vegas is better than determinism
in VLSI and distributive computing. In Proceedings of the 14th ACM
Symposium on the Theory of Computing, pages 330–337, New York,
1982. ACM Press.

[11] A. Yao. Quantum circuit complexity. In Proceedings of the 34th IEEE
Symposium on Foundations of Computer Science, pages 352–361, Los
Alamitos, 1993. IEEE Computer Society.

[12] R. Raz. Exponential separation of quantum and classical communica-
tion complexity. In Proceedings of the 31st ACM STOC, pages 358–367,
1999.

[13] H. Buhrman, R. Cleve, and A. Wigderson. Quantum vs. classical com-
munication and computation. In Proceedings of the 30th ACM Sympo-
sium on the Theory of Computing, pages 63–86, New York, 1998. ACM
Press. Preliminary version available at quant-ph/9802040.

[14] A. Razborov. Quantum communication complexity of symmetric pred-
icates. Izvestiya: Mathematics, 67(1):145–159, 2003.

[15] I. Kremer. Quantum communication. Master’s thesis, Hebrew Univer-
sity, Jerusalem, 1995.

[16] A. Razborov and A. Sherstov. The sign-rank of AC0. SIAM Journal
on Computing, 39(5):1833–1855, 2010.

[17] R. Paturi. On the degree of polynomials that approximate symmetric
Boolean functions. In Proceedings of the 24th ACM Symposium on the
Theory of Computing, pages 468–474, New York, 1992. ACM Press.

[18] H. Klauck. Lower bounds for quantum communication complexity. In
Proceedings of the 42nd IEEE Symposium on Foundations of Computer
Science, pages 288–297, Los Alamitos, 2001. IEEE Computer Society.
Preliminary version available at quant-ph/0106160.

79

[19] A. Sherstov. Lower bounds in Communication Complexity and Learning
Theory via Analytic Methods. PhD thesis, University of Texas at Austin,
2009.

[20] Nati Linial and Adi Shraibman. Lower bounds in communication com-
plexity based on factorization norms. Random Structyures and Algo-
rithms, 34(3):368–394, 2009.

[21] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. J. Symbolic Computation, 9(3):251–280, 1990.

[22] T. Lee, A. Shraibman, and R. Spalek. A direct product theorem for
discrepancy. In IEEE Conference on Computational Complexity, pages
71–80, 2008.

80

	Classical and Quantum computation: circuit model
	Reversible Computation
	Probabilistic Computation
	Crash Course in Linear Algebra

	Early Quantum Algorithms
	Deutsch algorithm (1985)
	Black-box model
	Ingredients of Deutsch Algorithm
	The First Try
	Successful Try: Interference

	Deutsch-Josza algorithm (1992)
	Simon's algorithm (1994)

	BQP PP
	Famous Quantum Algorithms
	Grover's search algorithm (1996)
	A Geometrical Interpretation
	Some Details

	Factoring: Shor's Algorithm
	Reductions
	Linear Algebra
	Part 1: Phase Estimation Algorithm
	Part 2: How to Construct |uk?

	Discrete Logarithm
	Hidden Subgroup Problem
	First Application - Symmetric Group
	Second Application - Dihedral Group

	Quantum Probability
	``Tracing out" or ``partial measurement"
	Superoperators

	Quantum Complexity Theory: black-box model
	Hybrid method: optimality of Grover's search
	Quantum Query Complexity vs. Other Complexity Measures
	Ambainis's Adversary Method
	Quantum Query Complexity and Formula Size

	Quantum Communication Complexity
	Probabilistic Communication Complexity
	Quantum Communication Complexity
	Decomposition of quantum protocols
	Lower bound for QC2(IP2)
	Lower bound for QC2(DISJ)
	Generalizations of the discrepancy method
	Direct products

	Quantum Error-Correcting Codes
	Operator-sum representation of superoperators
	Projective Measurements
	Quantum Information Theory
	Error Correcting Codes in Classical Information Theory
	Correcting Against Quantum Bit Flip
	Correcting Against Quantum Phase Flip
	Correcting Against Simultaneous Bit and Phase Flip

	Conditions for the Recovery Operator
	Stabilizer Codes
	Definition and some Examples
	Conditions on Pauli subgroups
	Error Correcting properties of VS

	Extra Material: Quantum Interactive Proofs
	Classical Merlin-Arthur Proofs
	Quantum Merlin-Arthur Proofs
	Two Examples

