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Abstract—An early step in measuring jitter in communication
signals is locating the transitions, the points in time when the
waveform changes between logic levels. Transition localization
can be the most time-consuming step in jitter measurement
because it is the last step where every sample must be processed.
We transform the localization FSM (finite state machine) into
a Cayley table of a semigroup equivalent to the FSM, in the
sense that FSM execution is equivalent to taking products over
the semigroup, enabling highly parallel localization yeilding high,
gapless throughput. We describe a novel, parallel hardware archi-
tecture for executing these semigroup products. We evaluate the
practical potential of this approach using two exemplar FSM’s,
studying the throughput and hardware resource consumption
of FPGA (field-programmable gate array) of this parallel ar-
chitecture, varying two parameters: one that controls FSM size
and another that controls the peak hardware parallelism. We
use a state of the art FPGA as the technology model, reporting
resulting sample rate, power, and resource consumption for a
range of designs. These results show that for the simplest FSMs,
samples can be examined for transitions at rates as high as 40
gigasamples/second (GSa/s) can be achieved, but that sample rate
decreases rapidly for increased p. Also, the explosion in resource
requirements with increase p limits data parallelism to below
1024 samples. Likewise, power consumption can be a significant
limit for large FSMs.

I. INTRODUCTION

Specifications of digital communications systems designs
continue to evolve toward requiring higher data rates at lower
bit error rates (BERs). As bit errors are often due to timing
jitter, whether random or deterministic, the measurement and
analysis of jitter continues to be fundamental to the design,
test, commissioning, and maintenance of digital communica-
tions equipment. As data rates increase, faster jitter measure-
ments are desired. This goal is complicated by that fact that as
BER decreases, events resulting in bit errors are necessarily
increasingly rare. Thus, waveforms (or a set of waveforms)
containing more communicated bits must be measured in order
(1) to capture and identify communications error events [1] so
that they may be analyzed and the design improved and (2)
extrapolate with accuracy the BER from a limited number of
measurements [2]. It is also desirable to identify other errors,
in addition to jitter, that arise from design or manufacturing
quality issues in the transmitter or receiver, or from unexpected
behaviors in the channel between them.

Particularly in wired digital communications, the physical
layer operates by sending and receiving pulsed waveforms
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that encode one or more bits by transitioning between pre-
determined voltage levels. An early step in measuring jitter
in such communication schemes is therefore locating the
transition instants [3], the points in time when the waveform
changes from logic level to logic level. Transition localization
can be the most time-consuming step in jitter measurement
because every sample must be processed. The important jitter
parameters, such as the jitter histogram and standard deviation,
can be computed from the transition instants alone [4] and
there are much fewer of these than samples.

We consider a symbol-based transition localization ap-
proach that encodes a signal as a series of discrete symbols,
enabling flexible implementation in software, FPGA (field-
programmable gate array), and custom hardware; flexible ap-
proaches are essential to accommodate the large and growing
number of different physical layer standards. For example,
multicore processors [5] and graphics processors (GPUs) [6]
have been explored, and a recent efforts described the parallel
approach [7], [8] we explore here. That method transforms
small FSMs (finite state machine) into transition semigroups,
enabling parallel symbol processing.

We evaluate the practical potential of the semi-group ap-
proach using two exemplar and varying two parameters. One
parameter controls the minimum width of a pulse that is to be
considered a valid signal and not a glitches or spikes in the
input signal. Increasing this parameter results in larger FSMs
requiring more memory and computational resources for tran-
sition localization. The second parameter scales the amount
of hardware resources used, allowing exploration of tradeoffs
between acheivable sample rate and hardware resources. We
use an Altera Stratix V, a 28nm FPGA, as the technology.
Our study systematically explores the design space, reporting
achievable sample rate as a function of parallelism, power, and
resource consumption.

Contributions of this paper include:

o Description of a general, flexible architecture for high-

throughput transition localization.

o Empirical studies that show the Cayley table approach
can be used to achieve > 40 Giga-samples/second (GSa/s)
sample rate with an FPGA operating clock of <200Mhz.

o Evidence that achievable sample rate decreases rapidly
as pattern-length increases, dropping to < 15 GSa/s for
p = 6, with resource requirements (RAM blocks) that



grow faster than quadratically in symbol parallelism thus
limiting scaling.

o Characterizing the significant power requirements of the
parallel Cayley table approach, with logic power for
highest performance systems ranging from 10 to 20 W.

The remainder of the paper is structured as follows. First,
the FSM transition localization approach and parallel execu-
tion is described in Section II. We discuss architecture of a
family of FPGA implementations in Section III. Empirically
evaluation results are reported in Section IV, followed by
discussions that put our results in context.

II. APPROACH

We employ a discretized symbol-based approach to locate
transitions [3]. Firstly, we determine voltage thresholds for the
low and high logic states and use them to label samples with
corresponding symbolic logic states. For example a two logic
state waveform samples labeled Low, High, or Medium (in
between) would be denoted L, H, and M. These symbols are
passed to a finite state machine that accepts when a transition
is located, identifying the transition locations only when a low
logic level or high logic level has been fully established.

IEEE 181 [3] defines a parameter p which controls when a
pulse is wide enough to be considered a valid pulse and not a
spike or glitch. More precisely, p is the number of consecutive
samples after a transition from a low to high (or a high to a
low) logic state during which the signal must remain in the
new logic state. For example, when p = 2 an upward transition
requires two L’s, any number of M’s, and at least two H’s.
A downward transition must have two H’s followed by any
number of M’s, then at least two L’s.

An example FSM, for p = 2, is given in Figure 1. State 0
is the initial state. States 1 (resp. 6) indicates that one L (resp.
H) has been input but no sequence of p = 2 L’s or to H’s
has yet been seen. State 7 is reached when p = 2 consecutive
samples are L’s; the waveform is now in the low logic state. If
from there, some number of M’s are input followed by p = 2
H’s, state 9 is reached. State 9 is an accepting state, as p = 2
L’s, some number of M’s, then p = 2 H’s have been found.
Thus, reaching state 9 means that an up-going transition has
been located in the waveform. Similarly, state 4 is reached
whenever p = 2 H’s, some number of M’s, then p = 2 L’s
are found. That is, reaching state 4 means that a down-going
transition has been located in the waveform.

Fig. 1: The transition localization FSM for p = 2.

The reader will note that initial states O, 1 and 6 used only
at the start, to establish whether the waveform is initially in
the low or high logic level. Once the initial logic level is
determined, these states will not be re-entered. Such “startup”
states are an increasing fraction of the FSM for increasing
values of p. For example, see Figure 2, the machine that finds
transitions with p = 6 has 40% of its states are such startup
states. Here, the startup states are states O through 4 and 14
through 18, or 40% of the machine’s states.
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Fig. 3: Example of transition localization using an FSM with
p = 6. Horizontal dashed lines show the low and high logic
level thresholds. Vertical blue lines show the samples where
the FSM is in the accepting state. Bottom two graphs are
zoom-ins into the top graph showing that transitions are found
after 6 samples at the new logic level.

The natural way to implement FSMs, either in hardware or
software, is to read one symbol (here, L, M, or H), update
the current state, and repeat until the input is exhausted.
Performance is limited to one input sample per clock cycle
(hardware) or loop iteration (software). We use the parallel
FSM execution method of [7] and [8], transforming the FSM
into a mathematical structure with an associative operator, that
is, a semigroup. Then we exploit efficient data and pipeline
parallel methods for repeated application of that operation. The
methods have different names (“parallel scan” or “prefix sum”
for software, “parallel prefix circuit”) for hardware—but both
names represent the same ordering of parallel execution of the
same operations [9] and the same opportunities for data and
pipeline parallelism.



Fig. 2: The transition localization FSM for p = 6. State O (initial state) and State 12 or 15 (transition recognition)

TABLE I: Semi-group size and memory requirements

) 2 7 6 7 3
N 25 8T 169 225 729
Memory (bits) | 3125 | 45,927 | 228,488 | 405,000 | 5,314,410

We transform the FSM [7], [8] into:

o A set of natural numbers, S = {0,..., N — 1}, and

e An N x N table containing numbers from S that gives
an associative binary operation & from S to S,

o A mapping f : FSM symbols — S, and

e Avalue g € 5.

with the property that if sg, s2,S3,...,5;,... are the sym-

bols input to the FSM, then the FSM will be in accepting state
after reading symbol s; iff f(s0)® f(s1)® f(s2)D... f(s:) >
a. S under @ is sometimes called the transition semigroup of
the FSM [10]. N is called the order of the semigroup. The
parallel scan/parallel prefix circuit construction computes the
cumulative sum f(sg) @ f(s1) ® f(s2) @ ... f(sa) with the
following properties:

o All k inputs are read in parallel,

o All k£ cumulative sums f(so), f(so) ® f(s1), f(s0) ®
Fs1)® F(59), - s F(30) @ f(51)® f(59) @ ... f(s1) are
produced in parallel,

o Requires 2k & operations, and

o The critical path is 2 * log, k operations.

The degree of parallelism is k, the number of symbols
processed at a time. However, this parallelism is not without
cost. In general, the transformation of an FSM produces a
significantly larger semigroup of order /N. Because it must be
customized to each FSM, the semigroup is implemented as
a table in memory that grows faster than N2. Table I gives
several example the semigroup orders N and memory sizes
(in bits) N2[log, N for typical values of p. We consider the
practical consequences of this growth and the resulting overall
performance in Section IV.

III. A CANONICAL ARCHITECTURE FOR PARALLEL
SEMIGROUP EXECUTION OF FSMS

A. Semigroup in Prefix Sum Tree

It is attractive to speed transition localizaiton using the
semigroup approach using custom hardware. First we consider
the parallel computation structure required by the semigroup
approach.

Suppose it is desired to perform the parallel prefix operation
on k input symbols at a time. That is, a semigroup parallel
prefix block B takes k input symbols (zg,21,....x5x—1) and
generates k output symbols (zg,20Px1,...,L0BL1D...BTE_1).
Our hardware’s ciruit topology for block B is exactly the same



as a classical prefix sum tree except each node becomes a
single-port memory bank storing the whole semigroup (see
Figure 4). Compared to the serialized structure with O(k)
processing time, our tree organization has the potential to
achieve O(log k) processing time. For example, Figure 4 with
8 inputs (Xp...X7) and 8 outputs (Yp...Y7) shows one critical
path of length 4 (in red). If there are resource constraints,
our design will reuse memory banks, potentially increasing
the critical path length. For example, an 8-input prefix sum
tree employing four memory banks (that is, four Cayley table
lookups can occur per cycle) has a critical path of four, but
with two memory banks (two lookups per cycle) it has a
critical path of six.

X0 X1 X2 x3 X4 X5 X6 X7
S S
[~ [~~~
\\
©

Y6 Y7

YO Y1 Y2 Y3 Y4 Y5

Fig. 4: A Prefix sum tree: Eight inputs, critical path of four.

B. Overall Architecture

To assess performance and power efficiency we consider a
single design that processes k£ symbols in parallel. This design
organizes k inputs and m memory banks to compute a prefix
sum tree. We use a greedy algorithm to schedule operations,
achieving good load balancing across memory units, and
maintaining minimum critical path. Our algorithm also ensures
minimum fan-in and fan-out. Figure 5 shows the architecture
of an 8-input with 4 available memory units block for simple-
class FSM with p=2. Because memory units are limited, they
must be reused to achieve the correct logical scheduling for an
8-input prefix sum tree (Figure 4) with a critical path of four
operations. With fewer than k/2 memory units, the critical
path may become longer. Mapping the logical schedule on the
physical memory units requires different routing of outputs at
each cycle. Note: in a real system, k-input tree would process
k — 1 inputs at a time; we ignore this fencepost counting
detail to simplify explanation and increase result clarity. This
canonical design is used for broader system exploration in
Section IV.

Each memory unit in Figure 5 implements a Cayley table,
but that table can be used at various points in a parallel prefix
computation. To achieve this, we connect each memory to both
a selector and mux that enables results at each level of the
tree to be routed to the appropriate memory units. Thus each
memory unit consists of 2 encoders, 2 multiplexors, 1 address
ALU and 1 memory bank as shown in Figure 6. Reducing
m not only lengthens the schedule due to competition for
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Fig. 5: Example of the architecture with k = 8, m = 4.

memory units, but it also increases the size of multiplexors
and encoders thus lengthening the clock cycle. All memories
sizes are integral powers of 2, enabling fast address calculation
using efficient bit shifts.

Address ALU

Block RAM

Fig. 6: Each Memory Unit has many inputs, and sends its
result to many outputs.

IV. MODELING RESULTS

To explore the design space, we constructed a Verilog
code generator that produces our architecture implementa-
tions for a range of k and m. We synthesized the designs
using Altera’s QuartusII 15.0.0, targeting the Stratix V device
5SGTMCT7K2F40C1 that includes 2560 20Kbit BRAMs. To
be conservative, we use the Slow 85C corner and set all I/O
pins to be virtual except for the clock. Clock rate, resource
usage, and power estimates are generated using Altera’s tools.
Our results do not include input/output power.

We evaluate the two classes of FSMs while varying p. One
class, called here the simple class, are the FSMs described
in [7], [8]. We call the FSMs described in Figures 1
and 2 the complex class. Our primary metric is sample rate
(Gigasamples/second, GSa/s), converted from clock rate. We
report GSa/s as a function of p and power (milliwatts). The
most usual range of p values in practice is between 2 and about
7, which is enough to suppress accepting glitches as pulses at
reasonable numbers of samples per minimum signalling pulse
width. We report results for p = 13 in order to give some idea
of how well the proposed architecture would scale when used
to implement larger FSMs that might arise from other signal
feature recongition tasks.

Figure 7a presents the estimated, maximum sample rate
and power consumption for simple FSMs with p=2. Scaling



k from 8 to 8192, increases the achievable sample rates
from 0.47 to over 37.8 GSa/s at 7.5 W and 42.5 GSa/s at
15.9 W. Higher values of k£ make much greater sample rates
possible due to decreasing memory bank contention up to
m =~ k/8, and then increasing only incrementally beyond
that point. Best performance per watt is achieved at the knee
in the curve. Clock speeds increase steadily with m as the
complexity of the wiring and multiplexors decreases. There
is little compensating penalty of increased wire length in an
FPGA. Power consumption is dominated by memory reads for
Cayley table operations and grows generally with m. Figure
7b and 7c present sample rates for larger values of p, including
6, 7, and 13. These plots reflect that greater pattern complexity
slows clock rates by as much as 2.5x, which combined with
resource limits holds performance to 13.2 GSa/s at 18.7 W
and 3.3 GSa/s at 11 W for p=6/7 and 13 respectively.

Figure 8 shows limitations due to increased resource re-
quirements. All 2560 block RAMs available on the FPGA
are consumed by even modest k for higher values of p. For
p = 6,7, the parallel approach requires dramatically more
resources preventing the design from reaching the knee of
ideal performance for £ = 4096. For p = 13 these effects
are even more pronounced thus limiting full exploitation of
parallelism to below k& = 1024.

For complex class FSMs (see Figure 9,10), similar trends
emerge, with sample rates exceeding 25 GSa/s achievable for
p = 2, but significant limits on full exploitation of parallelism
for p = 6,7,13. The generally greater hardware resource
requirements for complex FSMs further limits parallelism.

V. RELATED WORK

We first compare our results to other published work on the
basis of sample rate and sample rate/watt.

For the presented FPGA approach, the simple and complex
FSM with p = 2 achieves a sample rate of 42.5 GSa/s and
25 GSal/s respectively. Prior work on graphics processing units
(GPU) employing the same semigroup table sizes as the simple
and complex FSMs with p = 2 has been reported [8] to have
peak throughputs of 0.8 GSa/s and 0.7 GSa/s respectively
on an NVIDIA Geforce GTX 780. A speculative parallel-
prefix based implementation of FSMs on multi-core processors
achieve rates of 3 GSa/s for 8 bit ASCII characters on an 8-
core, 16-thread 2.67Ghz Xeon X5650 [11].

For p = 2, our FPGA approach achieves a power efficiency
of 3.5 GSa/s/W (gigasamples per second per watt) and 3.7
GSa/s/W for the simple and complex FSMs respectively. The
GPU implementation [8] at 100W achieves power efficiency
of of 0.008 GSa/s/W and 0.007 GSa/s/W respectively. While
no published numbers exist, assuming ~50W for the multicore
workstation would correspond to 0.06 GSa/s/W.

A radically different approach, the Unified Automata Pro-
cessor (UAP) [12]-[14] extends the basic processor instruction
set with features that accelerate a wide range of automata
processing, enabling high-level software to access extreme
finite-automata performance seamlessly and with no overhead.
Using a 28nm ASIC design, we estimate the UAP could

achieve a linespeed of 9.1 Gbits/s (4.55 GSa/s, at the 2 bits per
sample) for the simple and complex FSMs at an on-chip power
of 7.9 mW [15], and a power efficiency of 575 GSa/s/W.

VI. SUMMARY

The bottleneck for jitter and BER measurement of long-
duration pulsed waveforms is often determining the temporal
locations of the events of interest, the transition locations.
This is because those locations must be derived from the
raw sampled data, further processing can then focus on the
smaller dataset of locations—the amount of data that must be
processed in the later processing steps is much reduced.

We have described a novel architecture based on parallel
prefix circuit execution of cumulative sums which is equivalent
to running a finite state machine based search for those
events of interest, the transition locations. Our exploration
of the design space for FPGA-based implementations, and
comparison to prior work, yields both promising performance
and important insights into the design’s trade-offs and limits.
The throughput power efficiency of our FPGA approach is
superior to both GPUs and multicore implementations.
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