Why Build Marooned?

Transloc:
Currently, the main method of finding shuttles and figuring out how to move around campus is through using Transloc. However, the user interface is cluttered and hard to understand. The user experience is often marred by one of the following problems: they do not know where they are on the map; they do not understand where the stops are (they are not clearly labeled in Transloc); the shuttle icon is at an indistinguishable distance from the closest stop, and time arrival is hard to guess; the shuttle doesn’t show up for some reason; too many shuttles are showing up; battery drain from constant updating; the map is cluttered and confusing with too many colors and icons.

What if there was a simpler way to get from A to B?
We wanted to simplify the user experience. Take the information given by Transloc and do the work for the user.

How does Marooned help?

Get Me Home
This feature allows the user to enter a default address. Once specified, pressing this button immediately lists the initial stop and final stop, as well as the route the user must take. An arrival estimate and an option for walking directions to the first stop are displayed as well. The impetus for this feature was that “home” is the most frequently looked up shuttle destination for most students. Therefore, providing direct access to a home option was a clear and necessary addition.

Get Me Out of Here
This feature gets the user to the nearest possible shuttle stop. A single button press directs the user to the stop that will place them on a Shuttle as quickly as possible. This feature is in line with our need to simplify. Often, a student just wants to get back to campus, or find the fastest way to use University transit. This feature meets that need.

Find Me the Route
This feature allows the user to select the specific route they would like. For example, if the user knows that the North gets them close to a destination, but they don’t know where the North stops in their vicinity, using this option will provide appropriate directions. This is a great choice for students who know the easiest way to a destination, but aren’t sure where a shuttle is with respect to their particular location.

Time Estimates
Time estimates are offered in multiple ways. When waiting for a shuttle, the system will inform the user how much time remains before their shuttle departs. Once onboard, the system will tell a user how much time they have until arriving at the destination stop. Again, our app strives for disambiguation. Students should know when to expect a pickup, and when they will arrive at their destination. This feature cuts further guesswork out of the equation.

Notifications
Once on-board a shuttle, a user may choose to set an arrival notification for their stop. When set, an alarm will sound and a notification will be pushed to the device when 60 seconds remain until arrival. The alarm will not play when the user leaves the app, but a notification will be pushed to the device. Sometimes, a stop name can be unclear, and recognizing it can be difficult, especially at night. We want shuttle navigation to be foolproof; if a user is unsure of their final destination, this feature will keep them from missing it.

Walking Instructions
A user may choose to view a set of walking directions to their initial stop and from their final stop. These are displayed as a list of text instructions. Just like with time notification, it may be the case that a user doesn’t know how to get to a particular stop. With walking directions, they can always find it, even if street names or landmarks are unfamiliar.

What Marooned aims to do

Simplify
The ideal shuttle tracking application should be as sparse as possible. Excessive information must be eliminated. All that we want to display to the user is what is necessary to get them from their current location to their destination, without any ambiguity.

Streamline
User experience must be as straightforward as possible. Unnecessary choice only increases the possibility for confusion. The method for extracting directions via shuttle service should have only one degree of freedom—the desired destination.

Inform
We do not want to rob students of ancillary information that is available in other applications. However, anything additional must be useful in some way. This includes features such as arrival and departure estimates, and stop notifications. In keeping with our goal, these are not mandatory features, but are available to users should they choose to activate them.

Advantages of Marooned:

Visual Simplification
The Marooned app aims to make transit discovery as simple as possible. A huge facet of this is removing unnecessary images and overwhelming route and map information from the user interface.

Less Battery Drain
Because the information the user is searching for is delivered instantaneously the user only needs to interact with the app for a few seconds. This removes time spent trying to deduce information from the Transloc map. Marooned also makes calls every few seconds which is a gigantic battery drain.

Ease of Use
The interface on Marooned minimizes the user input to one address or even just one push of a button. This makes the user experience easier and removes the many frustrating aspects of interacting with the current Transloc app. All of the work that is normally done by the user is now done by Marooned.

Experienced to Oblivious User
Marooned covers all range of users. It allows a user who knows exactly where they are and where they want to go to simply obtain arrival times at their stop. However, it also allows a user who doesn’t know where they are or where they’re going to get there easily. It can tell them where they are, how to get to the nearest stop, when they need to be there, where to take the shuttle to, and alert them when they need to get off.

It has a really catchy name

Acknowledgements

This project was completed as part of CS 234 Mobile Computing (Winter 2013), taught by Professor Chien, with TA support by Tanakorn L. and Falcon Dai.

Cornelia Bailey, IT Services