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ABSTRACT

The implementation of nested-data-parallel programming languages is a challenging and important

problem. Well-engineered parallel languages help programmers make better use of the parallel

computing resources at their ever-increasing disposal. Nested data parallelism is an especially

attractive model for parallel programming, since it enables high-level parallel programs to exploit

parallel resources well, regardless of the regularity or irregularity of a particular programming

problem. In nested-data-parallel programs, programmers can employ the idioms to which they are

accustomed and achieve parallel speedups with only modest accommodations in their source code.

Nested-data-parallel languages have been in existence for over two decades now, but the ground

has shifted underneath them. As a platform for parallel computing, multicore computers long

ago superseded the wide-vector machines for which nested-data-parallel compilers were originally

designed. Nevertheless, nested-data-parallel compilation, while adapted to ever more sophisticated

languages, has remained fundamentally unaltered in its orientation toward vector instructions. This

dissertation challenges longstanding techniques for compiling nested-data-parallel programs in a

vector-machine style, on the basis that they are not appropriate for multicore targets.

We present hybrid flattening as a suitable alternative to traditional techniques for the compi-

lation of nested data parallelism. Hybrid flattening transforms nested data structures in order to

expose programs to various optimizations, while leaving control structures intact. We provide a

semantics of hybrid flattening in the form of Flatland, a model language with a rewriting system,

and prove properties about its formal integrity. We then define aggressive hybrid flattening, a prac-

tical application of Flatland’s rewriting rules in an optimizing transformation. We demonstrate the

effectiveness of aggressive hybrid flattening with our Parallel ML implementation, and we report

encouraging experimental results across various benchmark applications.
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CHAPTER 1

INTRODUCTION

Fast parallel computers have become common: they are relatively inexpensive and widely avail-

able. The ubiquity of parallel computing machines has given rise to a renewed demand for good

parallel programming languages. Many such programming languages have been developed and

are being developed now, but the research space is active and crowded with unanswered questions.

What is the best paradigm for parallel programming? How can language designs help program-

mers manage the complexity of their applications? Should programming languages give program-

mers direct control over parallel resources, or should that control be automated? Answering these

design questions leads to questions about implementation. How do we compile surface-level lan-

guage constructs to target hardware? Which features can we support? Can our language support

portability across diverse machines? How broad can we make our language’s application domain?

Active projects in parallel programming language research, some with long histories, include

NESL [8], Cilk [10], X10 [46], Chapel [14], Fortress [48], Data Parallel Haskell [15], and PML [21].

Each of these languages embodies its own vision for how parallel programming ought to be done,

but they all include some form of implicitly-threaded parallelism. When a language supports

implicitly-threaded parallelism, the programmer has mechanisms to provide hints to the compiler

about parallel execution without directly specifying the low-level details of that execution, such as

how it should map onto particular threads at runtime.

NESL is the seminal language supporting nested data parallelism. Nested data parallelism is a

programming model allowing multiple levels of parallelism, both interprocedural (parallel opera-

tions) and intraprocedural (calling subroutines in parallel). Nested-data-parallel languages enable

efficient parallelism over nested-data-parallel constructs, no matter how deeply nested and regard-

less of irregularity. Most recently, Data Parallel Haskell and PML have taken up the challenge of

supporting nested data parallelism in the context of implicit threading. This dissertation uses PML

as its experimental platform.
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NESL took up the challenge of supporting nested data parallelism, and succeeded, long ago.

Nevertheless, in integrating nested data parallelism into languages currently under development,

there is work left to do. In the time since NESL’s development, the hardware landscape has changed

completely. NESL’s compilation techniques are directed toward wide-vector parallel machines. In

particular, NESL applies the flattening transformation to generate wide-vector executables. But

multicore machines are different than wide-vector machines, with a completely different model

of execution. We know flattening is not necessary for PML, whose implementation already en-

joys considerable success with its flattening-free compiler technology. But is it desirable? We

have previously conjectured that flattening would improve the performance of PML programs if it

were incorporated into our system. To test this conjecture, we developed hybrid flattening, a novel

program transformation designed with multicore machines as our intended targets. The present

research describes and formalizes hybrid flattening as an abstract system, and furthermore demon-

strates that a PML implementation of hybrid flattening does, in fact, improve the performance of

PML programs.

1.1 Implicitly-Threaded Parallelism

Implicitly-threaded parallelism affords the programmer freedom to focus on the high-level con-

cepts of solving his or her target problem, without having to manage parallelism directly. In a

programming language that supports implicit threading, the programmer provides annotations to

indicate which parts of the program might profitably be executed in parallel. The mapping of spe-

cific computations onto parallel threads is delegated to the compiler and runtime system; no threads

exist at the language level. For any annotated computation, the implementation may choose to exe-

cute it in parallel or sequentially. The final decision rests with the system, since in a given context,

the overhead of parallel execution could actually degrade rather than improve performance.

Implicit threading inhabits the middle ground between fully-implicit and explicitly-threaded

parallelism. In fully-implicit parallelism, the programmer cedes all control of parallelism to the

2



compiler. Programs do not indicate any parallel computation anywhere; the system identifies op-

portunities for parallelism and exploits them. The pH language [37] exemplifies this approach.

In explicitly-threaded parallel languages, by contrast, the programmer controls all the parallelism

directly, specifying exactly when to spawn threads, when to synchronize on pending results, when

to release the resources of threads no longer needed back to the system, and so on. Parallel pro-

gramming in C has this character.

Implicit threading is neither entirely declarative like fully-implicit parallelism, nor entirely

direct like explicitly-threaded parallelism. Our language, PML, supports implicitly-threaded par-

allelism with a variety of constructs and idioms. (PML supports explicitly-threaded parallelism as

well, which is outside the scope of the present work.) In the sequential parts of a PML program,

the system makes no attempt to identify any parallelism. In the implicitly-threaded parts, parallel

threads are created and managed automatically, out of the programmer’s view. We see implicit

threading as similar in spirit to garbage collection; the programmer relinquishes some control, and

possibly some performance, in exchange for working with a body of code that is clearer, more

concise, more modular, easier to maintain, and easier to build upon.

Implicitly-threaded language implementations must make good choices about how much par-

allelism to employ in executing annotated computations. Too much parallelism hurts performance

because of its overhead costs; too little parallelism wastes opportunities to exploit all available re-

sources. Finding the right amount of parallelism consistently and for a broad selection of programs

is a hard problem. In PML, we employ both static and dynamic techniques to decide when parallel

execution is warranted and ensure that it is well-distributed across processing elements at runtime.

1.2 Nested Data Parallelism

Modern languages with support for implicitly-threaded parallelism are, in many cases, augmented

with support for nested data parallelism. Nested data parallelism is a declarative style for program-

ming irregular parallel applications. In nested-data-parallel programming, nested arrays need not
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have regular structure — subarrays may have different lengths — yet parallel execution over those

arrays remains efficient and balanced. Nested data parallelism makes it possible to write efficient

parallel programs in familiar idioms. Common algorithms such as quicksort and Barnes-Hut n-

body simulation [4] need not be reformulated to assume a regular shape; they can be expressed

in the usual way, as irregular recursive divide-and-conquer problems, and the compiler and run-

time system make sure the work is well-balanced at runtime. Nested data parallelism is attractive

specifically because of its ability to allow programmers to write parallel programs in the style to

which they are already accustomed.

Traditional flattening enables the efficient compilation of irregular nested data parallelism by

transforming both data structures and control structures rather profoundly, to enable the use of

efficient parallel vectorized and segmented operations on the transformed code. Hybrid flatten-

ing borrows certain elements of traditional flattening and dispenses with others — specifically, it

imitates its data structure transformation, but leaves control structures intact — in order to take ad-

vantage of traditional flattening’s performance-improving capabilities in the context of multicore

computation.

1.3 Contributions

This dissertation contributes to the literature on compilation of nested-data-parallel languages in

the following ways.

• We define hybrid flattening as a family of transformations over nested-data-parallel pro-

grams.

• We formalize hybrid flattening as a rewriting system over a model programming language,

and prove important properties of the system.

• Within the framework of hybrid flattening, we define aggressive hybrid flattening as a par-

ticular strategy for compiling nested-data-parallel programs.
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• We use the definition of aggressive hybrid flattening as the basis for implementing a compiler

transformation in the PML compiler, pmlc.

• We measure flattened PML programs against unflattened ones, and demonstrate consistent

performance gains of flattening in side-by-side comparisons across a range of benchmarks.

Both flattened and unflattened PML programs perform well with respect to fast sequential base-

lines, and scale well up to as many as 48 processors.

1.4 Outline of the Dissertation

The outline of this dissertation is as follows.

• Chapter 2 surveys the related work, providing a context for the departure of the present work

from its predecessors.

• Chapter 3 describes PML and Manticore, our experimental platform, and argues a rationale

for our novel hybrid flattening approach without providing full technical detail.

• Chapter 4 presents Flatland, a formal system describing the semantics of hybrid flattening

transformations, and proves properties of its rewriting system such as type preservation.

We use Flatland to define the specific rewriting strategy of aggressive hybrid flattening, a

transformation designed with multicore compilation in mind.

• Chapter 5 explains the implementation of aggressive hybrid flattening in pmlc and shows

how flattening exposes transformed programs to various optimizations not otherwise avail-

able.

• Chapter 6 reports performance results from a group of experiments testing the effectiveness

of aggressive flattening in PML.

• Chapter 7 concludes and outlines directions for future work.
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CHAPTER 2

RELATED WORK

Nested data parallelism has been an attractive parallel programming paradigm for more than two

decades now. The early work on compilation of nested-data-parallel languages was directed at

massively-parallel wide-vector machines. Such computers operate under a single instruction, mul-

tiple data (SIMD) regime. SIMD machines compute on wide vectors of scalar data in parallel, one

instruction at a time. At any given moment, the instruction being performed by such a machine is

the same at every location in the vector. SIMD hardware operates only in this way. SIMD-style

computation is fundamentally different than computation on symmetric multiprocessor (SMP) ma-

chines, such as the multicore machines targeted by PML in the present work. In an SMP regime, a

group of processors, each having access to a shared pool of memory, all compute at the same time

independently of one another, and what synchronization is needed between the processors must be

managed explicitly by software. Despite the fact that nested data parallelism has expanded beyond

its SIMD origins to (increasingly common) symmetric multiprocessors, its compilation techniques

have generally retained their original SIMD orientation, and have been subsequently adjusted to

work in an SMP setting.

In this section, we consider related work save our own; the discussion of Manticore and PML

research is folded into Chapter 3. All the related work is at some point concerned with immutable

sequences of scalar data, but the terminology varies from one paper to the next. Blelloch’s NESL

work [8] uses “sequence”; Keller’s dissertation [30] uses the term “vector”; Data Parallel Haskell

papers generally use the term “array.” Manticore and PML papers use “array.” To unify terminol-

ogy, we use “array” throughout this dissertation to refer to surface language constructs, in reference

to others’ work as well as our own, and we use “vector” to refer to hardware-level (compiled) data

structures in SIMD and SIMD-style regimes.
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2.1 NESL

Blelloch took up the challenge of compiling nested-data-parallel programs for wide-vector parallel

machines in his 1988 dissertation (adapted and published as a book in 1990 [6]). In that work, and

in a 1990 paper with Sabot [9], he presented the flattening transformation, which has since become

the subject of several decades of further research. The original flattening translation research uses

the programming language PARALATION LISP [45].

Blelloch presents NESL, an ML-like language with nested-data-parallel features, in 1993 [7],

as an alternative surface language to PARALATION LISP that employs the same compilation tech-

niques. NESL is a strict, parametrically-polymorphic language with ML-style type inference, with

a built-in set of simple type classes such as number. NESL’s design is minimal. It provides scalars

of a few basic types and associated operators, sequences, simple datatypes and pattern matching,

conditionals and let bindings, top-level function definitions, and a parallel apply-to-each construct

that is the inspiration for, among other constructs, the parallel comprehension construct in PML.

Blelloch’s flattening transformation entails substantial changes both to data structures and code.

Its effect is to alter representations of nested data structures such that they consist only of flat vec-

tors, which can then be operated on efficiently in parallel by correspondingly altered code. The

flattening transformation is particularly effective in treating irregular parallelism: certain opera-

tions like the parallel segmented sum operation, where sums are computed over an array of arrays

of numbers, complete in the same number of steps regardless of the irregularity of the shapes of

the segments. This property (of segmented sums and other irregular operations) allows a wide

variety of properly-encoded irregular parallel problems, many examples of which are detailed in

Blelloch’s dissertation, to execute in parallel on a SIMD machine without having to pay any per-

formance penalty for their irregularity.

With respect to the representation of nested arrays, the flattening transformation operates as

follows. Flattened arrays have two components: one or more flat data vectors (more than one

in the case of unzipped tuples), containing the elements of the nested array in left-to-right order,

7



s = [[1,2,3],[4,5],[6,7,8,9]]
sF = ([1,2,3,4,5,6,7,8,9], [3,2,4])

Figure 2.1: Flattened array with a lengths segment-descriptor.

and one or more segment-descriptors. Blelloch defines segment-descriptor as “any structure that

defines the segmentation of a vector.” 1 In NESL, a segment-descriptor is always a flat vector

of integers, and a flattened array carries with it one segment-descriptor for each level of nesting.

There are various forms of segment-descriptors: lengths, head flags, and head pointers, which

contain the lengths of subsequences, booleans marking segment beginnings, and indices of segment

beginnings, respectively. Different segment-descriptor types have advantages and disadvantages:

for example, head-flags is the same length as the flat data vector, which is desirable on a wide-

vector machine, but cannot represent empty segments, while lengths can represent empty segments,

but differs in length from the flat data vector. Figure 2.1 gives an example of a lengths-type

segment-descriptor: s is the nested array of integers and sF is its flattened counterpart. In PML,

we use our own shape tree expressions (discussed in the next chapter) to play the role of segment-

descriptors, and among the segment-descriptor variants given by Blelloch, shape trees are closest

to lengths.

The flattening transformation’s operations on data structures are complemented by more radical

operations on control structures. To demonstrate its code transformation, we consider an example

where factorial is applied in parallel to an array of integers, using NESL-like syntax in the following

code excerpt.

val ns = [1,2,3,4];

function fact(n) =
if (n < 2) then 1 else n * factorial(n-1);

val fs = { fact(n) : n in ns };

1. [6], p. 67.
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function factˆ(ns) = let
if (length(ns) == 0) then ns else let
val flags = ns <ˆ dist(2, length(ns))
val bases = pack (ns, flags)
val ones = dist (1, length(bases))
val nflags = notˆ flags
val rs0 = pack (ns, nflags)
val rs1 = rs0 -ˆ dist(1, length(rs0))
val rs2 = factˆ rs1
val rs3 = ns *ˆ rs2
in
combine (ones, rs3, flags)

end

Figure 2.2: Definition of factˆ.

The value bound to the variable fs is a parallel apply-to-each expression. It states that fact is

to be applied in parallel to all elements in ns. To execute this program is not a matter of simply

using each processor to apply fact independently in parallel. Such an execution is impossible

on NESL’s SIMD targets: the program must proceed, a vector-wide instruction at a time, in lock-

step toward its goal. To rewrite the apply-to-each expression bound to fs, NESL synthesizes a

new function factˆ. Whereas fact consumes an integer and produces an integer, factˆ, its

vectorized (suitable for vectors) counterpart, consumes an array of integers and produces an array

of integers. That is, the type of factˆ is the result of applying the array type constructor to the

function’s input and output types. Once factˆ has been defined, the apply-to-each expression

bound to fs is simply rewritten to factˆ ns. NESL follows a set of rules in transforming arith-

metic operators, tests, and conditional expressions to arrive at the definition of factˆ presented

(once again, using a paraphrase of NESL’s syntax) in Figure 2.2. The process by which factˆ

is synthesized from the definition of fact is implemented in the NESL compiler and described in

prose in the NESL literature, but it was not presented as a formal rewriting system until later work

(see below).

Some remarks are warranted to explain the code in Figure 2.2. Vectorized operators are marked

with a caret (ˆ). Vectorized operators represent pointwise application in parallel. The relationship
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between operators and their vectorized versions is as follows. Whereas the operator < is an infix

operator for a pair of integer expressions, yielding a boolean, the operator <ˆ is an infix operator

on a pair of integer vector expressions of equal length, yielding a vector of booleans. The dist

operator replicates its first argument across a vector of the length indicated by the second argument.

Therefore the expression

ns <ˆ dist(2, length(ns))

evaluates to a vector of booleans, of the same length as ns, where for every element in ns less

than 2 there appears a corresponding true, and for all the other elements false. The pack

operator extracts all values from its first vector argument corresponding to true flags in its second

vector argument and builds a fresh vector from them. The call to combine performs the inverse

operation, choosing elements from one of two vectors, in order, according to the flags in its third

argument, a vector of booleans.

The body of the original fact function is a conditional, branching according to a test of its

(single scalar) argument. That conditional no longer appears in factˆ: the flattening transfor-

mation has compiled it away. (The issue is confused by the fact that factˆ has independently

introduced a conditional, testing the length of the argument ns as its termination condition.) In

place of fact’s original test, the boolean vector flags has been computed by the pointwise appli-

cation of < 2, and flags has been used to extract a vector of base cases and a vector of recursive

cases (bases and rs0, respectively). Those two vectors are then computed on, an instruction at

a time, by subsequent operations. The reason underlying this conditional transformation is that in

a SIMD regime, all elements are computed on simultaneously by a single vector instruction; no

individual element can be singled out for special treatment. This restriction is at the heart of the

present work, since in an SMP environment, it no longer exists, calling into question the aptness

of this compilation strategy for multicore SMP machines.

Blelloch’s thesis was written before commodity multicore machines existed. In characterizing

the original motivation for his compilation techniques, Blelloch wrote, “to be useful, it must be
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possible to map [...] nested parallelism onto a flat parallel machine.” [6] This is demonstrably no

longer the case. Mapping nested parallelism onto a multicore machine is very much useful, and

even with our prototype implementation, we can, by means of SMP parallelism, improve upon the

performance of fast sequential programs by considerable margins (see Chapter 6).

NESL demonstrated the viability of the flattening transformation as a compilation technique,

demonstrating particular success in the area of irregular parallel applications. Beyond its use as a

research system, NESL has been used as a platform for teaching parallel programming at CMU for

two decades. NESL’s capabilities are sufficient to study and teach nested data parallel program-

ming, but as a realistic programming language it is restricted. Basic features of modern functional

languages are absent. To name two: there are user-defined datatypes and pattern matching in NESL,

but there are no sum types or recursive types; furthermore, functions must be named and can only

be defined at the top level. Sum and recursive types and first-class functions are absent from NESL

specifically because its compilation technology — the flattening transformation — had no way

to account for them. In a given application, NESL’s missing features can be compensated for by

proper encoding of the problem; in fact, a considerable portion of Blelloch’s thesis is devoted to

encoding algorithms on trees and graphs using nested-data-parallel arrays as a sort of universal

representation. Yet NESL’s incompleteness in providing the usual set of modern programming lan-

guage mechanisms left open terrain in the language design space. Research remained to be done

first to write down the flattening transformation as a formal system, then to extend it such that it

could include a broader selection of programming language features. Subsequent projects aimed

at exactly those targets.

2.2 Proteus

In 1993, Prins et al. [41, 38] presented Proteus, a functional nested-data-parallel language in the

NESL mold. Proteus is a not a full-featured programming language in that it contains only as many

constructs as necessary to demonstrate the authors’ compilation techniques. In addition to scalar
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values, arithmetic operations and basic array operations, Proteus consists of function definition and

application, let bindings, conditional expressions, and a declarative parallel iterator construct that

is equivalent to NESL’s apply-to-each form.

The Proteus work is the first to formalize flattening of nested-data-parallel programs as a rule-

based translation. Their flattening transformation is, like NESL’s, directed towards compilation

for parallel vector machines, Its rules succinctly describe elements of the flattening transformation

presented in this dissertation as well, including compilation of iterators to tabulations over integer

ranges, and unzipping of arrays of tuples (both of which are part of PML’s flattening implementa-

tion, discussed in Chapter 5).

The Proteus research describes two ways [41] of representing flattened nested arrays. Their

vector tree representation gathers together the value vector, a flat vector of data containing the

scalars from the original structure in left-to-right order, and another vector for each level of struc-

ture. This corresponds directly to NESL’s flattened representation, with its flat data vectors and

collections of segment-descriptors. Proteus’s alternative representation is its nesting tree repre-

sentation, which bears a resemblance to the representation used in the current implementation of

PML.2 A Proteus-style nesting tree is an n-ary tree. The children of internal nodes above the

leaves represent segments; the children of the lowest level of nodes—that is, the leaves—contain,

collectively, the data of the original nested array in left-to-right order. In PML, we also employ

trees to capture nesting structure, but our shape trees are a separate structure from our flat data

vectors (PML’s representation scheme is given in full detail in the chapters that follow).

Proteus’s flattening transformation is very much a predecessor of the current work. Certain

of Proteus’s transformation rules—those that describe the transformation of data structures—are

echoed in our system. Proteus’s essential point of divergence from the present work is, like NESL’s,

its orientation toward SIMD computing regimes, and everything that entails with respect to code

2. The Proteus papers do not directly discuss which of these representations they used in
their software. A Proteus interpreter, but not a compiler, circa 1994, is still available at
ftp://ftp.cs.unc.edu/pub/projects/proteus/src.
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transformation.

2.3 Nepal and Data Parallel Haskell

NESL’s limitations as a realistic programming language provided an outline for future research,

as language designers naturally wished to integrate nested-data-parallel programming and stan-

dard modern programming language technologies (such as algebraic datatypes and higher-order

functions). The step-by-step extension of NESL’s foundation to a more feature-rich platform has

ultimately taken the form of Data Parallel Haskell [15], having grown out of more than a decade

of research in the context of various projects. The general contour of the research has been to start

with NESL’s flattening compilation as a foundation, then to extend incrementally the capabilities

of the flattening transformation such that more and more modern mechanisms could be included

in the surface language.

The first step in enriching NESL’s flattening was Keller and Chakravarty’s giving a type-

theoretic foundation for flattening values of recursive types in 1998 [31]. In NESL, data structures

such as trees and graphs need to be encoded as nested sequences. Keller and Chakravarty lifted this

encoding burden by improving flattening to handle recursive-type values, so programmers could

compute with recursive-type expressions inside arrays directly. As its model languages, Keller and

Chakravarty’s paper uses NESL as its source language and FKL (for “Flat Kernel Language”) as

the target of its flattening transformation. The same authors extended the flattening transformation

shortly thereafter to sum types and separate compilation [16], using lambda-calculus-like model

languages in their presentation. Note that these advances in what could be included in the surface

of a nested-data-parallel language had no bearing on the target of the compilation; wide-vector

machines continue to be the intended target of these systems.

Keller’s 1999 thesis [30] includes a detailed formal treatment of the flattening transformation

as adapted to accommodate nested arrays of recursive types, and furthermore extends compilation

to account for parallel wide-vector distributed-memory machines. Compilation is modeled as a
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transformation from NKL, a nested kernel language, to FKL, a flat kernel language, and thereafter

to DKL, a distributed kernel language. Flattening per NESL takes place in the compilation from

NKL to FKL, and, at that stage in compilation, the system has in hand a program very much

like one of NESL’s post-flattening programs, with its pack- and combine-style operations (see

Figure 2.2). From that point forward, compilation to DKL involves the introduction of the inverse

join and split operators. The split operation, applied to a parallel array, has the effect

of separating the array into chunks, each of which can be computed on separately in parallel,

while the companion join reassembles the results of those pieces of computations into a parallel

array. Each join is a synchronization point, so it is beneficial to remove them from transformed

programs where possible. As Keller’s dissertation states, the composition of split and join

is equivalent to the identity function, and successive split/join applications can be eliminated

through fusion; in fact this technique is still employed in Data Parallel Haskell (discussion of which

follows).

With the introduction of array closures, it became possible to enable the flattening transforma-

tion to accommodate parallel arrays of first-class functions. Leshchinskiy et al. give an overview of

higher-order flattening in a 2006 publication [34], and Leshchinskiy’s 2005 dissertation [33] gives

the topic of array closures a thorough theoretical treatment, as well as a novel formal presentation

of the state-of-the-art enhanced flattening transformation including all the advancements achieved

in their line of research.

The incremental enrichment of the flattening transformation led naturally to a design for a

full-featured language, not lacking basic features or intended for proofs of concept, but meant

to bring the spectrum of modern programming language features to bear on nested-data-parallel

programming. Chakravarty et al. first present the language Nepal in 2001 [17], characterized as a

version of Haskell including nested data parallelism. Nepal is succeeded by Chakravarty et al.’s

Data Parallel Haskell [15], bringing together Nepal-style nested data parallelism with Haskell as

implemented in the Glasgow Haskell Compiler (GHC) [26].
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In 2008, Peyton Jones et al. give a thorough overview of the Data Parallel Haskell language

and its compilation [39], including an updated account of how Data Parallel Haskell uses the flat-

tening transformation in their implementation. In particular, and especially relevant to the present

work, the 2008 paper needs to account for a major change in the landscape that has developed in

the decades since the original appearance of the flattening transformation: that is, the widespread

proliferation of multicore architectures. What happens after a system has compiled a Data Par-

allel Haskell program in the manner of NESL, and yet executes on an SMP rather than a SIMD

machine? Their answer to this technical problem is to adapt the split and join mechanisms

originally presented in Keller’s dissertation to implement NESL-style operations (such as pack

and combine) across the multiple processing elements on a multicore computer. Parallel com-

putations are split across processing elements and subsequently joined on completion. To

eliminate unnecessary synchronization points, GHC uses rewrite rules [40] to erase successive

applications of split and join (per the identity equivalence rule originally given by Keller).

(In addition to this, various advanced fusion techniques are employed to streamline the result-

ing post-flattened program, an overview of which is given in their paper.) Though Data Parallel

Haskell represents broad advances in NESL-style flattening in numerous ways, and although it has

been adapted to run on multicore machines, its compilation strategy continues to reflect the SIMD

orientation of its predecessors. This is the point from which the present work marks a distinct

departure.
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CHAPTER 3

THE RATIONALE FOR HYBRID FLATTENING

In this chapter, we present our novel approach to flattening for multicores in the context of the

Manticore project. After a review of the related Manticore and PML literature in the first section,

we give a rationale for our new formulation of hybrid flattening and intuitions about its utility.

3.1 Manticore and PML

The Manticore project is an infrastructure built to support languages with parallelism at multiple

levels. Originally Manticore was the name of a programming language, although in more re-

cent work, we have chosen to refer to the runtime system infrastructure as Manticore, and to the

programming language built upon it (one of potentially many) as Parallel ML, or PML. We will

consistently refer to the programming language as PML, even with respect to earlier work. We

review the language and the infrastructure in turn.

3.1.1 The Language: PML

Fluet et al. presented the original PML design in 2007 [23]. The novel characteristic of the PML

design was to combine both explicitly-threaded parallelism and implicitly-threaded parallelism in

the same language. PML’s explicitly-threaded parallel constructs are parallel versions of the core

operations in CML [44], described most recently by Reppy et al. [43]. Its implicitly-threaded

constructs, discussed below, are presented in detail in recent publications of Fluet et al. [21, 22].

PML provides implicitly-threaded parallel versions of a number of common sequential forms.

PML’s implicitly-threaded parallel constructs are parallel tuples, parallel arrays, parallel compre-

hensions, parallel bindings, and parallel cases. Each of these is a parallel form of a well-known

sequential counterpart. This dissertation is concerned with the first three of these expression forms;
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parallel bindings and parallel cases do not come into play. The detailed semantics of all forms is

given by Fluet et al. [22].

Each implicitly-threaded construct hints to the compiler which computations are good can-

didates for parallel execution. The semantics of many of these constructs is sequential, and the

system is always allowed to choose to execute them in a single thread. Sequential semantics pro-

vide the programmer with a clear deterministic programming model, and formalize the expected

behavior of any PML compiler.

Parallel tuples are a lightweight notation for fork/join-style parallelism. Parallel tuples hint to

the compiler that its arbitrarily (but finitely) many subexpressions are to be computed in parallel.

Parallel tuples are written like SML’s tuples, except they use parentheses with vertical bars as

delimiters. A parallel tuple of n components is written as follows:

(| e1, . . ., en |)

where e1 to en are PML expressions. The subexpressions in a parallel tuple may differ in type;

the expression as a whole has a product type of the usual form. In PML, any effects produced

by the computations in a parallel tuple must take place in left-to-right order, in keeping with the

sequential syntax of SML, although the expressions themselves may of course be evaluated at the

same time.

A parallel array of n components is written as follows:

[| e1, . . ., en |]

Once again, this construct recommends to the compiler that the n expressions inside the parallel

array be evaluated in parallel, and once again the compiler may refuse. Each expression inside a

parallel array must share the same type; if we call that type t, the whole expression has the type

t parray.

PML provides parallel comprehension and range syntax to facilitate the specification of certain

kinds of parallel arrays. It has a close analog in Haskell [28], the (sequential) list comprehension,
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Γ ` et : bool Γ ` e1 : τ1 · · · Γ ` ek : τk Γ[pi : τi] ` e0 : τ

Γ ` [| e0 | p1 in e1, . . . , pk in ek where et |] : τ parray

Figure 3.1: Parallel comprehension typing.

and a closer analog in Data Parallel Haskell, which is also called a parallel comprehension and

from which we borrow the name. The general form of a parallel comprehension is as follows:

[| e0 | p1 in e1, . . ., pk in ek where et |]

where e0 is some expression (with free variables bound in the pi) computing the elements of the

array, the pi are patterns binding the elements of the array-valued expressions ei, and et is an

optional boolean-valued expression over the pi filtering the input. If the input arrays have different

lengths, all are truncated to the length of the shortest input, and they are processed in parallel.

The sequential semantics of parallel comprehension are similar to the semantics of mapping a

function over a list using a standard implementation of map (such List.map from SML’s Basis

Library [25]). The main difference in the behavior of a comprehension and a typical map is that,

when a pattern pi does not match a given element of ei, that element is skipped, leaving a gap in

the result. For intuition about the typing of parallel comprehensions, a typing rule sketch (outside

the context of a full typing judgment) is presented in Figure 3.1.

In PML, parallel comprehensions are the only native construct specifying a loop-like iteration.

It is common to iterate over an integer interval, so PML provides a syntactic form called a range

to facilitate it.

[| e1 to e2 by e3 |]

All the subexpressions of a range must by integers. Its start and end points represent the inclusive

limits of an integer sequence. The limit on the left need not be less than the limit on the right. The

expressions e1 and e2 correspond to the left and right limits of the sequence, and e3 is the optional

step size from one entry in the sequence to the next. If the clause by e3 is omitted, the compiler

assumes by 1 in its absence.
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Retaining the names e1, e2 and e3 for the start point, end point, and step size, respectively, of a

range as sketched above, and for e3 6= 0, the sequence defined by that range is as follows:

{nk = e1 + k(e3) | k ∈ N, (nk = e1) ∨ (e1 ≤ nk ≤ e2)}

Under these semantics, a range is never fewer than one element in length, as the element e1 is

always part of the sequence, since nk = e1 is a sufficient condition for inclusion in the sequence

and it is always the case that since n0 = e1 + 0(e3) = e1. Ranges where e3 = 0 are undefined in

the semantics and result in an exception’s being raised at runtime in PML.

Ranges and parallel comprehensions are a facile combination, permitting the writing of concise

code such as

[| n*n+1 | n in [| 1 to 6 |] |]

which evaluates to

[| 2, 5, 10, 17, 26, 37 |]

In our collection of PML benchmarks, many of our applications are expressed as parallel compre-

hensions over ranges. It is a genial idiom for declarative parallel programming and our compiler

takes special care to handle it well. Regular nested parallel comprehensions, as they are often

conveniently expressed as nested comprehensions over ranges, benefit from the tab flattening opti-

mization made available by application of the flattening transformation, as we discuss below.

In its basis library, PML includes a collection of operators, such as map, filter, and

reduce over parallel arrays, that make it possible to translate any nested-data-parallel NESL

program into PML in a natural way. NESL programs and their PML translations are superficially

similar. Like NESL and its relatives, PML is a nested-data-parallel language, enabling the same

sort of declarative programming for regular and irregular parallel programs. Before the present

work, however, the compilation of PML has not involved any form of the flattening transfor-
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datatype ’a rope
= Leaf of ’a seq
| Cat of ’a rope * ’a rope

Figure 3.2: Polymorphic ropes in PML.

mation. Although PML has absorbed some of the surface features of the nested-data-parallel

languages discussed in Chapter 2, its compilation has proceeded along entirely different lines.

Prior to the modifications outlined in the present document, PML has used ropes [12] to repre-

sent parallel arrays. Ropes, originally proposed as an alternative to strings, are persistent balanced

binary trees with seqs, contiguous sequences of data, at their leaves. Figure 3.2 gives a simplified

definition of our implementation of polymorphic ropes, suitable for the current presentation. (In

our actual system, ropes’ Cat nodes include length and depth information to speed balancing.)

Read from left to right, the data elements at the leaves of a rope constitute the data of a parallel

array it represents. Since ropes are physically dispersed in memory, they are well-suited to dis-

tributed construction, with different processors simultaneously working on different parts of the

whole.

Concatenation of ropes is fast and inexpensive, requiring no data copying. Contrast rope con-

catenation to list or array concatenation, each of which requires linear copying. Furthermore, since

a rope’s data is distributed among its leaves, it occupies no single large chunk of memory. As a

result it is a favorable representation for our garbage collector, which does not have to account for

a large contiguous region of memory representing a single monolithic data structure. In addition,

we use a rope’s shape as a means of scheduling its parallel processing; its physical decomposition

describes a parallel computational decomposition in a very direct way.

In the current non-flattening PML compiler, parallel arrays are mapped directly to ropes.

The rope datatype and a broad set of rope operations, many of them parallel, are defined in the

PML basis library, but none of the rope code is intended to be used directly in PML programs.

There is a surface layer of syntax (e.g., parallel comprehensions) and parallel array operations
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(PArray.map, etc.) providing a layer of abstraction between parallel arrays at the surface, and

ropes in compiled code. We operate underneath exactly this abstraction layer to change the internal

representation of parallel arrays when flattening is enabled (see Chapter 5).

As a representation of parallel arrays, ropes, in comparison to flat sequences, have some weak-

nesses. First, random access to rope elements requires logarithmic rather than constant time. Sec-

ond, ropes must remain balanced; balancing ropes can be costly. Third, mapping over multiple

ropes is more complicated than mapping over multiple sequences, since the ropes can have dif-

ferent shapes; managing these complications can also be costly. Nevertheless, our performance

studies [5, 42] have consistently demonstrated both good absolute performance and robust scal-

ing for multiple processors across PML benchmarks using ropes as the foundational parallel data

structure.

3.1.2 The Infrastructure: Manticore

PML runs under the Manticore runtime system. Auhagen et al. give a precise characterization

of the current state of Manticore in a 2011 publication [3], which is recapitulated here in brief.

Manticore’s runtime system provides a hardware abstraction layer, a parallel garbage collector, a

few scheduling primitives, and basic system services including networking and I/O. Its processor

abstraction is the virtual processor, or vproc, each of which is hosted by its own pthread and pinned

to a specific processor. Its garbage collector uses a split-heap architecture, following the parallel

garbage collection design of Doligez, Leroy, and Gonthier [20, 19], and divides each processor’s lo-

cal memory into an old-data area and a nursery area, following Appel’s semi-generational garbage

collector design [2]. Garbage collection is either minor, major, or global; these are, respectively,

entirely local per-processor collections, local collections with live data promoted into the global

heap, and stop-the-world collections triggered by the global heap’s size exceeding a limit.

Manticore is open to different task scheduling policies to determine the order in which to

execute tasks and map tasks to processors. The scheduling policy used in the present work is
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work stealing [13, 27]. In work stealing, a group of workers, one per processor, collaborate on

a given computation. Idle workers are made to bear most of the scheduling costs, while busy

workers focus on finishing their work. We use the following well-known implementation of work

stealing [11, 24]. Each worker maintains a deque (double-ended queue) of tasks, represented as

thunks (suspended computations). When a worker reaches a point where it could execute two

(mutually independent) computations in parallel, it pushes one of the two tasks onto the bottom of

its deque, and it continues executing the other. Upon completion of its task, the worker attempts to

pop a task off the bottom of its deque and run it. If the deque is not empty, then the task, which is

necessarily the most recently pushed task, is simply run. If it is empty, on the other hand, all of the

local tasks have been stolen by other workers, and the worker seeks to steal a task from the top of

some other worker’s deque. Potential victims are chosen at random from a uniform distribution.

One of the main advantages of traditional flattening-based compilation is its strength in han-

dling irregular parallelism. In a SIMD regime, issues of processor utilization are eliminated by

having marshaled the program into a series of whole-vector synchronized steps. NESL’s achieve-

ment is to confer this benefit even to irregular programs. With PML, which does not run on SIMD

machines and does not flatten during compilation (outside the present work), irregular parallel

programs run the risk of using processors poorly; under-scheduled processors could be left idling

while a few busy processors do all the work. Manticore mitigates against poor processor utilization

both through work-stealing scheduling (see above) and lazy tree splitting [5].

Lazy tree splitting is Manticore’s adaptation, for trees, of the lazy binary splitting technique

of Tzannes et al. [49] for balancing parallel computation over flat arrays dynamically. In lazy

binary splitting, decisions about delegating work among processors are based on dynamic estima-

tions of load balance. We say a processor is hungry if it is idle and ready to take on new work,

and busy otherwise. Splitting, whereby a processor offers half its remaining work to other hungry

processors, is judged profitable when at least one remote processor is hungry. Communicating

directly with other processors to check if they are hungry or not is costly, but, given a sufficiently
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inexpensive way to check for hungry remote processors, lazy binary splitting is an effective tech-

nique for achieving good load balance during parallel execution. Tzannes et al. have demonstrated

the effectiveness of the following fast approximate hungry-processor check: if a processor’s local

work-stealing deque is empty, there is very likely a remote hungry processor, since all its work has

been stolen; if its deque is not empty, the other processors are probably too busy to have stolen any

work. This heuristic works surprisingly well considering its simplicity. The check is inexpensive,

requiring only two local memory accesses and a compare instruction, and, in practice, it provides

a sufficiently accurate estimate of whether or not splitting is profitable.

While lazy binary splitting is applicable to linear iterations over integer ranges or contiguous

data structures, the technique must be modified to work on iterations over trees. The concept of

“half of the rest of the work” is simple to determine in the case of a linear structure, but at the leaf

of a tree (a rope, for example), it is less so. At a leaf, a typical tree-traversing program has no way

to refer to any other part of the tree, since parts of the tree other than the leaf are generally not in

view at that point. It is not immediately obvious where the notion of “half of the rest of tree” comes

from. The innovation of lazy tree splitting is to use zippers [29] to provide exactly this capability.

Once it is possible to divide the current remaining work over a tree in half, lazy binary splitting

techniques apply to trees, and they have proven advantageous in practice.

By virtue of its work-stealing scheduling augmented with lazy tree splitting, PML is already

an effective compiler of nested-data-parallel programs. We have previously conjectured [49] that

flattening and lazy tree splitting would work well together; the concerns of lazy tree splitting,

while related to those of flattening, are separate. We demonstrate below that, in conjunction with

work stealing and lazy tree splitting, our version of flattening improves the performance of parallel

execution, in the cases of both regular and irregular nested data parallelism.
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3.2 Hybrid Flattening

We now give an overview of how we have adapted techniques based on the flattening transfor-

mation to improve the compilation of PML. In summary, we adopt NESL-style flattening of data

structures, compiling nested parallel arrays to a customized flat representation, but, except inso-

far as we must transform code to operate on the flattened structures, we leave the code — and in

particular, its control structures — essentially intact. Vectorized operations are not introduced. In

full NESL flattening, it is necessary to represent control structures in data; it is not so in PML. Our

work is fundamentally an experiment in what happens if one applies NESL-style data flattening in

an existing SMP implementation. We name the technique hybrid flattening.

In full generality, hybrid flattening permits any amount of flattening (or, for that matter, un-

flattening) to occur at zero or more places in a program, while, in some sense, preserving the

program’s original meaning. Chapter 4 presents a theoretical basis for hybrid flattening, assigning

the term a precise meaning and setting forth formalisms for rigorous treatment of hybrid flattening

systems. Hybrid flattening need not be used to describe a transformation whereby every (or even

any) parallel array is flattened: it does not itself express or embody a particular transformation pol-

icy. In this section, we describe our adaptation of hybrid flattening as the basis for an aggressive

flattening transformation for PML. Leaving aside the formal details of hybrid flattening until the

next chapter, the important point about hybrid flattening as applied to PML compilation is that

control structures are left alone, not profoundly transformed in the manner NESL’s treatment of

factˆ (see Figure 2.2 above).

Whereas PML without flattening compiles nested parallel arrays to nested ropes, PML with

flattening compiles nested parallel arrays to flattened arrays. Flattened arrays, like nested arrays as

compiled by NESL, consist of two pieces: a flat data vector, and a value representing the structure

of the nested array called a shape tree (alternatively, a shape). By means of standard (in flattening)

unzipping transformations, nested arrays of tuples are compiled to tuples of flattened arrays. In

our implementation, flattened arrays are represented by the polymorphic farray datatype. To
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datatype shape
= Lf of int * int
| Nd of shape list

datatype ’a farray
= FArray of ’a rope * shape

Figure 3.3: Datatypes shape and farray.

represent the flat data vector part of flattened arrays, we use ropes, exploiting the considerable

infrastructure we have already built to compute in parallel with them. Like ropes, flattened ar-

rays are an internal representation, hidden from the programmer by parallel array syntax, types,

and surface-level operations. Figure 3.3 gives the PML datatype definitions for both shape and

farray. The datatype definition for rope is given in Figure 3.2 above.

To avoid confusion, in the examples that follow, we will refer to the Leaf and Cat construc-

tors, from the datatype rope, and the Lf and Nd constructors, from shape, with qualified names

such as Rope.Leaf, even though neither datatype is shown inside a module in Figures 3.2 or 3.3.

Shape trees are our adaptation of segment-descriptors in the NESL tradition. We discussed

NESL’s different segment-descriptor representations briefly in Section 2.1, including lengths, head

flags and head pointers.1 As mentioned, the latter two representations cannot account for empty

subarrays, which is a crippling restriction. We immediately prefer the lengths representation for

this reason, and it is the basis for shape trees. The lengths representation is not always pre-

ferred in SIMD contexts, since the length of lengths vectors generally differs from the lengths of

flat data vectors, which can present difficulties on wide-vector machines and distributed-memory

massively-parallel machines [30]. This length mismatch is an unimportant point in SMP execution,

and so is not a concern in compiling PML. Furthermore, since we are not bound to use flat vector

representations for everything, and to avoid contending with difficulties associated with keeping a

bundle of separate but related lengths segment-descriptors consistent with one another, we package

1. In early implementations, flattened arrays carried a redundant bundle of collections of segment-descriptors,
presumably so different types of segment-descriptors could be used when advantageous. Blelloch and Sabot mention
this point in passing in 1990 [9], but do not elaborate on it.
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our segment information in trees.

A shape is an n-ary tree whose leaves store integer pairs. Each leaf contains the starting

index and the index of the elements following the segment of data in an farray. The shape

Shape.Lf (i, i+n) describes a length-n segment starting at i and ending at the last position

before i+n. (In practice, this choice of indices is a convenient convention that guards against

common fencepost errors. For example, the length of a segment is computed simply by subtracting

the low index from the high index.) A simple, flat parallel array of integers such as

[| 1, 2, 3 |]

has the following farray representation:2

FArray (Rope.Leaf [1,2,3], Shape.Lf (0,3))

The data in the original sequence appears here, at a Rope.Leaf, in the original order, and the

accompanying shape — Lf(0,3) — means that the flattened array’s only segment begins at

position 0 and ends at position 2 (one before 3).

Nested parallel arrays are translated as follows. Consider the following nested array:

[| [| 1, 2 |], [| |], [| 3, 4, 5, 6 |] |]

Its flattened array representation is the following:

FArray (Rope.Leaf [1,2,3,4,5,6],
Shape.Nd [Shape.Lf (0,2), Shape.Lf (2,2), Shape.Lf (2,6)])

The flat data appears in order in a Rope.Leaf. The shape is a Nd with three leaves: this means

that the parallel array consists of three subsequences. The leaves tell us that the first sequence

begins at position 0 and ends at 1, the second sequence is empty at position 2, and the third

sequence begins at position 2 and ends at 5. This representation scales up to any nesting depth

in a natural way.

2. For brevity, we present the sequence in the rope’s Leaf node with list syntax. In our implementation, se-
quences at rope leaves are variously represented as vectors and arrays, but never as lists.
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With shape trees, certain operations, otherwise complicated, are simple and efficient. Consider

array subscript on a nested array of integers. This parallel array x

val x = [| [| 8, 7, 6 |], [| 5, 4 |] |]

is flattened to xF as follows:

val xF = FArray (Rope.Leaf [8,7,6,5,4],
Shape.Nd [Shape.Lf (0,3), Shape.Lf (3, 5)])

Assume we would like to select element 1 from xF (a value equivalent to the parallel array

[| 5, 4 |]). We perform the operation simply by selecting the subtree at position 1 out of

the shape tree of xF, which is, in this case, Shape.Lf (3, 5). We can share the original flat

data vector and need not copy any data from it. The result is the array xF1 as follows:

val xF1 = FArray (Rope.Leaf [8,7,6,5,4],
Shape.Lf (3, 5))

The shape tree in xF1 effectively tells us to ignore all data in the flat data vector before position

3. Under this implementation, flattened-array operators must be written to consult shape trees to

determine which values are current in a given flattened-array value. In certain operations, such

as flattened array concatenation, it does become necessary to clean flattened arrays — that is, to

copy live data out of its flat data vector before further computation. But such copying need not

take place at subscript time and may never be necessary; it can be delayed until demanded by a

particular operation.

Examples containing short literal arrays, such as those presented in this section so far, are help-

ful for providing intuition about the transformation of data structures (and typical of the literature),

but they may give the false impression that flattening nested arrays can always be performed at

compile time. Literal values can be flattened at transformation time directly, the representation

change incurring no runtime cost. In general, however, the compiler must cope with arbitrarily

nested arrays whose dimensions are unknown until runtime. Consider this function f:
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fun f n = [| [| i * j | j in [| 0 to i |] |]
| i in [| 0 to n |] |]

The parallel array f computes has no predetermined shape or size: it needs to be applied to an

integer argument before such information exists. With respect to our flattening scheme, for such

a parallel array of unknown dimensions, there is no way to compute the shape tree of its flattened

representation in advance, let alone its flat data. Generally, although certain special cases can be

analyzed at compile time, there is no universal way for the compiler to know the shape of a parallel

array that is yet to be constructed. In many cases, the compiler needs to arrange for flattening to

take place at runtime. We handle this issue, both in the formal system discussed in Chapter 4 and

in our actual implementation, by inserting operators that generate flattened arrays once they have

enough information to do so. We call these coercion operators, and discuss them in detail in the

following chapters.

When nested arrays are transformed into flattened arrays, all operations applied to those array

values must be correspondingly transformed. Our approach to this problem is to provide a core

group of type-indexed families of array operators, each of which is implemented to perform its

operation at every array type in its family. The group contains parallel array subscripting, and par-

allel maps, filters, and reductions over parallel arrays. Note that by including maps and filters, this

core group subsumes what can be expressed in parallel comprehensions. All operations on parallel

arrays are either members of this core group, or they are built from members of the group. As

such, transformation of the type-indexed operators matching the transformations of data structures

is sufficient to preserve the program’s behavior.

As an example, consider the parallel array subscript operator. In PML, the syntax for parallel

array subscripting is to write the infix operator ! with a parallel array as its left argument and an

integer as its right. Consider the following PML program, computing the first element of an array

of pairs:

val ps = [| (1,2), (3,4) |]
val p0 = ps ! 0
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PML infers the type (int * int) parray for ps. In the surface language, the subscript

operator has the polymorphic type

’a parray * int -> ’a

so it is instantiated here to the type

(int * int) parray * int -> (int * int)

Consider the value of ps after flattening, which we will rename to psF:

val psF = (FArray (Rope.Leaf [1,3], Shape.Lf (0,2)),
FArray (Rope.Leaf [2,4], Shape.Lf (0,2)))

Extracting the first element (element 0) of the transformed array (now a pair of arrays) is now an

entirely different operation. The subscript operator must select the first element of both flat data

vectors inside psF, and use them to construct a pair. In the course of flattening the program, the

original polymorphic subscript operator must be replaced by the operator that performs this very

different operation. PML uses type information to choose such replacement operators as transfor-

mation proceeds. The type of the transformed data structure is sufficient to specify the operator we

need. Not all possible such operators can be written in advance, since the family of type-indexed

array operators is, in theory, infinite, and in practice, very large. As such, when we have no prede-

fined definition for a given operator (such as a particular flavor of array subscript), we synthesize

the operator at compile time and introduce it into the program at the point of application. Such

operators can all be determined mechanically from their type, and their compile-time synthesis

(while tricky to implement) requires no special technical machinery.

Until this point, we have not discussed the possibility of flattening expressions to some inter-

mediate extent, or selecting only certain expressions as candidates for flattening. It is possible that

such mixed flattening transformations would be useful in practice. For example, while unzipping

tuples of scalar values has some obvious potential advantages (see Section 3.3), it might not be

the case that performance gains are realized by unzipping pairs whose components are pointers to
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heap-allocated values, especially if the unzipping operations must be performed at runtime. More

generally, it might not be beneficial to expend computational resources flattening a nested array if

the operations performed on its elements fall under some threshold of computational activity; one

can imagine such a case where the overhead of flattening a structure overwhelms the possible ben-

efits of having done so. The hybrid flattening framework in Chapter 4 provides a means of defining

flattening transformations of this mixed character, although the transformation in itself offers no

particular guidance about designing the appropriate heuristics and analyses. We have thus far only

implemented an aggressive hybrid flattening in PML, although we remain interested in using our

system as a platform for exploring different flattening strategies.

3.3 The Advantages of Hybrid Flattening

The purpose of flattening data structures and code for multicore nested data parallelism is not be-

cause it must be possible for our high-level declarative programs to run as a sequence of SIMD

instructions. This is the task of flattening historically. We flatten nested data parallelism for mul-

ticores because it improves the performance of SMP execution, not only because flattened opera-

tions perform better than, or at least no worse than, their non-flattened counterparts, but because

flattened programs are amenable to various powerful optimizations that cannot be applied to non-

flattened programs. In this section, we consider these optimizations in turn. Note that not all of

these optimizations are employed in the PML compiler as it stands: we give a current account of

the status of PML in Chapter 5.

Monomorphization. Monomorphization is an optimization whereby a polymorphic data struc-

ture containing uniformly-represented (i.e., boxed) elements is transformed to a representation

containing raw (unboxed) elements in their place. Monomorphization is possible for various data

structures, such as containers for boxed scalars. Consider a value of type int rope in PML.

Without monomorphization, the system will build an int rope with sequences of pointers to

heap-allocated integers at its leaves. Monomorphization can turn a PML int rope into an
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int_rope, a specialized datatype that represents only ropes of integers, and as such carries se-

quences of raw integer values at its leaves. Monomorphization of polymorphic values preserves

original meaning in a faster and lighter-weight structure. Monomorphic int_ropes are less

expensive to construct and traverse than polymorphic int ropes, as there are many fewer al-

locations in constructing them and less indirection in reading individual values from the leaves,

which contain the data directly.

The flattening transformation, by virtue of unzipping arrays of tuples, exposes more opportuni-

ties for monomorphization than otherwise. In PML, arrays of double pairs, for example, become

pairs of double arrays, which in turn become farrays, each containing a specialized rope of

doubles as its flat data vector. Monomorphization is well known to be valuable even outside the

context of nested-data-parallel compilation. MLton [35], an optimizing whole-program SML com-

piler, performs monomorphization to generate better-performing sequential code. PML stands to

benefit from monomorphization even without flattening (PML currently does no monomorphiza-

tion unless flattening is enabled), although it will never be the case that, without unzipping tuples,

non-flattened PML will have as many opportunities to do it. Monomorphization is also a founda-

tional component of the optimizations that follow, all of which benefit from the faster traversal and

uniform layout of scalar vectors.

Map flattening. In nested data parallel code, nested map expressions over regular or irregular

data structures can be flattened into efficient linear traversals. This optimization is applicable when

the function applied to the nested map computes scalars from scalars; in the example here, we will

use the function sqr that computes the square of its argument. The following code excerpt binds

a nested parallel comprehension to the name a:

val nss = [| [| 1, 2, 3 |], [| 4 |], [| 5, 6, 7, 8 |] |]
val a = [| [| sqr n | n in ns |] | ns in nss |]

The nested comprehension is equivalent to

PArray.map (PArray.map sqr) nss
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and is rewritten as such by the compiler. In this example, the fact that nss has an irregular shape

(that is, not all its inner arrays are of the same length) is irrelevant to the fact that we can use map

flattening on it. The irregular array bound to nss is transformed to the following flattened array

value:

val nssF = FArray (Rope.Leaf [1, 2, 3, 4, 5, 6, 7, 8],
Shape.Nd [Shape.Lf (0, 3),

Shape.Lf (3, 4),
Shape.Lf (4, 8)])

Note that, to compute the flattened value of a, the function sqr can be applied over the flat data

vector in nssF without any involvement from the shape tree, and the shape tree in nssF can

simply be shared with the flattened result. To make this concrete, if we name the flattened result

aF, its computation is

val aF = FArray (Rope.mapP sqr (Rope.Leaf [1, 2, 3, 4, 5, 6, 7, 8]),
shapeOf nssF)

where Rope.mapP is an operation applying a function in parallel to all elements of a rope, and

shapeOf is an operator returning the shape component of an farray value. This optimization

can be applied to scalar-to-scalar nested maps regardless of the depth of nesting. Without map

flattening, lazy tree splitting (see above) is employed by PML to compensate for the potential

effect of irregular shapes in parallel array (i.e., rope) data structures. While lazy tree splitting

does improve the performance of irregular nested maps such as the computation of a above, it

can certainly do no worse when applied to the simpler linear map-flattened computation of aF

post-transformation.

Tab flattening. Nested parallel comprehensions over ranges have regular structure: at each

dimension, the length of every array is fixed a constant. Two-dimensional regular arrays can be

thought of as rectangles, three-dimensional regular arrays as cubes, and so on. The regularity of

such structures can be exploited by the tab flattening optimization, which performs simple integer

arithmetic operations to collapse multidimensional tabulations into linear ones.
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Every one-dimensional parallel comprehension of scalars is trivially regular:

val xs = [| Double.fromInt i | i in [| 0 to 9 |] |]

The straightforward, and inefficient, implementation of this parallel comprehension is to translate

it to a map over the parallel array containing the integers from 0 to 9.

PArray.map Double.fromInt [| 0 to 9 |]

This naı̈ve translation entails building an ephemeral data structure that is immediately computed

with and discarded. To save the cost associated with this intermediate structure, the compiler

rewrites parallel comprehensions over ranges as tabulations:

PArray.tabulate (10, Double.fromInt)

Tabulating over integer intervals requires no intermediate data structures, and realizes a perfor-

mance improvement over the build-and-map strategy outlined above. (Keep in mind that this is a

parallel tabulation that distributes its rope construction among available processors.)

Nested parallel comprehensions naturally give rise to nested tabulations. The computation of

xss in this excerpt

val xss = [| [| (i*10)+j | j in [| 0 to 9 |] |]
| i in [| 0 to 9 |] |]

can be naturally expressed by a tabulate within a tabulate as follows:

PArray.tabulate (10, fn i =>
PArray.tabulate (10, fn j =>
(i*10) + j))

This translation is already better than using maps with ephemeral structures, but the shape of our

flattened array representations allows us to use tab flattening to improve on nested tabulations.

Recall our evaluation of xss results in an farray containing a flat data vector and a shape tree.

We name the result xssF and sketch it as follows:
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val xssF = FArray (Rope.Leaf [0, 1, 2, ..., 99],
Shape.Nd [Shape.Lf(0,10), ..., Shape.Lf(90,100)])

We can generate the flat data vector of xssF in one tabulation, over a single counter representing

the total number of elements in the nested array, by performing the appropriate index arithmetic

on the counter:

let fun k = let
val (i, j) = (k div 10, k mod 10)
in
(i*10) + j

end
in
PArray.tabulate (10*10, f)

end

The shape tree in rectangular cases has a simple regular structure as well, and be computed from

the dimensions of a regular array in a straightforward way.

Tab flattening operation scales to any number of dimensions for regular nested arrays. In PML,

the implementation of tab flattening is complicated by the fact that ranges may step either up or

down, they may have a stride greater than 1, and they need not begin at zero. A full treatment of

tab flattening in our system, including the subtleties of its index arithmetic and details about how

shape trees are computed for regular structures, is presented in Chapter 5.

Segmented instructions. One of NESL’s important accomplishments was to formulate various

segmented instructions so they could be computed in lockstep in parallel on vector hardware. As

discussed in Chapter 2, NESL’s fast segmented operations are an important element of NESL’s

ability to perform well on irregular nested-data-parallel programs, and an important one for PML

to emulate.

NESL’s segmented sum operation, for example, is able to compute the sums of a nested array

of numbers in a fixed number of steps regardless of the irregularity of the array’s structure. This

operation is critical to the performance of sparse-matrix/vector multiplication, a common bench-

mark in the related work and one for which we present encouraging results in Chapter 6. Here is
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an example3 of an irregular sum computation in PML:

let val nss = [| [| 1, 2 |], [| |], [| 3, 4, 5, 6 |] |]
in
[| sum ns | ns in nss |]

end

If this parallel comprehension is rewritten such that the sum operation is simply mapped over the

array-valued elements of nss, the irregularity of the structure of nss, if there is wide variation in

the lengths of its elements, is bound to affect load balancing adversely. Dynamic techniques like

lazy tree splitting help as much as they can, but it is better (as our results demonstrate) to implement

a special segmented sum operation written to compute on a flattened rather than a nested array. For

the present research, we implemented an efficient parallel segmented sum operation for PML for

irregular nested arrays. PML’s implementation of segmented sum is described in Chapter 5.

Vector-width instructions. Flattening was originally developed for the ultimate vector-width

instructions: those of massively-parallel vector machines such as the CM-2 Connection Machine.

Many multicore machines, including the Magny-Cours processors we use as our experimental plat-

form, provide relatively narrow vector instructions for computing over groups of scalars at a time.

(Our processors are capable of computing with 16-byte-wide vectors.) Through unzipping and

monomorphization, our flattening transformation pushes nested arrays towards representation as

flat vectors of raw scalars. Thus flattening puts us in a strong position to exploit vector instructions

for in our executions. At the time of this writing, the PML compiler lacks support in its code gen-

erator for vector instructions, so for us this remains uncharted experimental territory. Nevertheless,

flattening PML helps us move toward the goal of employing vector instructions in our generated

code, and has been noted as an advantage of flattening in the related work from the beginning.

3. This example is of course orders of magnitude too small to cause any difficulties in practice.
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3.4 Example: Sparse-Matrix Vector Multiplication

We close this section with an example demonstrating the application of aggressive hybrid flattening

as implemented in PML. Further examples are discussed accompanying the experimental results

in Chapter 6.

We sketch our transformation of a nested-data-parallel program to compute multiplication of

a sparse matrix by a dense vector. Our code transformation follows closely along the lines of

NESL-style flattening and superficially resembles it, but there are several points of divergence.

One obvious difference is the absence of vector-width operations in our transformation: operations

such as vector-width multiply and vector-width subscript are absent. We employ a segmented sum

operation in our transformation, we have implemented segmented sum for multicore machines

without using vector instructions (as NESL does) or emulating vector instructions on multicores

with distributed operations (as Data Parallel Haskell does). PML’s implementation of segmented

sum for ropes is given in Chapter 5. We also differ from NESL-style flattening in our farray

representation, pairing ropes with shape trees. All operations on farrays in PML are SMP-style

parallel operations.

In the standard nested-data-parallel encoding of sparse-matrix vector multiplication [8, 15],

sparse matrices are represented as arrays of parallel arrays of pairs. Each inner array represents a

row, and within each row each pair represents a column index and a value. We say each such row

is a sparse vector. A small sparse matrix is represented by the following irregular array:

[| [| (0, 0.1), (9, 0.2) |],
[| (1, 0.3) |],
[| |],
[| (3, 0.4), (8, 0.5), (9, 0.6) |] |]

This particular array, after unzipping and flattening, consists of a pair of flattened arrays:
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(IFArray (IntRope.Leaf [0, 9, 1, 3, 8, 9],
Shape.Nd [Shape.Lf(0,2), Shape.Lf(2,3),

Shape.Lf(3,3), Shape.Lf(3,6)]),
DFArray (DoubleRope.Leaf [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],

Shape.Nd [Shape.Lf(0,2), Shape.Lf(2,3),
Shape.Lf(3,3), Shape.Lf(3,6)]))

The first flattened array in the pair contains the indices in order, along with a shape tree containing

nesting structure; the second array contains the values in order, and contain an identical shape tree.

Note that both flat data vectors are monomorphic, stored in an IntRope and a DoubleRope,

respectively: the compiler has exchanged specialized internal representations for the parallel arrays

in the surface language. The flattened array constructors are also specialized to IFarray and

DFarray, since per PML typing the polymorphic FArray constructor can only be used with

polymorphic ropes. Thanks to the representation transformation performed by hybrid flattening in

this case, we are able to operate on it fast in parallel.

The dense vector with which the sparse matrix is to be multiplied is also represented as a

flattened array. Compiled dense vectors are simply a monomorphic flattened array containing a

DoubleRope of data and a shape tree consisting of a single leaf.

The surface program to compute the product of a sparse matrix and a dense vector is as follows.

fun dotp (sv, v) = sum [| x * v!i | (i,x) in sv |]

fun smvm (sm, v) = [| dotp (sv,v) | sv in sm |]

Without performing any flattening steps, by rewriting the parallel comprehensions to maps over

ropes, we already have a viable compilation strategy. But we shall forge ahead and flatten. Inlining

the body of dotp into smvm, the body of smvm becomes

[| sum [| x * v!i | (i,x) in sv |] | sv in sm |]

When sum appears inside a parallel comprehension, it may be lifted out of that comprehension

and replaced with a segmented sum operation, as follows:

segsum [| [| x * v!i | (i,x) in sv |] | sv in sm |]
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Rewriting parallel comprehensions as maps gives

segsum (map (map (fn (i,x) => x * v!i)) sm)

Finally, a map-flattening rewrite, as discussed in the previous section, is applied to the nested maps

in this expression, yielding

segsum (map (fn (i,x) => x * v!i) sm)

where this map is a function equipped to perform flattened mapping of a scalars-to-scalar function

as described in the previous section. The results in Chapter 6 show smvm, transformed in this way,

is able to outperform the untransformed program by a wide margin.
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CHAPTER 4

A FORMAL SYSTEM FOR HYBRID FLATTENING

Our predecessors perform what we call total flattening. In total flattening, all arrays are trans-

formed to collections of flat scalar vectors, and control structures are encoded in vectors of data.

Total flattening was introduced in Blelloch and Sabot’s original work [9], and it has been propa-

gated through the literature, as a total transformation, all the way to the present, with one exception

(Chakravarty et al.’s partial vectorization [18], discussed below). As we have argued, assumptions

that made total flattening a profitable compilation strategy for massively-parallel vector machines

do not hold on modern multicore hardware. In this chapter, we set forth a formal framework for

designing and reasoning about hybrid flattening. In hybrid flattening, not every nested array in a

program is necessarily flattened. A hybrid flattening transformation may flatten a program not at

all, it may flatten it completely, or it may flatten some parts of a program to intermediate extents.

Though hybrid flattening can transform data structures, it leaves control structures intact. Hybrid

flattening describes flattening transformations designed, from the first, with multicore machines as

intended targets.

Hybrid flattening transformations are able to perform both flattening and unflattening steps.

The framework itself is agnostic with respect to how flattening or unflattening steps are applied,

and to what end; it simply provides the operations needed to define transformations and a set of

rules for introducing and eliminating flattening and unflattening steps. The framework could, in

fact. be used to define an “unflattening” transformation, where the user writes down a completely

flat program, and the compiler transforms it backwards into a nested data-parallel program. (In

using terminology like “flatten” and “completely flat” here, we are appealing to intuition; precise

characterizations of these concepts follow below.)

Flattening and unflattening operators are represented in our system by type-coercion operators

(or simply “coercions”). For the coercion operator that transforms values of type τ1 into values

of type τ2, we write τ1 . τ2. Coercions are not to be confused with type casts, which are often
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no-cost notifications inserted to placate a type checker (as in C, for example). Except for trivial

identity coercions (which do come into play in our system), coercions are potentially expensive

representation-changing operations, and, except for a critical few, we are eager to eliminate as

many of them from the program as possible.

When we want to perform a flattening step, we insert a coercion. For example, a standard step in

flattening transformations is to unzip arrays of pairs of scalars—that is, to reshape an array of pairs

into a pair of arrays of equal length. The coercion that unzips an array of integer pairs is written

[(int , int)].([int ], [int ]). In an actual implementation (such as the one described in Chapter 5), this

coercion is implemented with a type-specialized equivalent to SML’s ListPair.unzip [25].

Its inverse coercion ([int ], [int ]) . [(int , int)] (like ListPair.zip) is also part of the language

of coercions. If it is ever the case that a pair of inverse coercions, like these two, are successively

applied to a value (or, equivalently, composed with one another), they may be rewritten to an

identity coercion, and subsequently removed from the program. The removal of such cancelling

coercions is one of the key mechanisms by which performance optimizations are achieved in our

system.

The system presented here, named Flatland (after Abbott’s 1884 novella [1]), consists of the

following parts: a monomorphic type system with a few common type constructors; an explicitly-

typed nested data-parallel language with type coercion operators; a well-formedness judgment for

typechecking; a set of rewriting rules for safely introducing type coercions into expressions; and a

set of rules for moving coercions around within programs and eliminating them. Table 4.1 gives a

summary of the syntactic forms we use in this chapter to define the judgments and relations of the

system.

Well-formed programs are guaranteed to remain well-formed under any legal transformation

in our rewriting system. The top-level type of the whole program remains fixed under transfor-

mation, but they types of the subexpressions within a program may change. The well-formedness

guarantee is maintained by the following mechanism. For every coercion introduced into the pro-
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Table 4.1: Flatland judgments and relations.

Γ ` s : ν shape tree typing
` τ . τ ok well-formedness of coercions
Γ ` eτ ok well-formedness of explicitly-typed terms
τ1 A τ2 τ1 is an array of τ2
τ1 L τ2 τ1 and τ2 are compatible representations
eτ 7→ eτ hybrid flattening
F[[τ ]] = τ aggressive type flattening

∆ ` eτ ↘ (τ . τ) � eτ aggressive hybrid flattening for terms
eτ ⇓ eτ aggressive hybrid flattening for whole programs

gram, inverse coercions are correspondingly introduced to maintain the stability of the types in the

program. Every time a coercion is applied to the value to which a variable x is bound, for example,

the inverse coercion is introduced at every use of coerced x. This ensures that no clients of x are

put in a position to compute with a term of the wrong type, post-coercion. This kind of balanced

introduction of coercions is performed by the system at every rewriting step. Type-indexed opera-

tors such as map and filt have the ability to absorb type coercions, since, for each one, there are

many implementations from which to choose; this helps reduce the number of type coercions in

the transformed program. We defer further discussion of this property of type-indexed operators

until later.

Hybrid flattening presents us with choices: which terms should we flatten, and how much

should we flatten them? Unzipping arrays of tuples, mentioned above, is a mandatory step in every

previous flattening transformation [9, 38, 30, 33]. If the array to be unzipped is of pairs of scalars,

unzipping stands to yield performance improvements, as the nonflat representation — an array of

pointers to heap-allocated pairs — can be exchanged for a pair of monomorphic vectors of scalars.

Not only are such vectors smaller and faster to compute with than vectors of boxed values, they can

also be used in vector instructions, potentially yielding constant factor speedups. If, on the other

hand, the array contains pairs of non-scalars (heap-allocated values), unzipping the array may not

improve performance; the cost of unzipping, if performed at runtime, might dominate the flattened
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representation’s benefits. More generally, if there is any overhead entailed either by flattening a

data structure, or by computing with its flat representation, there will be cases where, depending

on how the structure is used, flattening is not worth its cost.

Depending on the flattening policy put to use in a given system, our system can express our

own adaptation of total flattening, or one of various other transformations of interest. The following

transformations, among others, can be expressed in our framework:

• Flatten all arrays, always, including unzipping arrays that contain pairs.

• Flatten all nested arrays of scalars, but refrain from unzipping arrays of pairs.

• Flatten only array literals longer than some threshold value.

The language designer can use the framework to craft the transformation appropriate to the cir-

cumstances.

4.1 Flatland

We now present the language, static semantics, and rewriting rules of Flatland in turn.

4.1.1 The Language

Our model language is an explicitly-typed, monomorphic, strict, pure functional language with

pairs, parallel arrays, and first-class functions. Flattened and non-flattened terms commingle in

Flatland: there is no inherent distinction between source language and target language. Parallel

arrays, or simply arrays, are sequences of expressions written inside square brackets, and flattened

parallel arrays, or flattened arrays, are pairs of flat vectors of data and shape trees describing the

nesting structure.

Figure 4.1 presents Flatland’s types. Throughout this presentation, types are ranged over by

the metavariable τ . We use subscript indices (τi) and overbars (τ ) to distinguish types from one
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τ ::= g ground types
| (τ, τ) pairs
| τ → τ functions
| [τ ] parallel arrays
| {τ ; ν } flattened parallel arrays

ν ::= lf structure of flat arrays
| nd(ν) structure of nested arrays

g ::= int | bool

Figure 4.1: Flatland: types.

another. The type language consists of ground types int and bool , pairs, functions, parallel arrays,

and flattened parallel arrays. Parallel array types are written with square brackets, and flattened

array types with curly braces. Flattened parallel types include shape types as subcomponents; this

is the only place where shape types occur. Shape types are isomorphic to the natural numbers and

they give the nesting depth of arrays they describe. Shape types are ranged over by the metavariable

ν (for “nesting”).

Figure 4.2 contains Flatland’s term language. Every term t includes an explicit type as a super-

script. For brevity, we elide type superscripts in the notation where the type is unnecessary. Where

the type is not obvious, we include it. The metavariable b ranges over constants, and x ranges over

variables. We assume there exists a basis of constants and operators, including both ground terms,

such as integer and boolean constants, and a standard assortment of common primitive operators,

such as integer addition and logical negation.

Parallel array terms in the source language are written with square brackets. Flattened arrays

are written with curly braces. Every flattened array carries a shape tree. A shape tree is an n-

ary tree whose leaves contain pairs of integers. Each leaf in a shape tree specifies the endpoints

of a subsequence in its containing flattened array. We follow the convention that the first integer

argument to a leaf is the first position of a segment, and the second integer argument is one more

than the last position of a segment.
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t ::= eτ

e ::= b ground terms
| x variables
| if t then t else t conditionals
| let x = t in t let expressions
| fun f xτ = t in t function expressions
| t ◦ t function composition
| t t application
| (t, t) pairs
| πi t projection (i ∈ {1, 2})
| [t, . . . , t] arrays
| {t, . . . , t; s} flattened arrays
| t !τ t array subscript
| map(τ,τ,τ,τ) (t, t) array map
| filt(τ,τ) (t, t) array filter
| red(τ,τ) (t, t, t) array reduction
| τ . τ type coercions

s ::= lf(t, t) leaves
| nd[s, . . . , s] nodes

b ::= true | false
| 0 | 1 | . . .
| not | + | . . .

Figure 4.2: Flatland: terms.
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Array subscript is written as the infix operator ! and is typed as a function application to a pair.

Map and filter have their commonly-accepted meanings (similar to the various map and filter

functions in the SML basis). Map and filter are implemented as parallel operators in PML, but

their parallel behavior does not come into play in the static system presented here. Reduce applies

an associative operator to all elements in an array in no particular order, and uses a given zero

argument as a left and right identity for that operator. Since the language is monomorphic, array

operators do not have polymorphic implementations. Instead, we assume there is a type-indexed

family of each such operator. We specify array operators by writing their type indices in a subscript.

![τ ] is the operator that selects elements of type τ from arrays of type [τ ]. map(τ1,τ2,τ3,τ3) takes

two arguments, a function of type τ1 → τ2 and a term of array type τ3 (Flatland’s notion of array

type is characterized precisely in the next section), and produces a term of array type τ4. filt(τ1,τ2)

consumes a function of type τ1 → bool and a term of array type τ2 and produces a (filtered) term

of array type τ2. red(τ1,τ2) is applied to a triple: an operator of type (τ1, τ1) → τ1, an identity of

type τ1, and a term of array type τ2, yielding a term of type τ1. The typing rules in the following

section explain the constraints on the types indexing these operators.

As stated above, coercion operators are written τ . τ , and we will discuss their properties in

detail in the following section.

4.1.2 Static Semantics

Coercion operators are functions whose name indicates their type: a well-formed coercion operator

τ . τ has the type τ → τ . Figure 4.3 gives the well-formedness judgment on coercions. The rules

state the conditions under which a given type coercion is admitted into the language. Rule CO-FL

says that coercions from [τ ] to {τ ; lf } are legal; this coercion corresponds to a step of flattening a

parallel array. The rule CO-FR performs the opposite coercion, rewriting flattened arrays of shape

lf to parallel arrays. CO-ZL and CO-ZR correspond to unzipping arrays of pairs and zipping pairs

of arrays, respectively. The rest of the rules are similar characterizations of traditional flattening
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` τ . τ ok
CO-ID

` [τ ] . {τ ; lf } ok
CO-FL

` {τ ; lf } . [τ ] ok
CO-FR

` {τ ; nd(ν) } . {{τ ; ν } ; lf } ok
CO-LL

` {{τ ; ν } ; lf } . {τ ; nd(ν) } ok
CO-LR

` [(τ1, τ2)] . ([τ1], [τ2]) ok
CO-ZL

` ([τ1], [τ2]) . [(τ1, τ2)] ok
CO-ZR

` {(τ1, τ2) ; ν } . ({τ1 ; ν }, {τ2 ; ν }) ok
CO-ZFL

` ({τ1 ; ν }, {τ2 ; ν }) . {(τ1, τ2) ; ν } ok
CO-ZFR

` τ . τ ok
` [τ ] . [τ ] ok

CO-A
` τ . τ ok

` {τ ; ν } . {τ ; ν } ok
CO-F

` τ1 . τ1 ok ` τ2 . τ2 ok
` (τ1 → τ2) . (τ1 → τ2) ok

CO-FUN

` τ1 . τ1 ok ` τ2 . τ2 ok
` (τ1, τ2) . (τ1, τ2) ok

CO-PAIR

` τ1 . τ2 ok ` τ2 . τ3 ok
` τ1 . τ3 ok

CO-TRANS

Figure 4.3: Well-formedness judgment on coercions.
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Γ ` e1
int ok Γ ` e2

int ok
Γ ` lf(e1int , e2int ) : lf

SHAPE-LF

Γ ` s1 : ν · · · Γ ` sn : ν

Γ ` nd[s1, . . . , sn] : nd(ν)
SHAPE-ND

Figure 4.4: Shape types.

and unflattening steps. It is necessary to mention a potential trouble spot in Figure 4.3. The

unzip operators (CO-ZL, CO-ZFL) always succeed and produce two arrays of equal length. Their

corresponding zip operators (CO-ZR, CO-ZFR) by contrast, have the potential to fail, because they

might be applied to different-length inputs, in which case their behavior is undefined. We handle

this issue by assuming that in every case the two zip coercions are applied to same-length arrays.

(The point is moot with respect to aggressive hybrid flattening in Section 4.2, since in that system

coercions are banned from source programs.) Nonsensical coercions like int . (int , int) are not

admitted by the system.

By the judgments in Figure 4.3, for every well-formed coercion, the inverse coercion exists and

is well-formed.

Lemma 4.1.1 (well-formed coercions are invertible). If ` τ . τ ok, then ` τ . τ ok.

Proof. The proof is by induction on the height of the deductions for the rules in Figure 4.3. The

full proof is given in Appendix A.

We present the static semantics of Flatland in Figures 4.4 and 4.5. Figure 4.4 defines the typing

of shape trees, and Figure 4.5 contains a well-formedness judgment on terms. When a term eτ is

well-formed in environment Γ, we write Γ ` eτ ok. The typing of shape trees is given in 4.4. Every

term is explicitly typed, so deciding well-formedness is a matter of checking that type annotations

are correct. For example, 1int is well-formed, but 1bool is not. In the static semantics, Γ is a

finite map from variables to types. When we extend Γ to map x to τ , we write Γ[xτ ]. We assume

the existence of a basis environment BE mapping ground terms and operators to their types (see
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Γ(x) = τ

Γ ` xτ ok
OK-VAR

BE(b) = τ (BE = basis env)
Γ ` bτ ok

OK-B

Γ ` e1
bool ok Γ ` e2

τ ok Γ ` e3
τ ok

Γ ` (if e1bool then e2τ else e3τ )
τ ok

OK-IF

Γ ` e1
τ1 ok Γ[xτ1 ] ` e2

τ2 ok
Γ ` (let x = e1τ1 in e2τ2)τ2 ok

OK-LET

Γ′ = Γ[fτ0→τ1 ] Γ′[xτ0 ] ` e1
τ1 ok Γ′ ` e2

τ2 ok
Γ ` (fun f xτ0 = e1τ1 in e2τ2)τ2 ok

OK-FUN

Γ ` e1
τ1 ok Γ ` e2

τ2 ok

Γ ` (e1τ1 , e2τ2)(τ1,τ2) ok
OK-PAIR

Γ ` e(τ1,τ2) ok i ∈ {1, 2}
Γ ` (πi e(τ1,τ2))

τi ok
OK-PROJ

Γ ` e1
τ1→τ2 ok Γ ` e2

τ1 ok
Γ ` (e1τ1→τ2 e2τ1)τ2 ok

OK-APP
Γ ` e1

τ ok · · · Γ ` en
τ ok

Γ ` [e1τ , . . . , en
τ ][τ ] ok

OK-ARR

Γ ` e1
τ ok · · · Γ ` en

τ ok Γ ` s : ν

Γ ` {e1τ , . . . , en
τ ; s}{τ ; ν } ok

OK-FARR

` τ . τ ok

Γ ` (τ . τ)τ→τ ok
OK-COERCE

Γ ` e1
τ2→τ3 ok Γ ` e2

τ1→τ2 ok
Γ ` (e1τ2→τ3 ◦ e2τ1→τ2)τ1→τ3 ok

OK-COMP

Γ ` e1
τ ok Γ ` e2

int ok τ ′ = (! τ)

Γ ` (e1τ !τ e2int )
τ ′ ok

OK-SUB

Γ ` e1
τ1→τ2 ok Γ ` e2

τ3 ok τ3 A τ1 τ4 A τ2
Γ ` (map(τ1,τ2,τ3,τ4) (e1τ1→τ2 , e2τ3))τ4 ok

OK-MAP

Γ ` e1
τ1→bool ok Γ ` e2

τ2 ok τ2 A τ1

Γ ` (filt(τ1,τ2) (e1τ1→bool , e2τ2))
τ2 ok

OK-FILT

Γ ` e1
(τ1,τ1)→τ1 ok Γ ` e2

τ1 ok Γ ` e3
τ2 ok τ2 A τ1

Γ ` (red(τ1,τ2) (e1
(τ1,τ1)→τ1 , e2τ1 , e3τ2))

τ1 ok
OK-RED

Figure 4.5: Well-formedness judgment on terms.
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! [τ ] = τ

! {τ ; lf } = τ

! {τ ; nd(ν) } = {τ ; ν }
! (τ1, τ2) = (! τ1, ! τ2)

Figure 4.6: Array-type subscripting.

rule OK-B).

Most of the well-formedness rules are familiar administrative rules that recursively propagate

the judgment through subexpressions in natural ways. We draw attention to those rules that are

distinct in our system. The rule on coercions (OK-COERCE) appeals to the earlier set of rules

for well-formedness of coercions. The rule for array subscript (OK-SUB) uses the array-selection

notation (! τ ), defined below, to compute the result type of the expression. The rules for the other

three type-indexed array operators, OK-MAP, OK-FILT, and OK-RED, refer to the relation A in their

premises. Broadly speaking, τ1 A τ2 should be read “τ1 is an array of τ2.” The definition of A is

discussed below.

For array type τ , we use the notation (! τ) to mean the type of the element selected by subscript

out of a value of type τ . The return type of a particular subscript operator is calculated from its

domain. Figure 4.6 gives the definition of (! τ). If (! τ) cannot be computed from the rules in

Figure 4.6, then (! τ) is undefined.

For a type τ , we cannot simply write [τ ] for array of τ , because {τ ; lf } is also an array of τ .

Furthermore, if τ is a pair type (τ1, τ2), then [(τ1, τ2)] and ([τ1], [τ2]) (and more) are also arrays of

τ , and so on. Thus we define the relation τ1 A τ2 for “τ1 is an array of τ2.” For arrays of (int , int),
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τ L τ
L-REFL

τ1 L τ2
τ2 L τ1

L-SYMM
τ1 L τ2 τ2 L τ3

τ1 L τ3
L-TRANS

[(τ1, τ2)] L ([τ1], [τ2])
L-ZPR

{{τ ; ν } ; lf } L {τ ; nd(ν) }
L-LF

{{τ ; ν } ; nd(ν′) } L {{τ ; nd(ν) } ; ν′ }
L-ND

τ1 L τ2
[τ1] L [τ2]

L-PARR
τ1 L τ2

[τ1] L {τ2 ; lf }
L-PF

τ1 L τ2
{τ1 ; ν } L {τ2 ; ν }

L-FARR

τ1 L τ ′1 τ2 L τ ′2
(τ1, τ2) L (τ ′1, τ

′
2)

L-PAIR
τ1 L τ ′1 τ2 L τ ′2
τ1 → τ2 L τ ′1 → τ ′2

L-FUN

τ1 L [τ2]

τ1 A τ2
ARRAY-OF

Figure 4.7: Definition of τ1 A τ2 and its auxiliary relation τ1 L τ2.

for example, all of the following are established by A:

[(int , int)] A (int , int)

([int ], [int ]) A (int , int)

{(int , int) ; lf } A (int , int)

({int ; lf }, {int ; lf }) A (int , int)

These types correspond to arrays of integer pairs and all their equivalent representations under

well-formed coercions. The relation A is defined in Figure 4.7.

The mechanism by which A is defined is as follows. We define an auxiliary relation L which

establishes that two types are both representations of the same scalar or array type. We use the

name L for the relation because it tells us that one type is “on the same level as” another. The first
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three rules in L define it as a reflexive, symmetric, and transitive relation. Rule L-PARR states that

if τ1 and τ2 are related by L, then wrapping both τ1 and τ2 in the array constructor preserves the

relation. L-LF tells us that a nested flattened array of τ with inner shape ν and outer shape lf is

related to a flattened array of the same type with shape nd(ν). L-ND is a similar judgment for the

case when the outer shape is nd(ν) for some ν. The rest of L’s rules are straightforward recursive

judgments along similar lines. Now consider the rule ARRAY-OF. Note that A only ever uses L

with an array type as its right argument. This is how A establishes that τ1 is in fact an array of τ2,

because τ1 must be a representation of [τ2] under L.

All arrays of type τ can be coerced between one another.

Lemma 4.1.2 (coercions within A). If τ1 A τ , then τ2 A τ ⇔ ` τ1 . τ2 ok.

Proof. The proof appears in Appendix A.

To illustrate how A is used in the well-formedness rules, we consider the judgment for type-

indexed filter:
Γ ` e1

τ1→bool ok Γ ` e2
τ2 ok τ2 A τ1

Γ ` (filt(τ1,τ2) (e1τ1→bool , e2τ2))
τ2 ok

OK-FILT

The premises state the usual condition on the first argument to filter: that it is a predicate on τ1.

The premises also state that τ2 A τ1, meaning τ2 is one of the representations of an array of τ1.

The rule states that if the expression e2 is well-formed at τ2, the application of filter is altogether

well-typed at τ2. The rules OK-MAP and OK-RED employ A similarly.

4.1.3 Rewriting Rules

The remaining piece of the Flatland system is its small-step rewriting system for introducing,

eliminating, and propagating representation transformations through expressions. We present the

system as a relation, using the syntactic form eτ 7→ eτ to mean “e rewrites to e.” The rules are

shown in Figures 4.8, 4.9, and 4.10, each of which we consider in turn.
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eτ 7→ (τ . τ) eτ CD-IDI
(τ . τ) eτ 7→ eτ CD-IDE

` τ1 . τ2 ok ` τ2 . τ3 ok
τ1 . τ3 7→ (τ2 . τ3) ◦ (τ1 . τ2)

CD-CI
(τ2 . τ3) ◦ (τ1 . τ2) 7→ τ1 . τ3

CD-CE

t1 (t2 t3) 7→ (t1 ◦ t2) t3
CD-CU

(t1 ◦ t2) t3 7→ t1 (t2 t3)
CD-CF

((τ1 . τ1) t1, (τ2 . τ2) t2)
(τ1,τ2) 7→ (((τ1, τ2) . (τ1, τ2)) (t1, t2))

(τ1,τ2)
CD-PAIR

(π1 ((τ1 . τ1) t1, t2))
τ1 7→ ((τ1 . τ1) (π1 (t1, t2)))

τ1 CD-FST

(π2 (t1, (τ2 . τ2) t2))
τ2 7→ ((τ2 . τ2) (π2 (t1, t2)))

τ2 CD-SND

(if t1 then (τ . τ) t2 else (τ . τ) t3)
τ 7→ ((τ . τ) (if t1 then t2 else t3))

τ CD-IF

(((τ1 → τ2 . τ1 → τ2) t1) ((τ1 . τ1) t2))
τ2 7→ ((τ2 . τ2) (t1 t2))

τ2 CD-APP

((τ2 → τ3 . τ2 → τ3) t1 ◦ (τ1 → τ2 . τ1 → τ2) t2)
τ1→τ3

7→ ((τ1 → τ3 . τ1 → τ3) (t1 ◦ t2))
τ1→τ3

CD-COMP

[(τ . τ) t1, . . . , (τ . τ) tn][τ ] 7→ (([τ ] . [τ ]) [t1, . . . , tn][τ ])
[τ ]

CD-ARR

{(τ . τ) t1, . . . , (τ . τ) tn; s}{τ ; ν } 7→ (({τ ; ν } . {τ ; ν }) {t1. . . . , tn; s}){τ ; ν } CD-FARR

(let x = t1 in (τ . τ) t2)
τ 7→ ((τ . τ) (let x = t1 in t2))

τ CD-LET

(fun f xτ = t1 in (τ . τ) t2)
τ 7→ ((τ . τ) (fun f xτ = t1 in t2))

τ CD-FUN

` τ . τ ok
xτ 7→ ((τ . τ) xτ )

τ CD-VAR
eτ 7→ eτ

C[eτ ] 7→ C[eτ ]
CD-CTXT

Figure 4.8: Coercion distribution rules.
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` τ . τ ok

(t1 !τ t2)
(! τ) 7→ ((! τ . ! τ) (((τ . τ) t1) !τ t2)

(! τ))
(! τ)

CD-SUB

τ2 A τ1
(filt(τ1,τ2) (t1, t2))

τ2 7→ ((τ2 . τ2) (filt(τ1,τ2) (t1, (τ2 . τ2) t2)))
τ2 CD-FILT

τ3 A τ1 τ4 A τ2
(map(τ1,τ2,τ3,τ4) (t1, t2))

τ4 7→ ((τ4 . τ4) (map(τ1,τ2,τ3,τ4) (t1, (τ3 . τ3) t2)))
τ4 CD-MAP

τ2 A τ1
(red(τ1,τ2) (t1, t2, t3))

τ1 7→ (red(τ1,τ2) (t1, t2, (τ2 . τ2) t3))
τ1 CD-RED

Figure 4.9: Coercion introductions with type-indexed operators.

Figure 4.8 contains administrative rules whereby coercions can be introduced into programs,

unfolded into compositions of coercions, and moved around within expressions. We call these the

coercion distribution rules. We consider a few of them for illustration. The rule CD-IDI states

that identity coercions can be applied to expressions anywhere; its dual CD-IDE states that identity

coercions can be discarded wherever they appear. The rule CD-CI states that coercion τ1 . τ3 can

be rewritten as a composition of two coercions, using τ2 as an intermediate representation, as long

as coercions τ1 . τ2 and τ2 . τ3 are well-formed. The rules from CD-PAIR to the bottom of the

figure (save the last rule) have to do with hoisting coercions out of subexpressions. The rule CD-IF,

for example, states that when the same coercion appears in both branches of a conditional, it may

be lifted out of the branches and applied to the modified conditional as a whole. The final rule

states that for any context computing on term eτ , if e rewrites to e, then e may be used in the same

context.

Figure 4.9 shows rules for introducing coercions at type-indexed operators such that the type

indices of the operator may be changed. These rules are critical: they allow us to exchange one

type-indexed operator for another in the process of transforming a program. The coercions intro-

duced in the process of those exchanges can be manipulated per the rules is Figure 4.8 and in many
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` τ1 . τ1 ok x fresh S = [xτ1/((τ1 . τ1) xτ1)
τ1 ]

(let x = t1 in t2)
τ0 7→ (let x = (τ1 . τ1) t1 in S t2)

τ0 CD-LET-PROP

` τ0 . τ0 ok f ,x fresh
S = [fτ0→τ1/(fτ0→τ1 ◦ (τ0 . τ0))

τ0→τ1
]

S′ = S[xτ0/((τ0 . τ0) xτ0)
τ0 ]

(fun f xτ0 = t1 in t2)
τ2 7→ (fun f xτ0 = S′ t1 in S t2)

τ2 CD-FUN-PROP

Figure 4.10: Coercion propagation rules.

cases eliminated. It is difficult to see their utility by inspecting the rules alone; we will give an

illustrative example shortly.

Figure 4.10 gives a final pair of rewriting rules allowing propagation of coercions into the

scopes of let bindings and functions. Consider the rule CD-LET-PROP. We determine in the

premises that ` τ1 . τ1 ok. Therefore we know we can coerce t1 to another representation. We

apply the coercion to t1 and bind the result to the fresh variable name x. We then repair the body

of the expression t2, which expects x of type τ , by substituting the new variable x at every use of

x, and coercing every occurrence of x back to its original type so as to preserve the well-typedness

of t2. The rule for functions is similar: it is essentially a modification of CD-LET-PROP such that

similar treatment is given to the function name and the function argument where they are in scope.

Taken together, the rules in Figures 4.8, 4.9, and 4.10 constitute a type-preserving rewrite

system over Flatland.

Theorem 4.1.3 (7→ preserves types). If Γ ` eτ ok and eτ 7→∗ eτ , then Γ ` eτ ok.

Proof. The proof is by induction over the judgments of the 7→ relation.

The full proof of the theorem appears in Appendix A.

Consider the contrived case where the whole program under transformation is the expression

[1, 2, 3][int ]. We cannot perform any useful flattening on this program, since the type of the whole

program must be preserved. The effect of this constraint is that original program can only be
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transformed in an expression that is coerced back and forth from its original representation:

([1, 2, 3][int ])

(CD-IDI) 7→ ([int ] . [int ]) ([1, 2, 3][int ])

(CD-CI) 7→ (({int ; lf } . [int ]) ◦ ([int ] . {int ; lf })) ([1, 2, 3][int ])

We can simplify the last expression by collapsing its pair of inverse coercions into an identity

coercion, via rule CD-CE, then removing the identity coercion, via CD-IDE. We have done nothing

more than take a circular path back to the original expression.

Propagation rules enable us to make meaningful representations inside expressions. We trans-

form the following program as an example.

let ns = [1, 2, 3] in (ns ![int ] 0)

The step-by-step transformation of this let-expression appears in Figure 4.11. Some abbreviations

are needed to prevent the example from becoming impossibly verbose. Therefore, we let

↓= [int ] . {int ; lf }

and

↑= {int ; lf } . [int ]

Think of ↓ as “flatten” and ↑ as “unflatten.” In Figure 4.11, the parallel array [1, 2, 3] is transformed

to its flattened array equivalent ((↓ [1, 2, 3]), which evaluates to {1, 2, 3; lf(0, 3)}). Furthermore,

by rewriting, we exchange one type-indexed subscript operator for another, thereby eliminating

coercion operations. The coercions ↓ and ↑ are inverse coercions. Note we have

([int ] . {int ; lf }) ◦ ({int ; lf } . [int ]) 7→ {int ; lf } . {int ; lf }
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let ns = [1, 2, 3] in (ns ![int ] 0)

(CD-LET-PROP) 7→ let ns =↓ [1, 2, 3] in (↑ ns) ![int ] 0

(CD-SUB) 7→ let ns =↓ [1, 2, 3] in (int . int) ((↓ (↑ ns)) !{int ; lf } 0)

(CD-IDE) 7→ let ns =↓ [1, 2, 3] in (↓ (↑ ns)) !{int ; lf } 0

(CD-CU) 7→ let ns =↓ [1, 2, 3] in ((↓ ◦ ↑) ns) !{int ; lf } 0

(CD-CE) 7→ let ns =↓ [1, 2, 3] in (({int ; lf } . {int ; lf }) ns) !{int ; lf } 0

(CD-IDE) 7→ let ns =↓ [1, 2, 3] in (ns !{int ; lf } 0)

Figure 4.11: Transforming an expression by 7→.

which effectively makes the composition of ↓ and ↑ mutually annihilating. This property is always

true of inverse coercions by specialization of rule CD-CE. Post-transformation, the representation

of the array bound to ns is coerced exactly once, to the differently-typed fresh variable ns. We can

change the representation at transformation time; it need not be delayed to a later phase. In our

PML implementation, we perform representation transformations like this one during compilation,

and no runtime coercion takes place.

It is worth noting that in this example, we have selected rewriting rules entirely at our discre-

tion: the system itself provided no guidance as to which steps to follow. The question remains as to

how to formalize a strategy for applying Flatland’s rewriting rules so as to move towards a desired

goal. The following section shows us one way to use the mechanisms of Flatland to implement a

particular representation-transformation policy.

4.2 Aggressive Hybrid Flattening

We define aggressive hybrid flattening informally as follows. We start with a source program of

type τ containing parallel arrays but no flattened arrays. The source program is free of coercions.

The transformation traverses the source program and replaces every parallel array value with its

flat equivalent (for a definition of “flat,” given below). All bindings and uses of array-valued ex-
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pressions are correspondingly transformed. Coercions are folded into type-indexed array operators

where they appear. The resulting program contains no parallel arrays, only flattened arrays, and it

remains well-typed at its original type τ . The formalization of aggressive hybrid flattening given

in this section is the blueprint of the PML implementation discussed in Chapter 5.

We now describe a source language and a target language for aggressive hybrid flattening, each

of which is a well-defined subset of the terms in Figure 4.2. The source language models the

surface language of PML, and the target language models compiled PML with flattened arrays.

The distinction between source language and target language can be drawn according to types. A

flattened-array type is a type of the form {τ ; ν } for any τ and ν (see Figure 4.1). We then define

source type as follows:

Definition 4.2.1. A source type is a type that is neither a flattened-array type, nor contains any

flattened-array types. Equivalently, source types are those generated by the grammar

τ ::= g | τ → τ | (τ, τ) | [τ ]

We define source programs as a term eτ for source type τ , all of whose subterms have source

types, and containing no coercions anywhere. Thus, we have made it illegal to write down flattened

arrays anywhere in a source program. The transformation itself will introduce all flattened-array

values and all coercions into the target program.

The restrictions on values one can write down in a source program simplify all well-formedness

judgments involving type-indexed array operators. Consider the rule OK-FILT from Figure 4.5.

Γ ` e1
τ1→bool ok Γ ` e2

τ2 ok τ2 A τ1

Γ ` (filt(τ1,τ2) (e1τ1→bool , e2τ2))
τ2 ok

OK-FILT

The general rule accommodates applying a predicate on type τ1 to any array, or any coercion

thereof, whose elements are of type τ1; this is captured by our definition of A. In the context

of source programs, we no longer need the filter rule to apply to whole families of array types
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Γ ` e1
[τ ] ok Γ ` e2

int ok

Γ ` (e1
[τ ] ![τ ] e2int )

τ
ok

OK-SUB-S

Γ ` e1
τ1→τ2 ok Γ ` e2

[τ1] ok

Γ ` (map(τ1,τ2,[τ1],[τ2]) (e1τ1→τ2 , e2
[τ1]))

[τ2] ok
OK-MAP-S

Γ ` e1
τ1→bool ok Γ ` e2

[τ1] ok

Γ ` (filt(τ1,[τ1]) (e1τ1→bool , e2
[τ1]))

[τ1] ok
OK-FILT-S

Γ ` e1
(τ1,τ1)→τ1 ok Γ ` e2

τ1 ok Γ ` e3
[τ1] ok

Γ ` (red(τ1,[τ1]) (e1
(τ1,τ1)→τ1 , e2τ1 , e3

[τ1]))
τ1 ok

OK-RED-S

Figure 4.12: Modified well-formedness judgments for source-language type-indexed operator
forms.

at a time, because source programs only ever contain the array type [τ ] for any given τ . We can

simplify OK-FILT for source programs such that its second argument is restricted to be a plain-

vanilla parallel array; we do so in the modified rule OK-FILT-S in Figure 4.12. In the same figure,

the rules for array subscript, map, and reduce are modified along these lines. These typing rules

also forbid array operators from treating pairs of arrays as arrays. This way, only transformation

steps can introduce unzipped array representations.

The target language of aggressive hybrid flattening is defined in terms of flat types.

Definition 4.2.2. A type τ is flat if

• it is a ground type g,

• it is a function type τ1 → τ2 and τ1 and τ2 are flat,

• it is a pair type (τ1, τ2) and τ1 and τ2 are flat, or

• it is an array type {τ ; ν } and τ is a ground type or a flat function type.
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F[[g ]] = g

F[[[g]]] = {g ; lf }
F[[τ1 → τ2 ]] = F[[τ1 ]] → F[[τ2 ]]

F[[(τ1, τ2)]] = (F[[τ1 ]],F[[τ2 ]])

F[[[τ1 → τ2]]] = {F[[τ1 → τ2 ]] ; lf }
F[[[(τ1, τ2)]]] = (F[[[τ1]]],F[[[τ2]]])

F[[[[τ ]]]] = N[[(F[[[τ ]]])]]

N[[(τ1, τ2)]] = (N[[τ1]],N[[τ2]])

N[[{τ ; ν }]] = {τ ; nd(ν) }

Figure 4.13: Aggressive type flattening.

If a type is not flat, we say it is nonflat. Note that source types and flat types do not partition the

space of Flatland types: that is, source types and nonflat types are not the same. For example,

[(int , bool)] is a source type, and the related type ({int ; lf }, {bool ; lf }) is a flat type. But the

type {(int , bool) ; lf } is neither a a source type nor a flat type; it is disqualified as a source type

since it is a flattened-array type and disqualified as a flat type since it includes a pair inside an

array.

A target program is an expression whose outermost type is a source type, yet all of whose

subexpressions have flat types. The restriction on its outermost type is a necessary consequence

of the type-preservation property of rewriting in Flatland. The restriction is enforced by the appli-

cation of one last “unflattening” coercion to the transformed program at the top level. Within the

program, all subexpressions are flattened.

The function F[[τ ]] in Figure 4.13 defines a mapping from source types to flat types.

Lemma 4.2.1 (F maps source types to flat types). For τ , a source type, F[[τ ]] is flat.

Proof. The proof is by induction over the structure of source types.

The full proof appears in Appendix A.
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{} ` eτ ↘ (τ . τ) � eτ

eτ ⇓ ((τ . τ) eτ )
τ FLATTEN

Figure 4.14: Top-level aggressive hybrid flattening.

We use F to calculate target types during aggressive flattening: it guides our choices in inserting

type coercions.

The following lemma states that type coercions suggested by F are all always well-formed.

Lemma 4.2.2 (F’s coercions are well-formed). If F[[τ ]] = τ , then ` τ . τ ok.

Proof. The proof appears in Appendix A.

Flattening of whole programs is written as a type-preserving relation ⇓. Figure 4.14 gives the

sole judgment for ⇓, which immediately delegates its work to an auxiliary relation ↘. ⇓ and ↘

are formulated as a big-step rewriting semantics. Whole-program flattening consists transforming

a program eτ (of source type τ ) to another program eτ (of flat type τ ) and then coercing the

transformed program back to τ at the top level. Note that in the cases where τ is, for example, a

ground type, the outermost coercion is an identity coercion and has no effect. (This situation is

suggested by the example in Figure 4.11.)

The auxiliary relation of the aggressive flattening transformation is given in Figures 4.15 and 4.16.

The syntax of ↘ is as follows:

∆ ` eτ ↘ (τ . τ) � eτ

∆ is a finite map from variable terms to variable terms; it is used to implement propagations

through let-expressions and functions, as in CD-LET-PROP and CD-FUN-PROP above. On the right-

hand side of the relation, a diamond (�) is used to construct a pair out of a coercion and a trans-

formed expression. The relation produces an unflattening coercion, along with the transformed

expression, for use in one of the following ways. If the expression transformed is the whole pro-

gram, the ⇓ relation applies the coercion to preserve the program’s original type (as per FLATTEN

in Figure 4.14). If the expression is not the whole program, the accompanying coercion is used as
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∆ ` bτ ↘ (τ . τ) � bτ
B-BASE

∆(xτ ) = xτ

∆ ` xτ ↘ (τ . τ) � xτ B-VAR

∆ ` e1
bool ↘ (bool . bool) � e1

bool

∆ ` e2
τ ↘ (τ . τ) � e2

τ

∆ ` e2
τ ↘ (τ . τ) � e2

τ

∆ ` (if e1bool then e2τ else e3τ )
τ ↘ (τ . τ) � (if e1bool then e2τ else e3τ )

τ B-IF

∆ ` e1
τ1 ↘ (τ1 . τ1) � e1

τ1

∆′ = ∆[xτ1 7→ xτ1 ], x fresh
∆′ ` e2

τ2 ↘ (τ2 . τ2) � e2
τ2

∆ ` (let x = e1
τ1 in e2

τ2)τ2

↘ (τ2 . τ2) � (let x = e1
τ1 in e2

τ2)
τ2

B-LET

∆′ = ∆[fτ0→τ1 7→ fτ0→τ1 ], f fresh
∆′′ = ∆′[xτ0 7→ xτ0 ], x fresh
∆′′ ` e1

τ1 ↘ (τ1 . τ1) � e1
τ1

∆′ ` e2
τ2 ↘ (τ2 . τ2) � e2

τ2

∆ ` (fun f xτ0 = e1τ1 in e2τ2)τ2 ↘ (τ2 . τ2) � (fun f xτ0 = e1τ1 in e2τ2)
τ2

B-FUN

∆ ` e1
τ1 ↘ (τ1 . τ1) � e1

τ1 ∆ ` e2
τ2 ↘ (τ2 . τ2) � e2

τ2

∆ ` (e1τ1 , e2τ2)(τ1,τ2) ↘ ((τ1, τ2) . (τ1, τ2)) � (e1τ1 , e2τ2)
(τ1,τ2)

B-PAIR

∆ ` e(τ1,τ2) ↘ ((τ1, τ2) . (τ1, τ2)) � e(τ1,τ2)

∆ ` (π1 e(τ1,τ2))
τ1 ↘ (τ1 . τ1) � (π1 e(τ1,τ2))

τ1
B-FST (B-SND sim.)

Figure 4.15: Aggressive hybrid flattening, group 1.
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∆ ` e1
τ1→τ2 ↘ (τ1 → τ2 . τ1 → τ2) � e1

τ1→τ2

∆ ` e2
τ1 ↘ (τ1 . τ1) � e2

τ1

∆ ` (e1τ1→τ2 e2τ1)τ2 ↘ (τ2 . τ2) � (e1τ1→τ2 e2τ1)
τ2

B-APP

F[[[τ ]]] = τ

∆ ` e[τ ] ↘ (τ . [τ ]) � (([τ ] . τ) e[τ ])
τ B-ARR

∆ ` e1
τ2→τ3 ↘ (τ2 → τ3 . τ2 → τ3) � e1

τ2→τ3

∆ ` e2
τ1→τ2 ↘ (τ1 → τ2 . τ1 → τ2) � e2

τ1→τ2

∆ ` (e1 ◦ e2)
τ1→τ3 ↘ (τ1 → τ3 . τ1 → τ3) � (e1 ◦ e2)

τ1→τ3
B-COMP

∆ ` e1
τ ↘ (τ . τ) � e1

τ ∆ ` e2
int ↘ (int . int) � e2

int

∆ ` (e1τ !τ e2int )
(! τ) ↘ ((! τ) . (! τ)) � (e1τ !τ e2int )

(! τ)
B-SUB

∆ ` e1
τ1→τ2 ↘ (τ1 → τ2 . τ1 → τ2) � e1

τ1→τ2

∆ ` e2
τ3 ↘ (τ3 . τ3) � e2

τ3

F[[τ4 ]] = τ4

∆ ` (map(τ1,τ2,τ3,τ4) (e1
τ1→τ2 , e2

τ3))τ4

↘ (τ4 . τ4) � (map(τ1,τ2,τ3,τ4) (e1
τ1→τ2 , e2

τ3))
τ4

B-MAP

∆ ` e1
τ1→bool ↘ (τ1 → bool . τ1 → bool) � e1

τ1→bool

∆ ` e2
τ2 ↘ (τ2 . τ2) � e2

τ2

∆ ` (filt(τ1,τ2) (e1
τ1→bool , e2

τ2))
τ2

↘ (τ2 . τ2) � (filt(τ1,τ2) (e1
τ1→bool , e2

τ2))
τ2

B-FILT

∆ ` e1
(τ1,τ1)→τ1 ↘ ((τ1, τ1) → τ1 . (τ1, τ1) → τ1) � e1

(τ1,τ1)→τ1

∆ ` e2
τ1 ↘ (τ1 . τ1) � e2

τ1

∆ ` e3
τ2 ↘ (τ2 . τ2) � e3

τ2

∆ ` (red(τ1,τ2) (e1
(τ1,τ1)→τ1 , e2

τ1 , e3
τ2))

τ2

↘ (τ2 . τ2) � (red(τ1,τ2) (e1
(τ1,τ1)→τ1 , e2

τ1 , e3
τ2))

τ2

B-RED

Figure 4.16: Aggressive hybrid flattening, group 2.
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a building block for further coercions as program transformation proceeds outward. See B-IF for

an example: the identical coercions that float out of recursive transformations of the two branches

of the conditional are used as the coercion returned with the transformed conditional as a whole.

Most of the action in aggressive flattening takes place at array terms (see B-ARR). This is

the rule where coercions — from parallel arrays to flattened arrays — are introduced. The rule

B-VAR substitutes typed variables for their flattened replacements per the map carried by ∆. The

array-operator rules (B-SUB, B-MAP, B-FILT, and B-RED) exchange operators indexed by source

type to operators indexed by the corresponding flat types. The other rules are simply recursive

administrative rules propagating transformations through expressions.

The big-step semantics is syntax-directed: there is exactly one rule to apply for every distinct

syntactic form, yielding exactly one deterministic result. As such it describes not only a semantic

specification but also an algorithm.

Finally we prove that the big-step rewriting relation ⇓ can be encoded in the small-step rewrit-

ing relation 7→.

Theorem 4.2.3 (7→ encodes ⇓). If eτ ⇓ ((τ . τ) eτ )
τ , then eτ 7→∗ ((τ . τ) eτ )

τ .

Proof. The proof is by induction over the judgments in ↘.

The full proof appears in Appendix A.

The next two chapters discuss the use of the aggressive hybrid flattening system presented here

to construct a compiler transformation and demonstrate its success in improving parallel perfor-

mance for nested-data-parallel programs on multicore machines.

4.3 Related Work

Our system bears some resemblance to Leroy’s system for boxing and unboxing of objects [32],

which also includes mechanisms for pushing coercions through expressions while preserving types.
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Leroy is not concerned with array flattening: his system is concerned with arity raising and avoid-

ing boxing primitive values when they can be stored as raw data. The present work bears a closer

relationship to the partial vectorization of Chakravarty et al. [18]. In the partial vectorization

framework, flat terms and nonflat terms coexist, as in Flatland, but there are key distinctions be-

tween their system and ours. First, their surface program may contain no flattened terms; flattening

is performed by the compiler, and there is no way to write down a flattened structure in a surface

program in their system. Second, their strategy identifies which terms must be flattened and which

terms must not be flattened, but the distinction is binary. There is no notion of flattening up to a

point, or of a partially-flattened data structure. When flattening occurs, it is complete. It is possible

for a particular value, in their system, to be used in two contexts (possibly more) where in one

case the context demands a flat representation and in another a nonflat one. In such circumstances,

the system introduces type coercions so that a flat value is coerced to a nonflat equivalent where

necessary, and vice versa. The partial vectorization research grew out of the desire to integrate

nested data parallelism into the GHC implementation of Haskell. Many of GHC’s operators (its

I/O routines, for example) are not implemented to cope with flattened structures. To integrate

nested data-parallel programming into the infrastructure of GHC, a mechanism was needed to al-

low values to cross the boundary between the two spaces. Partial vectorization is their solution to

this technical problem.
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CHAPTER 5

IMPLEMENTATION

In this chapter, we describe the realization of aggressive hybrid flattening, as formalized in Chap-

ter 4, in the PML compiler, pmlc. The flattening transformation is implemented as an optional

AST-to-AST pass during compilation; it is activated by a command-line control when the compiler

is invoked.

We begin the chapter with a comparison of Flatland and PML. We then describe some of the

relevant details of the PML compiler. We then discuss optimizations we can apply as a result of

having flattened a program.

5.1 Flatland vs. PML

First we consider PML in relation to the Flatland model. PML is a general-purpose programming

language with a full assortment of modern functional programming features. It supports algebraic

datatypes, ML-style type inference, pattern matching with exhaustiveness checking, and a variety

of explicitly- and implicitly-threaded constructs for parallel computation. Flatland, by contrast,

is minimal, containing only parallel arrays and four operators for computing with parallel arrays:

subscript, map, filter and reduce. Nevertheless, the Flatland system has proven to be a useful

tool for developing transformations in pmlc in practice. We use Flatland to reason about PML’s

parallel comprehensions by viewing them as syntactic abstractions for calls to map and filter,

and design transformation for the simpler (Flatland-like) language. (This is similar to the approach

taken by Data Parallel Haskell, which performs desugaring of comprehensions before any of its

flattening steps [39].) The rules in Flatland’s rewriting system (the 7→ relation in Chapter 4) have

been directly applicable in implementing aggressive hybrid flattening in pmlc.

In the type systems, the main difference between Flatland and PML is Flatland’s lack of sup-

port for parametric polymorphism. Compilation of parametrically-polymorphic functions is chal-

65



src.pml parse tree AST BOM
parse types translate

implicit threading,
match compilation

. . .

abstract 
flattening

fl.-oper. 
fusion

concrete 
flattening

(flattening)

Figure 5.1: pmlc with optional flattening.

lenging when designing a representation transformation. Parametrically-polymorphic functions

demand uniform representations, while flattening is directed toward building customized represen-

tations for faster processing. Therefore there is an inherent tension between the two representation

styles. Moving forward, we see several ways to account for polymorphism: either by designing

new formal mechanisms in the semantic model, or by monomorphizing the program before apply-

ing any flattening steps. In the latter approach, we could follow the example of MLton [35], which

resolves all polymorphism at an intermediate compilation stage (between an abstract syntax tree

and a normalized intermediate representation), and perform flattening as given in the present work

on the monomorphic program.

5.2 pmlc: the PML Compiler

The PML compiler, pmlc, successively transforms programs into a standard sequence of inter-

mediate representations. Figure 5.1 depicts the relevant phases of PML compilation. Without

flattening, PML compilation proceeds as follows. The source file is parsed (if the input program

is syntactically well-formed) into an untyped parse tree. The parse tree is then passed to a type-

checker which either produces a typed abstract syntax tree (AST) or fails in the case of an ill-typed
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program. Before translation into the next representation, the typed AST is subject to a series

of transformations. First, its high-level implicitly-threaded expressions—namely, parallel tuples,

parallel bindings, parallel cases, parallel arrays, and parallel comprehensions—are rewritten into

various expression forms closer to the core language. Parallel comprehensions, in particular, are

rewritten as maps, filters, and tabulations. Next, pattern matches are checked for completeness

and simplified, whereby complex pattern matches are compiled away. Then the AST is translated

into a lower-level normalized typed language, BOM. From that point on, the compiler rewrites the

program per continuation-passing style (CPS), from which a control-flow graph (CFG) is built, and

so on to code generation.

When flattening is enabled, compilation proceeds, in the AST-to-AST transformation phase, in

the following modified way. Parallel arrays last past the implicit-thread rewriting phase; they are

not rewritten and persist as their own PArray form of AST node. Flattening occurs after pattern-

match compilation. The actions of the transformation are organized into phases. The first phase

is abstract flattening. In the abstract flattening phase, every parallel array type is transformed to

to an abstract flattened array type, and every parallel array value to an abstract flattened array

value. These are abstract in the sense that their implementations remain unspecified. Flattened-

type choices are guided by F’s mapping from nonflat types to flat types given in Figure 4.13.

We call this phase abstract since the compiler does not, at this point, commit to any particular

concrete flattened-array representations: the flattened-array types and coercions in this phase are

symbolic. The second phase is an optimizing flatten-operator fusion phase, in which identity

coercions are discarded and pairs of cancelling coercions are eliminated until no further fusion is

possible. The third and last phase is concrete flattening. During this phase, the compiler commits

to a particular concrete representation of flattened arrays, and abstract coercions are replaced by

concrete implementations corresponding to the choice of representation. The phases of flattening

in pmlc are described in Section 5.3.

We now characterize two critical elements of the machinery of pmlc. First we discuss how
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pmlc computes with ropes in parallel, since efficient parallel rope processing underlies all the

results reported in the following chapter. We then explain our rope-customized implementation

of the segmented sum operation, which, by virtue of being fundamental to many common nested-

data-parallel algorithms, is an important operation to support well for nested-data-parallel systems.

5.2.1 Parallel Processing of Ropes

Even without flattening, PML achieves excellent speedups on multicore machines, due to a suc-

cessful strategy combining parallel computations over rope data structures with work-stealing

scheduling and lazy tree splitting (see Section 3.1). Fast parallel processing of ropes is crucial

to the performance results given in this dissertation. This section presents a description of the

internal workings of parallel rope processing in PML.

PML provides fast parallel maps, filters, and reductions over rope data structures, and con-

structs ropes in parallel with tabulations. We focus this discussion on building ropes in parallel

by tabulation. A detailed account of how PML implements the wider spectrum of parallel rope

computations is given in other work [5].

The PML basis library contains an assortment of routines for parallel tabulation. One of these

is tabFromTo. Its three arguments are a lower and upper bound, both integers, and a function

of type int -> t (for some type t) mapping integer to values of type t. The function builds a

rope whose elements are the results of having applied the function arguments to all integers in the

interval between the (inclusive) bounds.

Figure 5.2 presents the code for Rope.tabFromTo. The rope datatype used here is the one

presented in Figure 3.2. maxLeafSize is the upper bound on the length of sequences at a rope’s

leaves. Its value is global to the program and fixed at a default value of 512 (this default can be

overridden by a command-line switch). In a given call to tabFromTo, either the whole interval

can be packed into a single Rope.Leaf, or its construction must be recursively subdivided into

a pair of ropes, in which case the pair is joined together under a Rope.Cat node. The code is
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fun tabFromTo (lo, hi, f) = let
fun t (lo, hi) =
if (lo > hi) then Rope.Leaf (Seq.empty)
else let
val n = hi-lo+1
in
if (n <= maxLeafSize) then
Rope.Leaf (Seq.tabulate (n, fn i => f (lo+i)))

else let
val m = (hi+lo) div 2
in
Rope.Cat (| t (lo, m), t (m+1, hi) |)

end
end

in
t (lo, hi)

end

Figure 5.2: Rope.tabFromTo

nearly identical to the code one would write in SML. With respect to parallelism, all the action is

in the argument to the constructor Rope.Cat, which is written as a parallel tuple. The parallel an-

notations divide the work into two roughly equal parallel parts, and this parallel subdivision occurs

recursively all the way down to the leaves. At each leaf, sequences are tabulated sequentially.

The plot in Figure 5.3 shows the scaling behavior of tabFromTo in a particular case. Two

versions of tabFromTo are tested here: one with a parallel tuple in the argument to Rope.Cat,

and one with a sequential tuple in the same place. The numbers gathered for this plot are from

tabulating from 0 to 999999, computing the Fibonacci number of the position mod 20 at each

location. To compute Fibonacci, we use the naı̈ve exponential functional implementation. The

plot shows that the parallel annotations in tabFromTo enable it to achieve scaling performance

that is close to ideal.

69



0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

48 

0 4 8 12 16 20 24 28 32 36 40 44 48 

sp
ee

du
p 

number of processors 

Parallel Rope Tabulation in PML 

sequential 
parallel 
ideal 

Figure 5.3: Rope.tabFromTo with and without parallelism.

5.2.2 Segmented Sum

The success of NESL was due in part to its efficient implementations of segmented operations,

including segmented sum. Segmented sum plays an important role in common benchmarks such as

sparse-matrix vector multiplication (see Chapter 6). Segmented sum consumes an array of arrays of

numbers (integers, in our example below), and produces an array of numbers consisting of the sums

of all subarrays. NESL computes segmented sum with vector instructions; the implementation is

based on a parallel +-scan over a vector of scalars and a head-flags segment descriptor [6]. In

contrast to NESL’s, PML’s implementation of segmented sum consists of a linear transformation

of a shape tree followed by a parallel rope reduction. We give an algorithm in this section that

computes fast parallel segmented sums over flattened arrays that is insensitive to variation in the

segment lengths of the argument.
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The straightforward implementation of segmented sum is simply PArray.map sum, but,

the more variation there is in the lengths of the subarrays, the more such an implementation will

be subject to the usual challenges of irregularity. We now explain our alternative solution to this

problem. Let segs be an array of arrays of integers as follows:

val segs = [| [|4|], [|3,3|], [|2,2,2,2|], [|1|] |]

The segmented sum of segs is [|4,6,8,1|].

Per standard PML-style flattening, we transform segs to a pair containing a rope and a shape

tree. We assume, for purposes of illustration, that ropes have leaf size 4; in practice they are never

so small. In that case flattened segs is represented by the rope

4 3 3 2

Leaf

2 2 2 1

Leaf

Cat

and the shape tree

Shape.Nd [Shape.Lf(0,1), Shape.Lf(1,3), Shape.Lf(3,7), Shape.Lf(7,8)]

We proceed by dividing the information in the shape tree into leaf-size pieces, where each piece

is a list of pairs indicating which segments have elements at each leaf, and how many elements

belong to each segment. For example, the leaf at left contains 1, then 2, then 1 element of seg-

ments 0, 1, and 2 of segs, respectively. By a linear traversal of the shape tree, we can ex-

tract the following information about the segmentation for the four elements in the the left leaf:

[(0,1),(1,2),(2,1)]. For the leaf on the right, we compute [(2,3),(3,1)].

With these lists of pairs in hand, we compute segmented sums at each leaf independently.

We gather partial totals at each leaf by segment, and pair each partial total with its segment
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index. For the leaf at left, we compute [(0,4),(1,6),(2,2)], and at right we compute

[(2,6),(3,1)]. The lists are then joined together such that like-indexed partial totals are

combined, giving [(0,4),(1,6),(2,8),(3,1)]. Finally, after all partial sums have been

joined, the segmented sums are given by discarding the segment indices from this result.

This algorithm requires a linear traversal of the shape tree at the outset, but once that has

completed, the rest of the computation can be performed as an n-way fork-join over sequential

computations at the leaves. Ropes are balanced, so the parallel reduction of this operation presents

no particular scheduling challenges, but our lazy tree splitting scheduler makes adjustments in

case of poor load balancing. Note that joining the partial totals at the leaves only ever entails one

comparison, as it is only the last pair on the left and the first pair on the right that might share an

index. Furthermore, partial totals may be joined in the same way at successive Cat nodes going

up the tree, so the reduction acts just like a parallel sum. This segmented sum implementation

is demonstrably better than simply mapping sum over an array of arrays (see Section 6.4), but it

demands that the data structure be flattened before it can be employed.

5.3 Flattening in Phases

As mentioned above, flattening in pmlc is accomplished in three successive phases: abstract flat-

tening, flattening-operator fusion, and concrete flattening. This section describes the operations of

these phases in more detail.

5.3.1 Abstract Flattening

Chapter 4 presents coercions only symbolically, suggesting no implementation for any particular

operator. Figure 5.4 gives abstract implementations for coercions. In the figure, we use the usual

infix circle notation for standard function composition, and an alternate notation (infix ⊗) for
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[τ ] . {τ ; lf } = toFA[τ ]
{τ ; lf } . [τ ] = fromFA{τ ; ν }

([τ1], [τ2]) . [(τ1, τ2)] = zip([τ1],[τ2])
[(τ1, τ2)] . ([τ1], [τ2]) = unzip([τ1],[τ2])

({τ1 ; ν }, {τ2 ; ν }) . {(τ1, τ2) ; ν } = zip({τ1 ; ν },{τ2 ; ν })
{(τ1, τ2) ; ν } . ({τ1 ; ν }, {τ2 ; ν }) = unzip{(τ1,τ2) ; ν }

{{τ ; ν } ; lf } . {τ ; nd(ν) } = cat{{τ ; ν } ; lf }
{τ ; nd(ν) } . {{τ ; ν } ; lf } = seg{τ ; ν }

{{τ ; nd(ν1) } ; ν2 } . {{τ ; ν1 } ; nd(ν2) } = cat{{τ ; ν1 } ; nd(ν2) }
{{τ ; ν1 } ; nd(ν2) } . {{τ ; nd(ν1) } ; ν2 } = seg{{τ ; nd(ν1) } ; ν2 }

[τ ] . [τ ] = map[τ ] (τ . τ)

{τ ; ν } . {τ ; ν } = map{τ ; ν } (τ . τ)

τ1 → τ2 . τ1 → τ2 = λf. f ◦ (τ1 . τ1)
τ1 → τ2 . τ1 → τ2 = λf. (τ2 . τ2) ◦ f

(τ1, τ2) . (τ1, τ2) = τ1 . τ1 ⊗ τ2 . τ2
(τ1, τ2) . (τ1, τ2) = τ1 . τ1 ⊗ τ2 . τ2

Figure 5.4: Abstract implementations of coercions.

lateral composition of functions as follows:

f ⊗ g
def
= λ(a, b).(f a, g b)

In Figure 5.4, each Flatland coercion on the left corresponds to an abstract implementation on

the right. The operators on the right, whose full definitions are not enumerated here, all have

straightforward implementations in PML.

• toFA and fromFA. The operator toFA puts the elements in a parallel array into the flat

data vector of a flattened array, and pairs that vector with a shape tree consisting of a single

leaf from 0 to the number of elements in the array. fromFA is the inverse operation, which

pulls the flat data vector out of a depth-1 flattened array and discards its shape information.

• zip and unzip. These operators are analogous to ListPair.zip and ListPair.unzip

from the SML basis library, adapted to work either on parallel arrays or flattened arrays as

needed.
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• cat and seg. The cat operator is similar to Vector.concat in the SML basis, which

concatenates a vector of vectors of elements into one vector by successively appending them.

This cat is similar, although it also records the structure of the array of arrays it concatenates

as it goes, preserving it in a shape tree. The operation seg is the inverse, repackaging an array

into an array of arrays based on the segment information stored in a shape tree.

• map is analogous to Vector.map in the SML basis, adapted to iterate over parallel arrays

and flattened arrays.

The other abstract implementations in Figure 5.4 are, by these rules, recursively synthesized out

of their elemental components as needed. The compiler performs a similar synthesis of coercion

operators, using Figure 5.4 as a guide.

The abstract flattening phase closely follows the big-step flattening semantics in Section 4.2.

Abstract flattening has the following effects. Coming into abstract flattening, every parallel array

literal appears as a PArray node in the AST, containing a list of expressions to be evaluated in

parallel. Abstract flattening replaces every PArray node with an FArray node, carrying the

same list of expressions as well as a Shape.Leaf indicating the length of the array. The type

of the FArray’s elements is not necessarily scalar — that is, the PArray could be nested —

so the compiler inserts a coercion operator to flatten nested arrays all the way down to their flat

representations. Thus flattened arrays are given not only a new abstract syntactic form, but also

a new type. Variables bound to parallel arrays in the source program are assigned fresh variables

with flattened types, and substitutions are performed across the program to replace the old variables

with the new.

During flattening, we treat a foundational group of parallel array operations specially in the

compiler. This is the core group of blessed operators mentioned in Section 3.2. In pmlc, these are

PArray.map, PArray.filter, PArray.reduce, PArray.sub (also written with infix

! in PML), PArray.tabulate and its variants, PArray.range, and PArray.app. (Note

that in our implementation, this group is larger than strictly necessary. In practice, it was easier to
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handle simple operations such as length directly than to encode them with primitives.) Each of

the core operators is bound to a working polymorphic implementation in the PML basis library.

If the flattening transformation is not enabled, the default polymorphic operations is used for each

blessed operator. With flattening enabled, each of these operators is replaced during abstract flat-

tening by a symbolic value (a member of an ML datatype) and a semantic type representing a

type-indexed implementation of that operator. For example, PArray.length applied to an ar-

ray of doubles is replaced by the value PALength(Ty.Parr(Ty.Double)), indicating which

operator it is and at which type it is instantiated. The symbolic value of the operator is carried along

until the concrete flattening phase, where it is replaced by an actual implementation.

Coercion operators are assigned symbolic values during abstract flattening, but the symbols are

more specific than the plain types in Flatland’s coercions (τ1 . τ2). Using Figure 5.4 as a guide,

we resolve type coercions to the combinations of primitives (such as unzip and cat) that appear

on the right-hand side of that figure. Coercions that survive the second fusion phase are matched

to implementations during concrete flattening as well.

The outcome of abstract flattening is that the type constructor parray does not appear in

programs past this phase of transformation. Every parallel array is replaced with a flattened equiv-

alent.

The following example demonstrates the operation of the abstract flattening phase. In this

example, a function of type

int parray -> (bool * double) parray

is transformed to a function of type

(int, lf) farray -> ((bool, lf) farray) * ((double, lf) farray)

(For clarity, we use ML syntax here to represent compiler-internal semantic types.) The type

constructor parray appears nowhere in the program subsequent to transformation.
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5.3.2 Flatten-Operator Fusion

The compiler represents abstract coercions as members of the following algebraic datatype:

datatype fl_op
= ID of ty
| Unzip of ty
| Concat of ty
| Map of fl_op * shape_ty
| Compose of fl_op * fl_op
| CrossCompose of fl_op list

This datatype does not represent the “unflattening” operators (fromFA, zip, and seg) from the

abstract coercion implementations in Figure 5.4. Such operators are necessary to complete the

Flatland system, but they are not needed during pmlc’s aggressive flattening, which only ever

coerces in the flat direction. Moreover, toFA is unneeded as a consequence of the previous phase’s

having replaced PArray nodes by FArrays.

The purpose of the flatten-operator fusion phase is to identify certain combinations of coercion

operators in order to eliminate them. The compiler uses pattern matching to find its targets. Its

actions are carried out by application of a set of legal rewrite rules, which are as follows:

• The application of any operator ID to any term e is rewritten to e.

• Any operator of the form Map(ID, _) is rewritten to ID of the appropriate type.

• The composition of ID with any operator op is rewritten to op.

• Any cross composition, all of whose elements are ID operators, is rewritten to ID of the

appropriate (tuple) type.

The fusion process iterates until the compiler is unable to find any more fusion opportunities.

5.3.3 Concrete Flattening

In concrete flattening, the compiler commits to particular representations of data structures and

implementations of the operations that work on them. Entering this phase, flattened arrays ex-
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ist as their own kind of AST node, with their own types. During this phase, they are realized

as rope/shape tree pairs, as discussed in Chapter 3. For ropes of scalars, the compiler selects

monomorphic ropes to build monomorphic flattened array representations.

The shape type component of flattened array types is used during this phase to select the im-

plementations of type-indexed operators, but after it has been so used, it is dropped. From this

point forward, the depth of a flattened array no longer part of its type. This is not a problem;

the shape type has already served its purpose. For example, the types (int,lf) farray and

(int, lf nd) farray are both translated to int_farray during this phase. The inclu-

sion of shape types past this phase would require PML to support dependent types [51], which it

currently does not.

Coercion operators are realized in one of two ways. Sufficiently common coercions are already

built into the basis library, in which case they are implemented with calls into the basis. If a

coercion does not appear in the basis, it is synthesized by composition of other coercion operators,

which may in turn need to be recursively synthesized.

The following example demonstrates the operation of the concrete flattening phase. Here,

PArray.map is applied to an array of pairs of ground terms:

val f : int * bool -> int = ...
val a = PArray.map f [| (1, true), (2, false), ... |]

Since we are going to both unzip and monomorphize the array of pairs as part of the flattening

transformation, we need a version of map that traverses not a single polymorphic data structure (as

it would without flattening), but rather two monomorphic flattened arrays of two different types at

the same time. Furthermore, it must produce a monomorphic array of integers. In the present case,

we need an operator with the following signature:

val map_ibi : int_farray * bool_farray -> int_farray

The type of map_ibi gives sufficient information for its implementation. The code of this and

other operators follows a standard pattern, so synthesis of such operators is a mechanical process.
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PML flattening has been designed for modularity. There is a useful abstraction barrier be-

tween its second and third phases. Concrete flattening need not take place in only one way. In

the current implementation, there is one particular strategy for representing flattened arrays (the

various monomorphic versions of farray), but the three-phase design here makes it possible to

experiment with different representations.

5.4 Optimizations

Flattening exposes optimizations to PML programs, which account for the performance improve-

ments we report in Chapter 6. Two are discussed here: monomorphization and tab flattening.

In addition to these currently-implemented optimizations, flattened PML is suitable for use with

vector-width (e.g., SSE) instructions, but our compiler technology does not yet support them.

5.4.1 Monomorphization

The compiler selects monomorphic representations for flattened arrays of scalars. This is mani-

fest in the rope component of the flat arrays. The polymorphic rope datatype (Figure 3.2) points

to sequences of boxed, heap-allocated values at its leaves, whereas monomorphic ropes such as

IntRope and DoubleRope point to contiguous sequences of unboxed values at their leaves.

Monomorphic ropes are smaller and faster to compute with than polymorphic ones, and we can

observe performance benefits when using them even in benchmarks when no flattening is involved.

Monomorphization is complemented by unzipping of arrays of tuples. An array of pairs of

integer and doubles, when unzipped, becomes an arrays of integer and an array of doubles; these

in turn are represented by a flattened array with an IntRope and another with a DoubleRope.

In the past, this rearrangement was necessary to accommodate NESL-era hardware. On multi-

cores, the unzipping part of this transformation is not mandatory — the integer and double values

could be packed into a flat vector of their own, with alternating integers and doubles in contiguous
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memory — but it is desirable because such vectors are easily amenable to vector-wide processing.

When we build support for vector-width instructions in PML, we expect to observe substantial

performance benefits on programs that make use of them over unzipped, monomorphized flattened

array structures.

5.4.2 Tab Flattening

Flattening is directed at both regular and irregular parallel structures, but regular parallel com-

putations are an important special case that occur frequently in practice. In particular, regular

multidimensional tabulations are common in the computation of images and mathematical struc-

tures (see Chapter 6). Tab flattening is an optimization that can be applied to regular nested array

structures. We gave an overview of tab flattening in Section 3.3; here we discuss the details of its

implementation in pmlc.

Tab flattening is performed on regular parallel comprehensions. An array of arrays is rectan-

gular at m× n if all its m inner arrays have the same length n. Generalized to higher dimensions,

nested arrays with this property are regular. The compiler recognizes parallel comprehensions to

be regular arrays if, at every level, they compute over a range and have no filtering where clause.

(We inline range values into the right-hand-sides of parallel comprehensions in an earlier pass so

these criteria are met more often.) The shape of the regular arrays can be computed in advance,

and the necessary index arithmetic is performed according to a pattern as described below.

The one-dimensional case requires no flattening per se, but it is a useful starting point for

explaining the general case. Consider some expression e computing over the range f to t by s.

[| e | i in [| f to t by s |] |]

The names f, t, and s inside the range are mnemonics for from, to, and step, respectively. In

order to translate this comprehension into a tabulation, we first generate the function g over its free

variable i (bound on the right-hand-side in the comprehension):
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fun g i = e

We will use the following function indexMap1D to map a single counter value to the correspond-

ing element in the range [| f to t by s |]. The following higher-order function generates

one dimensional index maps based on the values in a range.

fun indexMap1D (f,t,s) = (fn k => f + (k * s))

If we let f , t, and s be the integer values corresponding to f, t, and s in the PML expression,

applying the semantics of ranges given in Chapter 3 yields the following sequence:

{nk = f + k(s) | k ∈ N, (nk = f) ∨ (f ≤ nk ≤ t)}

Let n be the number of elements in the sequence so defined. The value of n is given by

1 + max (0, (t− f)/s)

We write this formula as a function in PML and name it nElts.

fun nElts (f, t, s) = 1 + Int.max (0, (t-f) div s)

We assemble these components together to arrive at the following translation of the original ex-

pression:

fun tab1D ((f,t,s), g) = let
val n = nElts (f,t,s)
val indexMap = indexMap1D (f,t,s)
val data = Rope.tabulate (n, g o indexMap)
val shape = Shape.Lf (0, n)
in
FArray (data, shape)

end

We have omitted the details of computing a regular shape for a regular nested array, but the

process is straightforward. We have not specified the type of e in this example, but in an actual
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compilation, both Rope and FArray would have been monomorphized to particular types in

tab1D.

The two-dimensional case is a natural extension of the previous one. We begin with a regular

two-dimensional nested comprehension:

[| [| e | j in [| f2 to t2 by s2 |] |]
| i in [| f1 to t1 by s1 |] |]

We build a function g consisting of the body of the comprehension over its free variables i and j:

fun g (i, j) = e

We can build two-dimensional index maps with the following higher-order function

fun indexMap2D ((f1,t1,s1), (f2,t2,s2)) = let
val d1 = nElts (f1,t1,s1)
val d2 = nElts (f2,t2,s2)
in
fn k => (f1 + ((k div d2) mod d1) * s1,

f2 + (k mod d2) * s2)
end

and then compose the pieces as follows:

fun tab2D ((f1,t1,s1),(f2,t2,s2)) = let
val n1 = nElts (f1,t1,s1)
val n2 = nElts (f2,t2,s2)
val n = n1*n2
val indexMap = indexMap ((f1,t1,s1),(f2,t2,s2))
val data = Rope.tabulate (n, g o indexMap)
val shape =
Shape.Nd (List.tabulate (n1, fn i => Shape.Lf (i*n2, i*n2+n2)))

in
FArray (data, shape)

end

The benefit of having performed this optimization comes from being able to build a scalar rope

directly, as opposed to a rope of ropes.

In pmlc, we generalize this technique to any number of dimensions. The process we follow is

a straightforward extension of what we have already shown. Scaling the index map function up to

m dimensions, we have
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fun indexMap_m_D ((f1,t1,s1),(f2,t2,s2),...,(fm,tm,sm)) = let
val d1 = nElts (f1,t1,s1)
val d2 = nElts (f2,t2,s2)
...
val dm = nElts (fm,tm,sm)
in
fn k => (f1 + ((k div (d2 * ... * dm)) mod d1) * s1,

f2 + ((k div (d3 * ... * dm)) mod d2) * s2,
...,
fm + ((k mod dm) * sm))

end

The rest of the translation up to m dimensions follows from what we have already shown.
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CHAPTER 6

EVALUATION

This section demonstrates that, across a variety of benchmarks, PML programs compiled with

the flattening transformation outperform their non-flattened counterparts. Both flattened and non-

flattened PML executables scale well on many processors (as many as 48 on our experimental

platform), and both perform well in comparison to similar programs written in sequential lan-

guages.

We use SML execution times for our sequential baselines. SML programs were compiled

with MLton, version r7549 [35], a whole-program optimizing compiler for Standard ML. For two

benchmarks, we also wrote C programs as additional points of reference. We provide comparisons

to C execution times in those cases.

The benchmark data presented in this section comes from experiments run on a Dell PowerEdge

R815 server with 48 cores and 128 GB of DDR3, 1333 MHz RAM. The operating system is x86 -

64 Ubuntu Linux 10.04.2 LTS, kernel version 2.6.32-27. The 48 cores are on four 12-core AMD

Opteron 6172 Magny-Cours processors, each of which operates at 2.1 GHz and has 64 KB each of

instruction and data L1 cache and 512 KB of L2 cache. There are eight 6 MB L3 caches, each of

which is shared by six cores.

6.1 Mandelbrot

We compute the Mandelbrot set by means of a function elt which consumes a pair of integers

and produces an integer. The argument to elt represents a location in the complex plane. Its

return value is the number of iterations required, according to the standard iterating Mandelbrot set

membership test, for a given point to diverge outside the set (by having a modulus greater than 2).

A point is a member of the Mandelbrot set if it fails to diverge before reaching a fixed upper limit

of iterations (we use 1000).
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Table 6.1: Mandelbrot: execution times (seconds) with standard deviations, per number of proces-
sors, problem size 8196.

PML, flat PML, not flat SML C
1 272.20 (.000) 275.35 (.000) 140.13 (.000) 135.73 (.000)
2 136.36 (.000) 138.37 (.000)
4 68.20 (.000) 70.99 (.011)
8 34.11 (.000) 38.22 (.018)
16 17.06 (.000) 17.60 (.002)
32 8.55 (.000) 8.96 (.006)
48 5.74 (.002) 6.09 (.007)

Our PML benchmark program uses a SML-style implementation of elt (standard definition

not shown) as a function with a recursive inner loop. The function is used with a nested parallel

comprehension to compute Mandelbrot set membership over a rectangular array of pairs. For a

given problem size n, specified by a command-line argument, the square of side length 4 centered

around the origin is effectively overlaid with an n× n lattice of points in the complex plane. (The

mapping of integer pairs to lattice points is handled in elt.) The Mandelbrot set is computed over

the nested array as follows:

fun mandelbrot n = let
val rng = [| 0 to (n-1) |]
in
[| [| elt (i, j) | j in rng |] | i in rng |]

end

Note the computation is regular in the shape of the structures over which it is computed, but

irregular in the sense that widely varying amounts of work (a reflection of the fractal shape of

Mandelbrot set’s boundary) are necessary per application of elt. The SML baseline program is

the same as the PML program with necessary adjustments, most notably the substitution of nested

calls to Vector.tabulate for PML’s nested parallel comprehensions. The C baseline uses

loops in place of recursive functions and builds an array of arrays of integers. The C executable

was compiled with gcc, version 4.4.3, at optimization level 2.
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For our experiments, we ran flattened and non-flattened versions of Mandelbrot in PML with

problem size 8196 for all numbers of processors from 1 to 48. We ran sequential SML and C

programs at the same problem size. C is faster than SML by a modest margin. Table 6.1 reports

selected execution times from the experiments. Each execution time is given in seconds and is

the arithmetic mean of 40 individual executions. The standard deviation of each group of 40

runs is given as a percentage of the mean and is written in parentheses after each time. Standard

deviations were low in all cases, less (usually much less) than 2% in every case except for one

aberration (3.2% for PML, not flattened, at 9 processors). In comparison to sequential execution

times, absolute performance of Mandelbrot is excellent. At 2 processors, PML runs slightly faster

than the MLton baseline, and by 4 processors far surpasses it.

Figure 6.1(a) shows PML speedups, with and without flattening, against the SML baseline.

We display C performance on the plot (barely distinguishable from SML) as an additional point

of reference. Flattened PML outperforms non-flattened PML in every case. At 48 processors,

flattened PML improves on baseline performance by a factor of just over 24.

Figure 6.1(b) gives the speedup of PML with flattening over PML without flattening as the

ratio of the non-flattened time to the flattened time. The higher the data point in the plot, the faster

the flattened executable. There is a dramatic widening in the performance gap up to nearly 13% at

9 processors, immediately after which flattening settles down to a 3% speedup and trends gradually

upward to 6% for 48 processors.

We attribute the speedup achieved by flattening Mandelbrot to monorphization and tab flatten-

ing. Since the main inner loop of computing Mandelbrot is a rectangular nested parallel compre-

hension, the compiler automatically rewrites it to a linear tabulation per the scheme outlined in

Section 5.4.2. Furthermore, because the value of that nested comprehension is monomorphized

to an int_farray (containing a specialized int_rope), the tabulation is able to produce a

lightweight rope structure with raw integers, as opposed to pointers to heap-allocated integers, at

the leaves.
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Figure 6.1: Mandelbrot speedups.
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Table 6.2: Raytracer: execution times (seconds) with standard deviations, per number of proces-
sors, problem size 1024.

PML, flat PML, not flat SML
1 61.04 (.005) 63.79 (.007) 45.70 (.001)
2 30.12 (.000) 30.98 (.001)
4 15.07 (.001) 15.50 (.002)
8 7.55 (.001) 7.76 (.003)
16 3.79 (.001) 3.89 (.003)
32 1.92 (.002) 1.97 (.004)
48 1.32 (.006) 1.36 (.013)

6.2 Raytracer

Our ray tracing benchmark computes the image of a scene graph consisting of a group of overlap-

ping spheres with transparency and reflection. The code is translated from a parallel program in

the implicitly-parallel language Id90 [36]. It is a brute-force implementation and does not use any

acceleration data structures.

Ray tracing works in our benchmark by computing a rectangular parallel array of color values,

each representing a pixel in the generated image. The function trace (definition not shown)

consumes a pixel location and traces a ray through the scene graph, returning the pixel’s color in

the result. We write the body of the main function as a nested parallel comprehension:

fun raytracer n = let
val side = [| 0 to (n-1) |]
in
[| [| trace (i, j) | j in side |] | i in side |]

end

The program computes an size n× n array of colors for a command-line integer argument n. For

the present work, our raytracer stops short of writing the color values it computes to an image file;

writing to a file involves no parallel computation and therefore contains no interesting information

for our measurements. (The program is able to report its colors at the console on demand, for the

purposes of checking its output.)
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Figure 6.2: Raytracer speedups.
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Table 6.2 reports selected mean runtimes in seconds, with (low) standard deviations as a per-

centage of mean runtimes in parentheses. The SML baseline code was similar to the PML code,

minus parallel constructs. We did not port the ray tracer implementation to C. For our experiments,

we computed images of size 1024 × 1024. Figure 6.2(a) presents speedups of flattened and un-

flattened PML over the baseline. Except at a single processor, flattened PML is always fastest.

PML’s raytracer has excellent absolute performance with respect to a sequential SML baseline,

achieving a better than thirtyfold speedup on 48 processors. Figure 6.2(b) gives the speedup of

flattened PML over non-flattened PML; the improvement hovers consistently around 3%.

Like Mandelbrot, ray tracing takes an unpredictable amount of time on a per-element ba-

sis, though its structure as whole is regular. Also like Mandelbrot, this problem benefits from

monomorphization and tab flattening, to which we attribute its faster execution times.

6.3 Mandelbulb

The Mandelbulb [50] is a fractal-like three dimensional solid, inspired by the Mandelbrot set. The

computation of the Mandelbulb is over the cube of edge length 4 centered at the origin of a 3-

dimensional coordinate space. Mandelbulb applies a test to each location in this centered cube.

Like the Mandelbrot set test, it is an iterative computation which runs either until a value diverges

(by having a modulus greater than 2) or the number of test iterations reaches an upper limit (we

set the limit at 1000). The implementation of Mandelbulb is similar to the implementation of

Mandelbrot, but the function that tests a location’s membership in the set, which we again call elt,

now consumes three integers, and the nested parallel comprehension at the heart of the program is

three layers deep. Its results is a three-dimensional n× n× n array of integers.
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Table 6.3: Mandelbulb: execution times (seconds) with standard deviations, per number of proces-
sors, problem size 64.

PML, flat PML, not flat SML C
1 6.36 (.014) 6.37 (.010) 6.66 (.014) 4.43 (.008)
2 3.17 (.010) 3.18 (.010)
4 1.60 (.012) 1.67 (.089)
8 0.79 (.010) 0.97 (.010)
16 0.40 (.009) 0.41 (.010)
32 0.22 (.035) 0.24 (.042)
48 0.19 (.085) 0.23 (.127)

fun mandelbulb n = let
val range = [| 0 to n-1 |]
in
[| [| [| elt (i,j,k) | k in range |]

| j in range |]
| i in range |]

end

For our purposes, Mandelbulb provides a useful test for measuring whether the optimizations that

yield performance improvements in regular two-dimensional examples such as Mandelbrot do as

well in three dimensions.

Table 6.3 contains experiment results for executions computing a size 64 × 64 × 64 Mandel-

bulb volume. The SML baseline is a straightforward modification of the PML code, as in the

previous two cases. We also wrote Mandelbulb in C. The C implementation is written as a main

triply-nested for-loop, calling a while-loop-based implementation of the Mandelbulb membership

test. The C code was compiled with gcc, version 4.4.3, at optimization level 2. In this case, C

is faster than SML, representing a speedup of about 50%. We nevertheless continue to use SML

as our baseline for consistency with our other experiments. Performance of PML Mandelbulb is

good with respect to both sequential baselines.

Figure 6.3(a) shows speedups of flattened and non-flattened PML programs relative to SML.

We include C on the plot for further comparison. Both flattened and non-flattened PML proceed
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Figure 6.3: Mandelbulb speedups.
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roughly linearly up to about 28 processors, at which flattened PML begins to realize an increasing

gain over the non-flattened version. Figure 6.3(b) shows the ratio of execution times for non-

flattened and flattened programs on 1 to 48 processors. Flattened PML realizes a 2.5% gain over

non-flattened PML at 24 processors. From that point forward, flattened code pulls away from

non-flattened code, and achieves a better than 20 percent speedup at 48 processors. Mandelbulb

is subject to the same tab-flattening and monomorphization optimizations as the two previous

experiments.

6.4 Sparse-Matrix Vector Multiplication

Among our experiments, sparse-matrix vector multiplication profits most from transformation.

Sparse-matrix vector multiplication is expressed concisely as the following group of one-line PML

functions:

fun plus (x:double, y:double) = x+y

fun sum (xs : double parray) = PArray.reduce plus (0.0) xs

fun dotp (sv, v) = sum [| x * (v!i) | (i,x) in sv |]

fun smvm (sm, v) = [| dotp (sv, v) | sv in sm |]

The function sum is implemented as a call to PArray.reduce, which performs a tree-shaped

collapsing reduction over a rope of double-precision floating-point numbers. Sum as implemented

on top of PArray.reduce processes the rope of doubles in parallel, where the sums of the

values at each leaf are computed sequentially, and the sums of the values under each internal

node are added to one another once they have both been computed. This happens over the whole

tree in parallel, and the sum of the whole is the sum computed at the rope’s topmost node. The

function dotp is the application of sum to multiplication operations, with a parallel array of

double representing a dense vector, over a parallel array of pairs. The function smvm is, in turn,

the application of dotp over the members of an array of such arrays of pairs.
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Table 6.4: SMVM: execution times (seconds) with standard deviations, per number of processors,
problem size 20000.

PML, flat PML, not flat SML
1 39.22 (.006) 163.34 (.004) 14.01 (.012)
2 24.25 (.014) 106.81 (.015)
4 17.58 (.041) 69.04 (.136)
8 12.44 (.062) 48.26 (.154)
16 5.99 (.091) 23.40 (.123)
32 3.50 (.136) 12.80 (.123)
48 2.40 (.119) 9.63 (.135)

The flattened version of smvm uses a monomorphic segmented sum operation as discussed in

Chapter 3. Our flattened smvm is written explicitly as a separate program, since the compiler is

not yet implemented to rewrite parallel comprehensions to segmented operations automatically. 1

fun smvm (sm, v) = let
val prods = products (sm, v)
val sums = segsum prods
in
sums

end

The function products (definition not shown), consumes a sparse vector, represented by a pair

of flattened arrays, and a dense vector, represented by a single flattened array. The sparse vector’s

pair contains a flattened array of indices containing an int_rope of raw integers as its flat data

vector, and a flattened array of values containing a double_rope of raw doubles.

The computation of products runs in one (parallel) elementwise pass over the two flattened

arrays in the sparse vector (see the discussion of map flattening in Section 3.3). The function

segsum executes a fast segmented sum over the result of products; its implementation is as

given in Chapter 5. In our experiments, an irregular sparse matrix is constructed according to a

deterministic algorithm so the runs between implementations are comparable. For the program

1. This rewriting presents no special difficulty. If the compiler can identify sum, it can rewrite expressions of the
form [| sum xs | xs in xss |] to segsum xss. Analogous rewrites are available for as many sum-like
operators (reductions) the compiler is able to recognize.
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runs reported in our plots, we constructed sparse matrices of 20000 rows of varying lengths, and

dense vectors of width 1000.

In our experiments, the impact of flattening on performance is dramatic in the case of smvm.

The flattened version of the program is between a factor of 3 and 5 faster than the non-flattened

version. Figure 6.4(b) gives the ratio of running times of the non-flattened to the flattened code.

The higher the value of a given data point in the plot, the faster flat smvm is than non-flat smvm.

We show the performance of flattened and non-flattened smvm relative to a sequential SML

baseline in Figure 6.4(a). The SML implementation uses vectors (in the sense of Vector.vector)

of doubles to represent dense vectors, vectors of pairs of ints and reals to represent sparse vec-

tors, and vectors of sparse vectors to represent sparse matrices. It is a straightforward high-level

SML implementation of this problem.

fun dotp v sv = let
val sum = Vector.foldl op+ 0.0
fun mul (i, x) = x * Vector.sub (v, i)
in
sum (Vector.map mul sv)

end

fun smvm (sm, v) = Vector.map (dotp v) sm

Figure 6.4(a) gives the speedups of PML over its SML baseline, both with and without flatten-

ing. Flattened smvm is substantially faster than non-flattened smvm for all numbers of processors

up to 48, and furthermore has much better performance with respect to the fast sequential baseline

used here. Flattened smvm outpaces the baseline at 7 processors, whereas non-flattened smvm

needs 27 processors to accomplish the same. PML with no flattening must compensate for the

irregularity of the problem with dynamic scheduling adjustments. The nested program does scale

roughly linearly with increasing numbers of processors, but the rate of improvement is low and

absolute performance is comparable to sequential performance, even with 48 processors. The flat-

tened program, by contrast, is mainly a call to segmented sum on a flattened irregular structure.

Whatever the irregularity of that structure in the source program, at runtime it is a flat rope struc-
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ture whose segmented sum can be computed by an embarrassingly-parallel rope reduction (see

Section 5.2.2). We attribute the dramatic improvement of flattening to this property of segmented

sum.
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CHAPTER 7

CONCLUSION

The implementation of nested-data-parallel programming languages is a challenging and important

problem. Well-engineered parallel languages help programmers make better use of the parallel

computing resources at their ever-increasing disposal. Nested data parallelism is an especially

attractive model for parallel programming, since it enables high-level parallel programs to exploit

parallel resources well, regardless of the regularity or irregularity of a particular programming

problem. In nested-data-parallel programs, programmers can employ the idioms to which they are

accustomed and achieve parallel speedups with only modest accommodations in their source code.

Nested-data-parallel languages have been in existence for over two decades now, but the ground

has shifted underneath them. As a platform for parallel computing, multicore computers long

ago superseded the wide-vector machines for which nested-data-parallel compilers were originally

designed. Nevertheless, nested-data-parallel compilation, while adapted to ever more sophisticated

languages, has remained fundamentally unaltered in its orientation toward vector instructions. This

dissertation challenges long-standing techniques for compiling nested-data-parallel programs in a

vector-machine style, on the basis that they are not appropriate for multicore targets.

We have presented hybrid flattening as a suitable alternative to traditional techniques. Hybrid

flattening transforms nested data structures to expose programs to various optimizations, while

leaving control structures intact. Furthermore, hybrid flattening supports a choice of flattening

policies, ranging from no data flattening to full flattening of all nested data. We have provided a

semantics of hybrid flattening in the form of Flatland, a model language with a rewriting system,

and proven properties about its formal integrity. Flatland is mechanism without policy, providing

no particular guidance on how to transform programs. In order to be useful in designing an op-

timizing transformation, Flatland must be coupled with a strategy for application of its rewriting

rules. We have embedded such a strategy in our formal semantics of aggressive hybrid flattening,

which we have proven to be expressible under Flatland. Aggressive hybrid flattening is a variation
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of traditional total flattening, flattening nested arrays in essentially the same way.

We used the formalization of aggressive hybrid flattening as the basis for a prototype imple-

mentation of a compiler transformation in the compiler for PML, pmlc. This enabled us to test the

effects of flattening PML programs across various benchmarks. According to our tests, flattening

improves the performance of regular nested-data-parallel programs significantly, and it improves

that of irregular programs dramatically. As we had conjectured in earlier work [5], flattening and

lazy tree splitting are a felicitous combination. Although our implementation of hybrid flattening is

in PML, the semantic specification given in this document is sufficiently abstract to be applicable

to nested-data-parallel languages broadly.

7.1 Future Work

Using the present material as a starting point, many lines of research appear worth pursuing. This

section outlines a few possible directions.

On the semantic front, Flatland’s core language could be extended to model a wider variety

of language constructs. Algebraic datatypes with sum types would be a natural addition. There

already exist well-known schemes for flattening sum types [16], which are unzipping-style trans-

formations across variants. Flatland should appropriate these with suitable modifications. Because

of the way sum types are flattened, future work along these lines might entail allowing hybrid

flattening to perform some control changes.

Flatland’s type system could be enriched to account for polymorphism, although it is not im-

mediately clear how to write parametrically-polymorphic functions over arrays whose transformed

representations are drawn from a family of possibilities. Data Parallel Haskell provides some

guidance in this area. During compilation, all functions in a Data Parallel Haskell program are

vectorized, and the non-vectorized and vectorized functions are paired together [33]. Both the

original function and its vectorized version are then available at all uses; the function needed is

simply selected from the pair. But with the large groups of equivalent representations in Flatland,
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a pair would not suffice, and generating all possible vectorizations of Flatland functions might

be impractical, or even impossible. We might be able to determine which vectorized versions of

which functions a program needs per a static analysis — control-flow analysis [47] comes to mind

— and thereby avert a combinatorial explosion in compiled code. This appears to be a sizeable

research problem in and of itself.

It is tempting to augment Flatland with a cost semantics, so transformations could be proven

to achieve performance improvements. Any such cost semantics should account for parallel ex-

ecution, since that is our target domain. It would be useful to be able to use Flatland to model

transformation-driven optimizations in languages such as PML.

Flatland is designed to accommodate different transformation strategies, so we naturally look

forward to using it to define an assortment of transformations. We already have two points of

comparison for any such new transformation: compilation with no flattening, and compilation

with aggressive flattening per Chapter 5. One can imagine defining a variety of transformations

according to various heuristics. Aggressive hybrid flattening in Chapter 4 uses F (Figure 4.13)

to make coercion choices. F is not a heuristic so much as a blanket policy: flatten everything.

We have suggested in our discussion that more nuanced strategies may be useful. We might not

always unzip array of pairs, depending on those pairs’ types, for example. Furthermore, we can

imagine using a static analysis of running time to guide flattening choices. Perhaps when the per-

element computation in a parallel array is estimated to be uniformly light, no flattening should be

undertaken on it. These and other strategies remain to be explored, both formally and empirically.

On the hardware front, we would like to make use of vector instructions on multicores. Our

own 48-core machine supports 16-byte-wide vector operations, but our compiler’s back-end code

generator (ML-RISC) does not support them. We are considering a new back-end implementation

in order to address this shortcoming. If we were able to make use of vector instructions in pmlc,

we expect flattening would prove substantially more useful than it already has, especially in the

case of arithmetically-intense parallel computations.
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Finally, the abstraction layer between abstract and concrete flattening (Chapter 5) allows us to

experiment with the representation of flattened arrays in the compiled code. We are not perma-

nently tied to ropes. We are interested in experimenting with other flattened array representations

whose flat data vectors are represented in some other way, such as contiguous large arrays, which

might enable novel (for PML) optimizations such as in-place update of flat data vectors. We

expect employing an assortment of vector representations other than ropes in our representation

transformations will give us ways to improve performance still further.
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APPENDIX A

PROOFS

A.1 Auxiliary Lemmas

Lemma A.1.1 (context replacement). Given Γ ` C[eτ ] ok and eτ such that ∀Γ′ . Γ′ ` eτ ok =⇒

Γ′ ` eτ ok, Γ ` C[eτ ] ok.

Proof. We have Γ ` C[eτ ] ok. Within the proof of the well-formedness of C[eτ ], there must exist

some Γ′ such that Γ′ ` eτ ok. Then, by the inductive hypothesis, Γ′ ` eτ ok. Then Γ ` C[eτ ] ok

by induction on the rules of the well-formedness judgment.

Lemma A.1.2 (substitution). For x /∈ dom(Γ), if Γ[xτ ] ` eτ ok and Γ ` eτ ok, then Γ `

([e/x] eτ ) ok.

Proof. The proof is by induction on the rules of the well-formedness judgment in the standard

way.

Lemma A.1.3. If Γ ` eτ ok and x /∈ (dom(Γ) ∪ FV(eτ )), then Γ[xτ ] ` eτ ok.

Proof. The proof is by induction on Γ ` eτ ok.

Lemma A.1.4 (weakening). If Γ[xτ ] ` eτ ok and x /∈ FV(eτ ), then Γ ` eτ ok.

Proof. The proof is by induction on Γ ` eτ ok.

Lemma A.1.5. If x /∈ FV(t), then x /∈ FV([x/t]e)).

Proof. The proof is by induction on the definition of substitution.

Lemma A.1.6. If ` τ . τ ok, then ` ! τ . ! τ ok.
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Proof. For convenience, we repeat the definition of ! τ .

! [τ ] = τ

! {τ ; lf } = τ

! {τ ; nd(ν) } = {τ ; ν }

! (τ1, τ2) = (! τ1, ! τ2)

Let select types be the name for types τ for which ! τ is defined.

By inspection of the definition of !, select types are exactly either parallel array types, flattened

array types, of pairs of select types, although the inner component τ is unrestricted.

The proof is by induction over the height of all well-formedness judgments on select types. We

do not consider rule CO-FUN (! is undefined on function types).

(base case) CO-ID Immediate.

(base case) CO-FL For ` [τ ] . {τ ; lf } ok, ! [τ ] = τ and ! {τ ; lf } = τ , so the conclusion is

immediate from CO-ID.

(base case) CO-FR Similar to the CO-FL case.

(base case) CO-LL For ` {τ ; nd(ν) } . {{τ ; ν } ; lf } ok, ! {τ ; nd(ν) } = {τ ; ν } and

! {{τ ; ν } ; lf } = {τ ; ν }.

(base case) CO-LR Similar to the CO-LL case.

(base cases) CO-ZFL and CO-ZFR The same as CO-LL and CO-LR, mutatis mutandis.

(base case) CO-ZL For ` [(τ1, τ2)] . ([τ1], [τ2]) ok, ! [(τ1, τ2)] = (τ1, τ2) and ! ([τ1], [τ2]) =

(! [τ1], ! [τ2]) = (τ1, τ2). The conclusion is immediate from CO-ID.

(base case) CO-ZR Similar to the CO-ZR case.
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CO-A By definition of ! for [τ ] and [τ ] and induction on the premise of CO-A.

CO-F Similar to the CO-A case.

CO-PAIR By induction on the premises.

CO-TRANS By induction on the premises.

Lemma A.1.7. For τ flat where τ = {τ ′ ; ν } or τ = (τ1, τ2), N[[τ ]] flat.

Proof. The proof is by induction on argument to N.

(base case) {τ ; ν } We have {τ ; ν } flat.

N[[{τ ; ν }]] = {τ ; nd(ν) } is flat by definition.

(τ1, τ2) We have (τ1, τ2) flat.

By induction, N[[τ1]] and N[[τ2]] are flat, so (N[[τ1]],N[[τ2]]) is flat by definition.

Lemma A.1.8. For type τ = {τ ′ ; ν } or τ = (τ1, τ2), ` [τ ] . N[[τ ]] ok.

Proof. The proof is by induction on the definition of N.

(base case) {τ ; ν } By definition, N[[{τ ; ν }]] = {τ ; nd(ν) }.

By CO-FL, CO-LR, and CO-TRANS, ` [{τ ; ν }] . {τ ; nd(ν) } ok.

(τ1, τ2) By definition, N[[(τ1, τ2)]] = (N[[τ1]],N[[τ2]]).

By the inductive hypothesis, ` [τ1] . N[[τ1]] ok and ` [τ2] . N[[τ2]] ok.

Then ` ([τ1], [τ2]) . (N[[τ1]],N[[τ2]]) ok by CO-PAIR.

By CO-ZL, ` [(τ1, τ2)] . ([τ1], [τ2]) ok.

So, by CO-TRANS, ` [(τ1, τ2)] . (N[[τ1]],N[[τ2]]) ok.
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A.2 Lemmas and Theorems from the Main Document

Lemma 4.1.1 (well-formed coercions are invertible, p. 47).

If ` τ . τ ok, then ` τ . τ ok.

Proof. The proof is by induction over the heights of the judgments in Figure 4.3.

base cases CO-ID is immediate. The following pairs of rules proves the claim for one another:

CO-FL and CO-FR; CO-LL and CO-LR; CO-ZL and CO-ZR; CO-ZFL and CO-ZFR.

CO-A . We have ` [τ ] . [τ ] ok.

From the premise, ` τ . τ ok.

By inductive hypothesis on the premise, ` τ . τ ok.

Then by CO-A, ` [τ ] . [τ ] ok.

CO-F . Identical to case CO-A, mutatis mutandis.

CO-FUN . We have ` τ1 → τ2 . τ1 → τ2 ok

From the premises, ` τ1 . τ1 ok and ` τ2 . τ2 ok.

By inductive hypotheses on the premises, ` τ1 . τ1 ok and ` τ2 . τ2 ok.

Then by CO-FUN, ` τ1 → τ2 . τ1 → τ2 ok

CO-PAIR We have ` (τ1, τ2) . (τ1, τ2) ok

From the premises, ` τ1 . τ1 ok and ` τ2 . τ2 ok.

By inductive hypotheses on the premises, ` τ1 . τ1 ok and ` τ2 . τ2 ok.

Then by CO-PAIR, ` (τ1, τ2) . (τ1, τ2) ok.

CO-TRANS We have ` τ1 . τ3 ok. From the premises, ` τ1 . τ2 ok and ` τ2 . τ3 ok. By induction,

` τ3 . τ2 ok and ` τ2 . τ1 ok. Then by CO-TRANS, ` τ3 . τ1 ok.
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Lemma 4.1.2 (coercions within A, p. 51).

If τ1 A τ , then τ2 A τ ⇔ ` τ1 . τ2 ok.

Proof. The proof follows immediately from Lemmas A.2.1 and A.2.1 below.

Lemma A.2.1. If τ1 A τ and τ2 A τ , then ` τ1 . τ2 ok.

Proof. We have τ1 A τ and τ2 A τ .

By the premise of ARRAY-OF, we have τ1 L [τ ] and τ2 L [τ ].

By L-SYMM, τ2 L [τ ] =⇒ [τ ] L τ2.

So, by L-TRANS, τ1 L τ2.

Therefore, to prove the lemma, it is sufficient to show τ1 L τ2 =⇒ ` τ1 . τ2 ok.

The proof proceeds by induction on the judgments in L.

(base case) L-REFL In the case that τ1 = τ2 = τ ′, ` τ ′ . τ ′ ok is immediate by CO-ID.

L-SYMM We know that τ1 L τ2. By the premise of L-SYMM, τ2 L τ1. By induction, ` τ2 . τ1 ok.

By Lemma 4.1.1, ` τ1 . τ2 ok.

L-TRANS By induction on the premises and CO-TRANS.

(base case) L-ZPR By CO-ZL.

(base case) L-LF By CO-LR.

(base case) L-ND By CO-NR.

L-PARR By induction on the premise and CO-A.

L-PF By induction on the premise and CO-FL.

L-FARR By induction on the premise and CO-F.
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L-PAIR By induction on the premise and CO-PAIR.

L-FUN By induction on the premise and CO-FUN.

Lemma A.2.2. If τ1 A τ and ` τ1 . τ2 ok, then τ2 A τ .

Proof. The proof is by induction over the well-formedness judgments for coercions.

In the proof, we use τ as the name of the type τ1 and τ2 are both related to.

As in Lemma A.2.1, we appeal to the only rule of A to reduce the problem to the following: if

τ1 L τ and ` τ1 . τ2 ok, then τ2 L τ .

CO-ID Immediate for ` τ1 . τ1 ok.

CO-FL We have ` [τ ] . {τ ; lf } ok and [τ ] L τ .

By L-PF and L-TRANS, {τ ; lf } L τ .

CO-FR Symmetric to CO-FL.

CO-LL We have ` {τ ; nd(ν) } . {{τ ; ν } ; lf } ok and {τ ; nd(ν) } L τ .

By L-TRANS and L-LF, {{τ ; ν } ; lf } L τ .

CO-LR Symmetric to CO-LL.

CO-ZL and CO-ZR Like the previous pairs of cases, but making use of L-ZPR.

CO-ZFL and CO-ZFR Like the previous pair of cases, but making use of L-PF, L-PAIR, and L-ZPR.

CO-A We have ` [τ1] . [τ2] ok and [τ1] L τ .

By CO-A, ` τ1 . τ2 ok.

By L-PARR and L-TRANS, [τ2] L τ .
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CO-F Like the previous case, but making use of L-FARR.

CO-FUN We have ` τ1 → τ2 . τ1 → τ2 ok and τ1 → τ2 L τ .

By CO-FUN, ` τ1 . τ1 ok and ` τ2 . τ2 ok.

Then by L-FUN, τ1 → τ2 L τ .

CO-PAIR Similar to CO-FUN, using L-PAIR in place of L-FUN.

CO-TRANS We have ` τ1 . τ3 ok and τ1 L τ .

By inductive hypotheses on the premises of CO-TRANS, τ1 L τ2 and τ2 L τ3 for some τ2.

Then by L-TRANS, τ3 L τ .

Theorem 4.1.1 (7→ preserves types, p. 54).

If Γ ` eτ ok and eτ 7→∗ eτ , then Γ ` eτ ok.

Proof. The proof proceeds by examining each rule in the flattening relation. Assume that for some

Γ we have Γ ` e0
τ0 ok and e0

τ0 7→ e0
τ0 . We need to show that Γ ` e0

τ0 ok.

CD-IDI We assume Γ ` e0
τ0 ok.

By definition, ` (τ0 . τ0) ok.

Then by OK-COERCE and OK-APP, Γ ` ((τ0 . τ0) e0)
τ0 ok.

CD-IDE We assume Γ ` ((τ0 . τ0) e0)
τ0 ok.

Then by OK-APP, Γ ` e0
τ0 ok.

CD-CI Let τ0 = τ1 → τ3 and e0 = τ1 . τ3. We assume ` τ1 . τ3 ok, and ` τ1 . τ2 ok.

By OK-COERCE, Γ ` (τ1 . τ2)
τ1→τ2 ok and Γ ` (τ2 . τ3)

τ2→τ3 ok.

Then by OK-COMP, Γ ` ((τ2 . τ3) ◦ (τ1 . τ2))
τ1→τ3 ok.
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CD-CE We assume ` (τ2 . τ3) ok and ` (τ1 . τ2) ok.

By OK-COERCE, Γ ` (τ2 . τ3)
τ2→τ3 ok and Γ ` (τ1 . τ2)

τ1→τ2 ok.

Then by OK-COMP, Γ ` (τ1 . τ3)
τ1→τ3 ok.

CD-CU Let t1 = e1
τ1→τ0 , t2 = e2

τ2→τ1 , and t3 = e3
τ2 .

We assume Γ ` t1 ok, Γ ` t2 ok, Γ ` t3 ok, and Γ ` (t1 (t2 t3))
τ0 ok.

By OK-COMP, Γ ` (t1 ◦ t2)
τ2→τ0 ok.

Then by OK-APP, Γ ` ((t1 ◦ t2) t3)
τ0 ok.

CD-CF We assume Γ ` ((t1 ◦ t2) t3)
τ0 ok.

By OK-APP, Γ ` t3 ok and Γ ` (t1 ◦ t2)
τ2→τ0 ok, where t3 = e3

τ2 .

By OK-COMP, Γ ` t1 ok and Γ ` t2 ok, where t1 = e1
τ1→τ0 and t2 = e2

τ2→τ1 .

By OK-APP, Γ ` (t2 t3)
τ1 ok.

Then by OK-APP, Γ ` (t1 (t2 t3))
τ0 ok.

CD-PAIR Let t1 = e1
τ1 and t2 = e2

τ2 .

We assume Γ ` (((τ1 . τ1) t1)
τ1 , ((τ2 . τ2) t2)

τ2)(τ1,τ2) ok.

By OK-PAIR, Γ ` ((τ1 . τ1) t1)
τ1 ok, and Γ ` ((τ2 . τ2) t2)

τ2 ok.

By OK-APP, Γ ` (τ1 . τ1)
τ1→τ1 ok, Γ ` (τ2 . τ2)

τ2→τ2 ok, Γ ` e1
τ1 ok, and Γ ` e2

τ2 ok.

By OK-PAIR, Γ ` (t1, t2)
(τ1,τ2) ok.

By CO-PAIR, ` (τ1, τ2) . (τ1, τ2) ok.

Then, by OK-APP, Γ ` (((τ1, τ2) . (τ1, τ2)) (t1, t2))
(τ1,τ2) ok.

CD-FST Let t1 = e1
τ1 and t2 = e2

τ2 .

We assume Γ ` (((τ1 . τ1) t1)
τ1 , t2)

(τ1,τ2) ok.
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By OK-PAIR, Γ ` ((τ1 . τ1) t1)
τ1 ok, and Γ ` t2

τ2 ok.

By OK-APP, Γ ` (τ1 . τ1)
τ1→τ1 ok and Γ ` e1

τ1 ok.

By OK-PAIR, Γ ` (t1, t2)
(τ1,τ2) ok.

Then by OK-PROJ for i = 1, Γ ` π1 (t1, t2)
τ1 ok.

Then by OK-APP, Γ ` ((τ1 . τ1) π1 (t1, t2))
τ1 ok.

CD-SND The same as the CD-FST case, with appropriate modifications.

CD-IF Let t1 = e1
bool , t2 = e2

τ0 , and t3 = e3
τ0 .

We assume Γ ` (if t1 then ((τ0 . τ0) t2)
τ0 else ((τ0 . τ0) t3)

τ0)τ0 ok.

By OK-IF, Γ ` e1
bool ok, Γ ` ((τ0 . τ0) t2)

τ0 ok, and Γ ` ((τ0 . τ0) t3)
τ0 ok.

By OK-APP, Γ ` (τ0 . τ0)
τ0→τ0 ok, Γ ` e2

τ0 ok, and Γ ` e3
τ0 ok.

Then by OK-IF, Γ ` (if t1 then t2 else t3)
τ0 ok.

Then by OK-APP, Γ ` ((τ0 . τ0) ((if t1 then t2 else t3)
τ0))

τ0 ok.

CD-APP Let t1 = e1
τ1→τ2 and t2 = e2

τ1 .

We have Γ ` (((τ1 → τ2 . τ1 → τ2) t1) ((τ1 . τ1) t2))
τ2 ok.

By OK-APP and OK-COERCE,

• ` τ1 → τ2 . τ1 → τ2 ok,

• ` τ1 . τ1 ok,

• Γ ` e1
τ1→τ2 ok, and

• Γ ` e2
τ1 ok.

By CO-FUN, ` τ2 . τ2 ok.

By OK-APP, Γ ` (t1 t2)
τ2 ok.

By OK-COERCE and OK-APP, Γ ` ((τ2 . τ2) (t1 t2))
τ2 ok.
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CD-COMP The distinct part of proving this case is establishing ` τ1 → τ3 . τ1 → τ3 ok.

We have ((τ2 → τ3 . τ2 → τ3) t1 ◦ (τ1 → τ2 . τ1 → τ2) t2)
τ1→τ3 .

By OK-COMP, OK-APP, and OK-COERCE, ` τ2 → τ3 . τ2 → τ3 ok.

Then by CO-FUN, ` τ3 . τ3 ok.

Similarly, by OK-COMP, OK-APP, and OK-COERCE, ` τ1 → τ2 . τ1 → τ2 ok.

Then by CO-FUN, ` τ1 . τ1 ok.

The by CO-FUN, ` τ1 → τ3 . τ1 → τ3 ok.

The rest follows.

CD-ARR We have Γ ` [(τ . τ) t1, . . . , (τ . τ) tn][τ ] ok.

By OK-ARR, OK-APP, and OK-COERCE, we know that Γ ` ti
τ ok for 1 ≤ i ≤ n, and

` τ . τ ok.

Then, by OK-PARR, Γ ` [t1, . . . , tn][τ ] ok.

By CO-A, ` [τ ] . [τ ] ok.

So, by OK-COERCE and OK-APP, Γ ` (([τ ] . [τ ]) [t1, . . . , tn])[τ ] ok.

CD-FARR Similar to CD-ARR, mutatis mutandis.

CD-LET Similar to the OK-IF case.

CD-FUN Similar to the OK-IF case.

CD-VAR We have Γ ` xτ ok.

From the premise, ` τ . τ ok.

By OK-APP, Γ ` ((τ . τ) x)τ ok.

CD-CTXT By Lemma A.1.1.
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CD-SUB Let t1 = e1
τ .

We have Γ ` (t1 !τ t2)
! τ ok.

From the premise, ` τ . τ ok.

By OK-SUB, Γ ` e1
τ ok.

By OK-APP and OK-SUB, Γ ` ((τ . τ) t1 !τ t2)
! τ ok.

By Lemmas 4.1.1 and A.1.6, ` ! τ . ! τ ok.

By OK-APP, Γ ` ((! τ . ! τ) ((τ . τ) t1 !τ t2))
! τ ok.

CD-FILT Let t1 = e1
τ1→bool and t2 = e2

τ2 .

We have Γ ` (filt(τ1,τ2) (t1, t2))
τ2 ok.

From the premise, τ2 A τ1.

By OK-FILT, Γ ` e1
τ1→bool ok, Γ ` e2

τ2 ok, and τ2 A τ1.

By τ2 A τ1 and τ2 A τ1 and Lemma 4.1.2, ` τ2 . τ2 ok and ` τ2 . τ2 ok.

By OK-APP and OK-FILT, Γ ` (filt(τ1,τ2) (t1, (τ2 . τ2) t2))
τ2 ok

By OK-COERCE and OK-APP, Γ ` ((τ2 . τ2) (filt(τ1,τ2) (t1, (τ2 . τ2) t2)))
τ2 ok.

CD-MAP Let t1 = e1
τ1→τ2 and t2 = e2

τ3 .

We have Γ ` (map(τ1,τ2,τ3,τ4) (t1, t2))
τ4 ok.

By OK-MAP, we have τ3 A τ1 and τ4 A τ2.

From the premises of CD-MAP, we have τ3 A τ1 and τ4 A τ2.

By Lemmas 4.1.2 and 4.1.1, we have ` τ3 . τ3 ok and ` τ4 . τ4 ok.

By the premise of OK-MAP, Γ ` e2
τ3 ok.

Then by OK-COERCE and OK-APP, we have Γ ` (τ3 . τ3) t2 ok.

By OK-COERCE, OK-APP, and OK-MAP, Γ ` (map(τ1,τ2,τ3,τ4) (t1, (τ3 . τ3) t2))
τ4 ok.
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Then by OK-COERCE and OK-APP, Γ ` ((τ4 . τ4) (map(τ1,τ2,τ3,τ4) (t1, (τ3 . τ3) t2)))
τ4 ok.

CD-RED Similar to CD-FILT.

We have Γ ` (red(τ1,τ2) (t1, t2, t3))
τ1 ok.

By the OK-RED and CD-RED, τ2 A τ1 and τ2 A τ1.

Then by Lemma 4.1.2, ` (τ2 . τ2) ok.

By OK-COERCE and OK-APP, Γ ` ((τ2 . τ2) t2)
τ2 ok, and the rest follows.

CD-LET-PROP Let t1 = e1
τ1 , t2 = e2

τ0 , and e0
τ0 = (let x = t1 in t2)

τ0 .

We assume ` τ1 . τ1 ok, Γ ` e0
τ0 ok. By CD-LET-PROP, we have e0

τ 7→e0
τ0 where

e0
τ0 = (let x = ((τ1 . τ1) (e1

τ1))τ1 in [x/(τ1 . τ1) x](e2
τ0))

τ0

for x fresh.

The subexpressions of e0 are well-formed under Γ:

(a) By OK-LET, Γ ` e1
τ1 ok and Γ[xτ1 ] ` e0

τ0 ok.

Then by OK-COERCE and OK-APP, Γ ` ((τ1 . τ1) (e1
τ1))τ1 ok.

(b) By OK-VAR, OK-COERCE, and OK-APP, Γ[xτ1 ][xτ1 ] ` ((τ1 . τ1) xτ1)
τ1 ok.

Then by Lemma A.1.3, Γ[xτ1 ][xτ1 ] ` e2
τ0 ok.

Then by Lemma A.1.2, Γ[xτ1 ][xτ1 ] ` ([x/(τ1 . τ1) x](e2
τ0))τ0 ok.

Then by Lemmas A.1.4 and A.1.5, Γ[xτ1 ] ` ([x/(τ1 . τ1) x](e2
τ0))τ0 ok.

Then by (a) and (b) and OK-LET, Γ ` e0
τ0 ok.

CD-FUN-PROP Let t1 = eτ1 and t2 = eτ2 .

We have Γ ` (fun f xτ0 = t1 in t2)
τ2 ok.

From the premise, we have ` τ0 . τ0 ok.
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From OK-FUN, we have Γ[xτ0 ][fτ0→τ1 ] ` e1
τ1 ok and Γ[fτ0→τ1 ] ` e2

τ2 ok.

Let eτ2 = (fun f xτ0 = [x/(τ0 . τ0) x][f/f ◦ (τ1 . τ1)] t1 in [f/f ◦ (τ1 . τ1)] t2)
τ2 .

Let Γ′ = Γ[xτ1 ][fτ0→τ1 ][xτ1 ][fτ1→τ2 ].

We also know Γ′ ` ((τ1 . τ1) x)τ1 ok and Γ′ ` ((f ◦ (τ1 . τ1)))
τ1→τ2 ok.

By Lemmas A.1.2, A.1.3, A.1.4, and A.1.5,

Γ[xτ1 ][fτ0→τ1 ] ` [x/(τ0 . τ0) x][f/f ◦ (τ1 . τ1)] t1 ok

Γ[fτ0→τ1 ] ` [f/f ◦ (τ1 . τ1)] t2 ok

Thus Γ ` eτ2 ok by OK-LET.

Lemma 4.2.1 (F maps source types to flat types, p. 59).

For τ , a source type, F[[τ ]] is flat.

Recall by definition a source type is one of those generated by the grammar

τ ::= g | τ → τ | (τ, τ) | [τ ]

By definition a flat type is either a ground type, a function type built of flat types, a pair type built

of flat types, or a flattened array type {τ ; ν } for τ not an array and not a pair.

Proof. The proof is by induction on the argument to F. The array case is expanded into four cases,

for arrays containing ground types, function, pairs, and arrays.

(base case) ground types F[[g ]] = g, g is flat by definition.

(base case) arrays of ground types F[[[g]]] = {g ; lf }, {g ; lf } is flat by definition.

functions F[[τ1 → τ2 ]] = F[[τ1 ]] → F[[τ2 ]]. By induction, F[[τ1 ]] and F[[τ2 ]] are flat. Then the

result F[[τ1 ]] → F[[τ2 ]] is flat by definition.
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pairs Like the previous case, mutatis mutandis.

arrays of functions F[[[τ1 → τ2]]] = {F[[τ1 ]] → F[[τ2 ]] ; lf } By induction, F[[τ1 ]] → F[[τ2 ]] is

flat, so by definition {F[[τ1 ]] → F[[τ2 ]] ; lf } is flat.

arrays of pairs F[[[(τ1, τ2)]]] = (F[[[τ1]]],F[[[τ2]]]). By inductive hypotheses, both components of

the result are flat, so the result is flat.

arrays of arrays F[[[[τ ]]]] = N[[F[[[τ ]]]]].

By definition of F over arrays, F[[[τ ]]] is either a flattened array or a pair.

By inductive hypothesis, F[[[τ ]]] is flat.

The result is flat by Lemma A.1.7.

Lemma 4.2.2 (F’s coercions are well-formed, p. 60).

If F[[τ ]] = τ , then ` τ . τ ok.

Proof. The proof is by induction over the structure of source types.

(base case) g We have F[[g ]] = g. ` g . g ok by CO-ID.

(base case) [g] We have F[[[g]]] = {g ; lf }. ` [g] . {g ; lf } ok by CO-FL.

τ1 → τ2 We have F[[τ1 → τ2 ]] = F[[τ1 ]] → F[[τ2 ]].

Let τ1 = F[[τ1 ]] and τ2 = F[[τ2 ]].

By the inductive hypothesis on τ1 and τ2, ` τ1 . τ1 ok and ` τ2 . τ2 ok.

Then by CO-FUN, ` τ1 → τ2 . τ1 → τ2 ok.

(τ1, τ2) We have F[[(τ1, τ2)]] = (F[[τ1 ]],F[[τ2 ]]).

Let τ1 = F[[τ1 ]] and τ2 = F[[τ2 ]].
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By the inductive hypothesis on τ1 and τ2, ` τ1 . τ1 ok and ` τ2 . τ2 ok.

Then by CO-PAIR, ` (τ1, τ2) . (τ1, τ2) ok.

[τ1 → τ2] We have F[[[τ1 → τ2]]] = {F[[τ1 → τ2 ]] ; lf }.

Let τ1 → τ2 = F[[τ1 → τ2 ]].

By the inductive hypothesis, ` τ1 → τ2 . τ1 → τ2 ok.

Then by CO-FL, ` [τ1 → τ2] . {τ1 → τ2 ; lf } ok.

[(τ1, τ2)] We have F[[[(τ1, τ2)]]] = (F[[[τ1]]],F[[[τ2]]]).

Let τ1 = F[[[τ1]]] and τ2 = F[[[τ2]]].

By the inductive hypthesis, ` [τ1] . τ1 ok and ` [τ2] . τ2 ok.

By CO-PAIR, ` ([τ1], [τ2]) . (τ1, τ2) ok.

By CO-ZL, ` [(τ1, τ2)] . ([τ1], [τ2]) ok.

Then by CO-TRANS, ` [(τ1, τ2)] . (τ1, τ2) ok.

[[τ ]] We have F[[[[τ ]]]] = N[[F[[[τ ]]]]]

We need to show ` [[τ ]] . N[[F[[[τ ]]]]] ok.

By inspection of the definition of F and Lemma 4.2.1, if the argument to F is an array type

[τ ], then F produces either a flat array type or a pair of flat types.

We need consider only these two cases.

{τ ; ν } Let F[[[τ ]]] = {τ ; ν }.

We have N[[{τ ; ν }]] = {τ ; nd(ν) }.

To show: ` [[τ ]] . {τ ; nd(ν) } ok.

By the inductive hypothesis on F, ` [τ ] . {τ ; ν } ok.

By CO-FL, ` [[τ ]] . {{τ ; ν } ; lf } ok.
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By CO-LR, ` {{τ ; ν } ; lf } . {τ ; nd(ν) } ok.

By CO-TRANS, ` [[τ ]] . {τ ; nd(ν) } ok, which was to be shown.

(τ1, τ2) Let (τ1, τ2) = F[[[τ ]]].

We need ` [[τ ]] . N[[(τ1, τ2)]] ok.

By inductive hypothesis, we have ` [τ ] . (τ1, τ2) ok.

Then by CO-A, ` [[τ ]] . [(τ1, τ2)] ok.

By Lemma A.1.8 (see below), ` [(τ1, τ2)] . N[[(τ1, τ2)]] ok.

Then by CO-TRANS, we have ` [[τ ]] . N[[(τ1, τ2)]] ok.

Theorem 4.2.3 (7→ encodes ⇓, p. 63).

If eτ ⇓ ((τ . τ) eτ )
τ , then eτ 7→∗ ((τ . τ) eτ )

τ .

Proof. Given: eτ ⇓ ((τ . τ) eτ )
τ .

Then by FLATTEN, {} ` eτ ↘ (τ . τ) � eτ .

Then, to show: {} ` eτ ↘ (τ . τ) � eτ =⇒ eτ 7→∗ ((τ . τ) eτ )
τ .

B-BASE To show: bτ 7→∗ ((τ . τ) bτ )τ

The conclusion is immediately true by CD-IDE.

B-VAR xτ 7→ ((τ . τ) xτ )
τ immediate from CD-VAR.

B-IF We have (if e1
bool then e2

τ else e3
τ )

τ
.

By the premises of the judgment, we have ∆ ` e1
bool ↘ (bool . bool) � e1

bool .

By induction and CD-IDE, we have e1
bool 7→∗ (bool . bool) e1

bool 7→ e1
bool .

By induction, we have e2
τ 7→∗ (τ . τ) e2

τ and e3
τ 7→∗ (τ . τ) e3

τ .
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By three applications of CD-CTXT we have

(if e1
bool then e2

τ else e3
τ )

τ 7→∗ (if e1
bool then (τ . τ) e2

τ else (τ . τ) e3
τ )

τ

Then by CD-IF we have

(if e1
bool then (τ . τ) e2

τ else (τ . τ) e3
τ )

τ

7→ ((τ . τ) (if e1
bool then e2

τ else e3
τ ))

τ

which proves the case.

B-LET By induction on the premises and CD-LET to hoist coercion τ2 . τ2 out of the scope of the

let-expression.

B-FUN Similar to the previous case, but using CD-FUN.

B-PAIR By induction on the premises and CD-PAIR to factor the coercions out of the expessions

in the pair.

B-FST By induction on the premise and CD-FST to hoist the coercion τ1 . τ1 out of the first

expression in the pair.

B-SND Similar to B-FST.

B-APP By induction on the premises and CD-APP.

B-ARR We have F[[[τ ]]] = τ .

By CO-ID, ` τ . τ ok.

By Lemma 4.2.2, F[[[τ ]]] = τ =⇒ ` [τ ] . τ ok.

By Lemma 4.1.1, ` τ . [τ ] ok.

Therefore by CD-CI, τ . τ 7→ (τ . [τ ]) ◦ ([τ ] . τ).
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By CD-IDI, eτ 7→ (τ . τ) eτ .

Since τ . τ 7→ (τ . [τ ]) ◦ ([τ ] . τ), by CD-CTXT, (τ . τ) eτ 7→ (((τ . [τ ]) ◦ ([τ ] . τ)) eτ )
τ .

By CD-CF, (((τ . [τ ]) ◦ ([τ ] . τ)) eτ )
τ 7→ ((τ . [τ ]) (([τ ] . τ) eτ ))

τ , which was to be shown.

B-COMP By induction on the premises and CD-COMP.

B-SUB By induction on the premises, we have e1
τ 7→∗ ((τ . τ) e1

τ )
τ .

We also have e2
int 7→∗ ((int . int) e2

int )
int which 7→ e2

int by CD-IDE.

By two applications of CD-CTXT, we step from the original term to

(((τ . τ) e1
τ )

τ
!τ e2

int )
! τ

By Lemma A.1.6, ` ! τ . ! τ ok.

Then, by CD-SUB, we can step to

((! τ . ! τ) ((τ . τ) (τ . τ) e1
τ )

τ
!τ e2

int )
! τ

We cancel τ . τ and τ . τ by CD-CF, CD-CE, and CD-IDE to arrive at

((! τ . ! τ) (e1
τ !τ e2

int )
! τ

)
! τ

B-MAP Similar to CD-SUB, using CD-MAP and Lemmas 4.2.2 and 4.1.2.

B-FILT Similar to CD-SUB, using CD-FILT and Lemma 4.1.2.

B-RED Similar to CD-SUB, using CD-RED and Lemma 4.1.2.
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