Design patterns

Admin

* Final exam time
* Milestone 2 deadline tomorrow!

?

Jlale\’

- N (:jl <

Design Patterns

Elements of Re

yC11

it

rm
o
=
m
e
(:jl
A4
m
o
o
(:‘,l
7
>
ot
)]
Q
0
_
=
=
(]

S31438

ord by Crady Booch

What are design patterns

* Solutions to specific problems in OO software design

* 23 patterns in 3 categories
* Creational

 Structural
* Composite

e Behavorial
* Observer
* Interpreter

Observer

* One to many relationship
 The many need to know changes in “one” immediately

* Example
* Facebook feed
* Lines & rectangles

Example

* If a person changes its status, how to let all his “subscriber” knows?

Example

* What if there are different types of subscribers?

Class diagram

Subject views * Observer
model
+attach(in Observer) < +update()
- - - | +setState()
. |+getState() 4
ViewOne ViewTwo
; +update() +update()

for each view in views
v.update()

e - - - - o

model.getState();

Can you think of some examples?

Composite pattern

* Tree hierarchy

How to build a tree and traverse it?

struct node{
struct node*™ left;
struct node* right;
int val;

int sum(){

How to differentiate leaves and others?

struct leaf{
int val;
int sum(){ return val;}

}

How to accommodate different types of
internal nodes?

* Examples

e struct node or struct leaf?
e Book
* Graphics

Class diagram

«interface»
Component

N\

+doThis()

AN

Leaf

Composite

-elements

<>

-elements

J

+doThis()

+addElement()
+doThis()

ke - - - -

// Container functionalit:
// for each element
elements[i] .doThis () ;

Can you think of some examples?

Interpreter

* What is an interpreter
* Language, compiler

* Example

* Boolean expression
e Abstract syntax tree

a&&b || !c

a parser will turn this into an abstract syntax tree, and then an interpreter will evaluate the
tree. How to write a program to do the tree-based evaluation?

Class diagram

Client

/

AbstractExpression

«interface»

+solve(inout Context)

JZaN

Context

TerminalExpression

CompoundExpression

+solve(inout Context)

Perform "parent" functionality then
delegate to each "child" element
"Context" is data structure for holding
input and output

