Recall the definition of MinML from the textbook and recall the notation we used in Homework Set 5 (which was due on November 4, 2008).

1. Consider removing the expression form \(\text{fun } f(x : \tau_1) : \tau_2 \text{ is } e \) from the language. In its place we add two other constructs:
 - ordinary (non-recursive) \(\lambda \)-forms \(\lambda x : \tau . e \) whose static and dynamic semantics are identical to those given in the lecture notes when discussing the simply typed \(\lambda \)-calculus, and
 - a special binding form for recursive functions called \(\text{letrec} \):

 \[
 \text{letrec } f : \tau_1 \rightarrow \tau_2 = \lambda x . e \text{ in } e_2
 \]

 The idea is to evaluate \(e_2 \) in the scope of a binding for the recursive function \(f \) whose type is \(\tau_1 \rightarrow \tau_2 \), whose formal argument is \(x \), and whose body is \(e \). Within \(e \) there may be free references \(x \) (for referring to the argument) and to \(f \) (for referring to function \(f \) recursively).

 Your task is to:

 (a) Show the typing rule for this \(\text{letrec} \) form.

 (b) Show the cases of the definition of substitution that deal with \(\text{letrec} \).

 (c) Give a rule for evaluating a \(\text{letrec} \) expression in a substitution-based big-step semantics. Discuss your design—especially why and how it is trickier than the rule for the \(\text{fun} \) expression of the original MinML.

 \text{Hint:} How can you encode (or “macro-expand”) the original \(\text{fun} \) form in terms of \(\text{letrec} \) and vice versa?

 (d) Show the corresponding small-step rule for \(\text{letrec} \).

2. Since the E machine is not substitution-based, your solution to questions 1c and 1d does not work there. A “straightforward” approach to handling the problem seems to call for a “recursive” closure value \(V = \langle \lambda x : \tau_1 . e_1 , E \rangle \) where \(E \) binds \(f \) to \(V \). However, this does not work because the construction of such a value is not well-founded.

 We can handle this problem by not trying to “tie the recursive knot” directly at the time when we establish the binding for \(f \). Instead, we postpone this step until \(f \) is actually looked up.

 This approach distinguishes between two different kinds of variable bindings, namely the following:
normal bindings bind variables to machine values (which are defined as shown in the lecture notes), while

recursive bindings bind variables to information about a recursive function binding. The information consists of: (1) the name of the formal parameter \(x\), (2) the body of the recursive function \(e_1\), and (3) the environment \(E\) that was in effect when the machine started to process the \texttt{letrec} expression.

Normal bindings are established at the time a function is applied. Recursive bindings are established at the time a recursive function goes into scope. Looking up a normal binding simply finds a machine value and proceeds directly. Looking up a recursive binding has to create a machine value \textit{at the time of lookup}.

Your task is to flesh out this design:

- Define a syntactic category of \textit{bindings} (call it \(B\)) such that \(E = \text{Var} \mapsto \text{fin } B\). There should be two cases for \(B\) corresponding to what has been said above.
- Show all state transitions of the new machine involving variable binding \textit{(i.e.,} function application and \texttt{letrec})
- Show all state transitions of the new machine involving variable lookup.

3. Consider MinML with the extension of simple exceptions (as shown in the textbook). The added expression forms are \texttt{fail} and \texttt{try \(e_1\ ow e_2\)}.

For this language, design a substitution-based \textit{big-step} semantics. \textit{Hint:} To do so, start by defining a category of “runtime values” where a runtime value can be either an ordinary value or \texttt{fail}. A result of \texttt{fail} indicates that an exception has been raised and no ordinary value is available.

(a) Show the rule(s) for \texttt{try \(e_1\ ow e_2\)}.
(b) Show the rule(s) for function application \(e_1\ e_2\).