Propositional Proof Complexity

Instructor: Alexander Razborov, University of Chicago. razborov@cs.uchicago.edu

Course Homepage: www.cs.uchicago.edu/~ razborov/teaching/winter09.html

Winter Quarter, 2009

Homework 1

- 1. Prove that any contradiction τ has a resolution refutation. What is the obvious upper bound on its size?
- 2. Let G be the graph with $V(G) = \{1, 2, ..., n\}$ and $E(G) = \{(i, j) | |i j| \le 17\}$. Prove that $\tau(G, f)$ has polynomial size resolution refutation for any odd function f. Try to generalize this result as wide as possible.
- 3. Deduce the uniqueness condition

$$(((y+z=x)\vee(x\leq y\wedge z=0))\wedge((y+z'=x)\vee(x\leq y\wedge z'=0)))\Longrightarrow z=z'$$

for the binary substraction function from the BASIC axioms (to be found on pages 30-31 of Buss's monograph).

- 4. T_2^k proves $\Pi_k^b IND$. S_2^k proves $\Pi_k^b PIND$.
- 5. Building on the known fact that $S_2^k(\alpha) \neq T_2^k(\alpha)$ (for any k), prove that $S_2^k(f) \neq T_2^k(f)$ (as usual, here α and f are new predicate and function symbols, respectively).