Propositional Proof Complexity

Instructor: Alexander Razborov, University of Chicago. razborov@cs.uchicago.edu

Course Homepage: www.cs.uchicago.edu/~ razborov/teaching/winter09.html

Winter Quarter, 2009

Homework 2

1. Let $d = \sqrt{n \log s}$, $a = \left(1 - \frac{d}{2n}\right)$, C is a fixed constant and assume that the function T(n, f) is defined by the recursion

$$T(n,0) \stackrel{\text{def}}{=} n^{Cd};$$

 $T(n,f) \stackrel{\text{def}}{=} 2n \cdot T(n-1,\lceil af \rceil) + T(n-1,f).$

Prove that $T(n, f) \leq \exp(O(\sqrt{n \log s}))$.

- 2. Give a direct (that is, without referring to Hilbert's Nullstellensatz) proof of the Boolean Nullstellensatz: a system $\{f_i(x_1,\ldots,x_n)=0 \mid i\in[m]\}$ of polynomial equations does *not* have 0-1 solutions if and only if there exist polynomials P_i, Q_j such that $\sum_i f_i P_i + \sum_j Q_j(x_j^2 x_j) = 1$.
- 3. Let k be a field of characteristic 17, and $d_{PC}^k(\tau)$ be the minimal degree of a Polynomial Calculus refutation of τ over k.
 - (a) Prove that $s_R(PHP_n^m)$ and $s_R(FPHP_n^m)$ are non-increasing in m.
 - (b) Prove that $d_{PC}^k(PHP_n^m)$, $d_{PC}^k(FPHP_n^m)$ and $d_{PC}^k(onto-PHP_n^m)$ are non-increasing in m.
 - (c) Calculate $d_{PC}^k(onto FPHP_n^{n+12})$.
- 4. Prove the completeness result for Cutting Planes.

¹I do not know if this is also true for onto $-PHP_n^m$

- 5. Let G be an undirected graph, and $\tau_{VC}(G)$ be the affine constraints $\{x_u + x_v \geq 1 \mid (u, v) \in E(G)\}$ defining its vertex-cover polytope. Prove that for every triangle (u, v, w), the odd-cycle constraint $x_u + x_v + x_w \geq 2$ has a rank 1 derivation from $\tau_{VC}(G)$ in:
 - (a) Cutting Planes (rank 1 =one application of the division rule);
 - (b) *LS*.

How about cycles of length 17?