
MLPolyR
A (mini-)ML with type inference, polymorphic

records, and functional record update

by Matthias Blume
for CMSC 22620/23620, Spring 2005

Department of Computer Science, University of Chicago

and

Toyota Technological Institute at Chicago

1 Syntax

Figure 1 shows the syntax of MLPolyR in EBNF. Notice that this grammar, as written,
is highly ambiguous.

2 Type inference, record polymorphism, and functional
record update

The language has no type declarations or type annotations; all types are inferred by a
Hindley-Milner-style type inference engine that is part of the type checker.

Unlike Standard ML, the language incorporates Ohori-stylerecord polymorphism.
This means that, for example, the following functionaddab can subsequently be ap-
plied to any record argument as long as it has immutable integer fieldsa andb:

fun addab r = r.a + r.b
in

addab { a = 5, b = 7, c = "hello" } -
addab { b = 23, a = 0 } *
addab { z = 1, a = 22, y = 15, b = -1, x = 4 }

Record fields can be mutable. Field expressions for mutable fields use:= instead
of = between label and expression. Access to the contents of mutable fields is done
using! in place of the usual selection operator for immutable fields (.).

The language offers two functional record update operators:with andwhere. The
former strictly extends a given record (the left-hand side expression) with fields which
had not been present, while the latter strictly replaces existing fields with new fields.

1

program → functions∗ mainfun
functions → fun fundecl(and fundecl)∗

fundecl → name formals= exp
formals → varpat | ((varpat(, varpat)∗)opt)
varpat → | name

exp → let varpat= expin exp
| functionsin exp
| if expthen expelseexp
| caseexpof match
| expwith recordexp
| expwhere recordexp
| exp binconn exp
| exp exp
| unaryop exp
| exp. label
| exp! label
| exp! label := exp
| name
| true | false | integer | string
| ()
| (exp)
| (exp, exp(, exp)∗)
| (exp; exp(; exp)∗)
| [(exp(, exp)∗)opt]
| recordexp

match → nilcase| conscase
| conscase| nilcase

nilcase → [] => exp
conscase → varpat:: varpat=> exp
binconn → boolconn | cmpop | arithop | ::

boolconn → andalso | orelse
cmpop → == | > | >= | <> | < | <=

arithop → + | - | * | / | %
unaryop → - | isnull | hd | tl | not

label → name | integer
recordexp → { (fieldexp(, fieldexp)∗)opt }

fieldexp → name= exp | name:= exp
mainfun → fun main (varpat, varpat) = exp

name → . . .
integer → . . .
string → ” . . .”

Figure 1: Syntax ofMLPolyR

2

Either form of functional record update creates a brand-new record. There is no sharing
between fields of the old and the new record; mutable fields are “cloned.”

Record labels can be small positive integers. Atuple is a special case of a record
where the labels form an initial segment of the positive integers. The tuple syntax
(e1, . . . , ek) is equivalent to the record syntax{1 = e1, . . . , k = ek}.

The let-bound variables andfun-defined functions are given polymorphic types
within the respective body expression (afterin). Thevalue restrictionthat you perhaps
are familiar with from Standard ML applies: alet-bound variable’s type is not general-
ized if the right-hand side of the binding is not asyntactic value. Similarly, row types
(record types where not all fields are known) are generalized only if the record type in
question has not been involved in any functional record update (with or where). The
following code will not pass the type checker sinceaugmentc is not polymorphic in
r ’s row type:

fun augmentc (r, x) = r with { c = x }
in (augmentc ({ a = 1 }, 8), augmentc ({ b = 2 }, 9))

However, the function stillis polymorphic inx , which means that this code is ok:

fun augmentc (r, x) = r with { c = x }
in (augmentc ({ a = 1 }, 8), augmentc ({ a = 2 }, "a string"))

3 Expressions

literal data MLPolyR programs can use the following constants:

boolean true, false

numerical integer

string string

unit () — the record/tuple with no fields

lists [. . .]

records { . . .}
tuples (. . .)

identifiers Identifiers (name) in MLPolyR name values, not locations. They are not
mutable. The only form of assignment is update of mutable record fields.

binary operations In general, binary operations have the forme1⊗e2 where⊗ is one
of:

• short-circuiting logical or:orelse— boolean arguments and results

• short-circuiting logical and:andalso— boolean arguments and results

• comparisons:== <> < > <= >= — integer operands, boolean result

3

• list cons: :: — element and list operands, list result

• addition and subtraction:+ - — integer operands and result

• multiplication and division:* / %— integer operands and result

These operators are listed in order of increasing precedence.

unary operations There are five unary operations:

• boolean negation:not e — boolean argument, boolean result

• arithmetic negation:- e — integer argument, integer result

• empty list test:isnull e — list argument, boolean result

• list head:hd e — list argument, element result

• list tail: tl e — list argument, list result

conditional expression An if expression evaluates its boolean condition and depend-
ing on the outcome proceeds to evaluate either thethen branch or theelsebranch.
The expression that is not needed does not get evaluated. Notice thate1 andalso
e2 ande1 orelsee2 are equivalent toif e1 then e2 elsefalseandif e1 then true
elsee2, respectively.

4 Built-in functions

MLPolyR programs are compiled in a global environment containing a binding for the
following record value:

val String : { toInt : string -> int,
fromInt : int -> string,
inputLine : () -> string,
size : string -> int,
output : string -> (),
sub : string * int -> int,
concat : string list -> string,
substring : string * int * int -> string,
compare : string * string -> int }

The elements of this record can be used to perform simple I/O tasks and string
manipulation.

4

