Metrics



General metrics (non-00)

* Technical metrics
* Describing the software product

* Non-technical metrics
* Describing the process



The usage of metrics

* Estimate cost
 Compare products
 Compare developers
* Guide testing

* Guide refactoring



Technical metrics

* LoC
e # functions
* Cyclomatic complexity

* Function points
* F (#inputs, #outputs, # DB tables, ...) to estimate code size ...



non-technical metrics

* # tests
e # bugs
* People
* Time



OO0 metrics

The abstractness of a class
The complexity of a class
Coupling

Cohesion



How abstract?

e Abstractness
* # abstract classes / # all classes

* Depths of inheritance tree (DIT)
* The length of the inheritance chain



Complexity of a class

* Weighted methods per class (WMC)

* # of weighted methods
* The weight is determined by LoC or cyclomatic complexity, etc.

* Response for class (RFC)
» # of (Methods, methods called by methods, ... (constructors included))



Coupling

* Coupling between object classes (CBO)

 # of other classes a class is coupled with
* Two classes are coupled if one uses the other’s method

* The lower the better



Cohesion

 Lack of cohesion in methods (LCOM)

 # of pair of methods that share instances - # of pair of methods do not share
instances

* The larger the better



Code smell (1)



What are code smells?

* Fowler: “... certain structures in the code that suggest (sometimes
they scream for) the possibility of refactoring.”

* Wikipedia: “... symptom[s] in the source code of a program that
possibly indicate a deeper problem. ... usually not bugs... not
technically incorrect and don't currently prevent the program from
functioning. Instead, they indicate weaknesses in design that may be
slowing down development or increasing the risk of bugs or failures

in the future.”



Why are code smells bad?

* They are clear signs that your design is starting to decay
* Long term decay leads to “software rot”



Example code smells

Duplicated code
L.ong method
Large class

 ong parameter list

* Message chain

e Switch statements

* Data class

* Speculative generality
* Temporary field

* Refused bequest



Duplicated code

* Duplicate methods in subclasses
* Lift to super class

* Duplicate expressions in same class
e Create new member method (maybe private method)

* Duplicate expressions in different classes
* Maybe create another class to offer the common computation



Long method

* Won't fit on a page
e Can’t think of whole thing at once

e Extract function
* Loop body
e Places where there is (or should be) a comment



Large class

* More than a couple dozen methods, or half a dozen variables

 Split into component classes

* Create superclass
* If using switch statement, split into subclasses



Long parameter list

* Introduce parameter object

* Only worthwhile if there are several methods with same parameter
list, and they call each other



