
Extensible Programming with First-Class Cases

Matthias Blume Umut A. Acar Wonseok Chae
Toyota Technological Institute at Chicago
{blume,umut,wchae}@tti-c.org

Abstract
We present language mechanisms for polymorphic, extensible
records and their exact dual, polymorphic sums with extensible
first-class cases. These features make it possible to easily extend
existing code with new cases. In fact, such extensions do not re-
quire any changes to code that adheres to a particular programming
style. Using that style, individual extensions can be written inde-
pendently and later be composed to form larger components. These
language mechanisms provide a solution to the expression problem.

We study the proposed mechanisms in the context of an im-
plicitly typed, purely functional languagePolyR. We give a type
system for the language and provide rules for a 2-phase transforma-
tion: first into an explicitly typedλ-calculus with record polymor-
phism, and finally to efficient index-passing code. The first phase
eliminates sums and cases by taking advantage of the duality with
records.

We implement a version ofPolyR extended with imperative fea-
tures and pattern matching—we call this languageMLPolyR . Pro-
grams inMLPolyR require no type annotations—the implemen-
tation employs a reconstruction algorithm to infer all types. The
compiler generates machine code (currently for PowerPC) and op-
timizes the representation of sums by eliminating closures gener-
ated by the dual construction.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features—Polymorphism

General Terms Design, Languages

Keywords duality, first-class cases, records, sums

1. Introduction
In this paper we study language mechanisms for polymorphic ex-
tensible records and their duals: polymorphic sums with a mecha-
nism for adding new cases to existing code handling such sums. We
present a type system based on a straightforward application of row
polymorphism [26] and incorporate it into a dialect of ML called
MLPolyR . Our compiler forMLPolyR provides efficient type re-
construction of principal types by using a variant of the well-known
algorithm W [19]. The key technical insight to fully general type
inference is to keep separate type constructors for sums and cases
during type inference. Taking advantage of duality, sums and cases
can be eliminated later by translation into an explicitly typed inter-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’06 September 16–21, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-309-3/06/0009. . . $5.00.

mediate language. This translation is formalized as part of our type
system.

As in any dual construction, the introduction form of the primal
corresponds to the elimination form of the dual. Thus, elimination
forms of sums (e.g.,match or case) correspond to introduction
forms of records. In particular, record extension (an introduction
form) corresponds to extension ofcases(an elimination form).
This duality motivates making cases first-class values as opposed
to mere syntactic form.1 With cases being first-class and extensible,
one can use the usual mechanisms of functional abstraction in a
style of programming that facilitates composable extensions. We
show examples for this later in the introduction and in Section 2.

Our polymorphic sums provide a notion oftype refinementsim-
ilar to data sorts of Freeman and Pfenning [9] and give rise to a sim-
ple programming pattern facilitatingcomposable extensions. Com-
posable extensions can be used as a principled approach to solv-
ing the well-knownexpression problemdescribed by Wadler [30].
There have been many attempts at solving the expression problem,
most of them in an object-oriented context [28, 22, 3, 16, 27, 6, 8,
33, 18, 4, 29, 34]. Garrigue shows an approach based on polymor-
phic variants which is similar to our proposal, but somewhat less
general [11].

Composable record extension and its dual

To understand the underlying mechanism, it is instructive to first
look at an example. InMLPolyR we write{ a = 1, ... = r }
to create a new record which extends recordr with a new field
a. Since records are first-class values, we can abstract over the
record being extended and obtain a functionadd a that extends
any argument record (as long as it does not already containa) with
a field a. Such a function can be thought of as the “difference”
between its result and its argument:

fun add a r = { a = 1, ... = r }
Here the difference consists of a field labeleda of type int and
value1. The type of functionadd a is inferred as:2

val add a: { β } → { a: int, β }
We can write similar functionsadd b andadd c of types
{ β } → { b:bool, β } and { β } → { c:string, β }
which add fieldsb andc respectively:

fun add b r = { b = true, ... = r }
fun add c r = { c = "hello", ... = r }

We can then “add up” record differences represented byadd a,
add b, add c by composing these functions:

fun add ab r = add a (add b r)
fun add bc r = add b (add c r)

The inferred types are:
val add ab: { β } → { a: int, b: bool, β }
val add bc: { β } → { b: bool, c: string, β }

1 In Standard ML [20], the corresponding syntactic form is known asmatch.
2 We omit the universal quantifier and the kind of the row variableβ.

Finally, we can create actual records by “adding” differences to the
empty record:

val a = add a {}
val ab = add ab {}
val bc = add bc {}

When translated to the dual, extensibility of records becomes exten-
sibility of code. Here is a function representing the difference be-
tween two code fragments, one of which can handle case‘A while
the other, represented by the argumentc, cannot:

fun add A c = cases‘A () => print "A"

default: c
Note that functionadd A corresponds toadd a of the dual. The
type inferred foradd A is:

val add A: (<β> ↪→ ()) → (<‘A of (), β> ↪→ ())
Here a type〈ρ〉 ↪→ τ denotes the type of first-class cases where
〈ρ〉 is the sum type that is being handled andτ is the result. One
can think of↪→ as an alternative function arrow whose elimination
form will be discussed below. Examples for functionsadd B and
add C (corresponding toadd b andadd c in the dual) are:

fun add B c = cases‘B () => print "B"

default: c
fun add C c = cases‘C () => print "C"

default: c
As in the dual, we can now compose difference functions to obtain
larger differences:

fun add AB c = add A (add B c)
fun add BC c = add B (add C c)

By applying a difference to the empty casenocaseswe obtain case
values:

val case A = add A nocases
val case AB = add AB nocases
val case BC = add BC nocases

These values can be used in amatch form. Thematch construct is
the elimination form for the case arrow↪→. The following expres-
sion will cause"B" to be printed:

match ‘B () with case BC
The previous examples demonstrate how functional record exten-
sion in the primal corresponds to code extension in the dual. This
forms the basis for our proposed solution to the expression prob-
lem. In the non-recursive case, code extension is as straightforward
as shown above. Section 2 discusses extensible CPS conversion as
a realistic example where a recursive type is extended in an inter-
esting way.

2. Case study: CPS conversion
Let us consider a recursive sum type whose values represent un-
typed λ-terms. We use a Scheme-like calculus [21] with multi-
parameter functions.3 Variables‘Var x are represented by small
integersx, applications‘App(e,~e) by an operatore and a list of
operands4 ~e, andλ-abstractions‘Lam(~x,e) by a list of bound vari-
ables~x and a bodye. We also include constants‘Con c.

Terms whose outermost constructor is‘Con, ‘Var or ‘Lam are
calledsyntactic values. A commonly considered refinement of the
term type restricts‘App to only take such syntactic values. This
is known as the CPS-restriction, since assuming a particular eval-
uation strategy (e.g., call-by-value, left-to-right) every unrestricted
term can be converted into an “equivalent” CPS-term by making
use ofContinuation-Passing Style.

3 As we will see below, our CPS-converter requires this feature to accom-
modate continuation arguments.
4 We use the vector-arrow notation as in~a to indicate variables or sub-terms
that are lists.

fun kv2kb kv = λv.‘App(kv,[v])
fun kb2kv kb = withfresh(λxr.‘Lam([xr],kb(‘Var xr)))

fun cvt app(e,~e,kv) = let
fun lc([],kb) = kb([])

| lc(e::~e,kb) = pc(e,~e,λ(v, ~v).kb(v::~v))
and pc(e,~e,kb) = cvt(e,λv.lc(~e,λ~v.kb(v,~v)))

in pc(e,~e,λ(v, ~v).‘App(v,kv::~v)) end

and cvt lam(~x,e) = withfresh (λxk.
‘Lam(xk::~x,cvt(e,kv2kb(‘Var xk))))

and cvt(e,kb) = match e with
cases‘Con i ⇒ kb(‘Con i)

| ‘Var x ⇒ kb(‘Var x)
| ‘Lam(~x,e)⇒ kb(cvt lam(~x,e))
| ‘App(e,~e)⇒ cvt app(e,~e,kb2kv(kb))

fun convert e = cvt lam([],e)

Figure 1. A simple CPS-converter.When converting‘App, the contin-
uation builderkb must be turned into a syntactic valuekv that can be passed
as an additional argument; thiskv is a new‘Lam with a single parameterxr

and a body obtained by applyingkb toxr (see functionkb2kv). Conversely,
to convert a‘Lam, an extra formal argumentxk representing the continu-
ation is added. The correspondingkb simply constructs an‘App of xk to
whatever argumentv is given tokb (see functionkv2kb). For clarity, the
code for‘App and‘Lam has been separated out into functionscvt app and
cvt lam; cvt app uses helper functionslc andpc to recursively convert
the operatore and all operands~e.

Following Appel [1], the conversion can be performed in
essentially linear time using an approach that could be called
“continuation-builder passing style” where the converter function
cvt (see Figure 1) receives the expressione to be converted andkb,
the continuation builder, which represents the context in whiche
appeared within the original expression. Once the converter comes
up with a syntactic valuev for the result ofe, kb is invoked on this
v in order to produce the CPS expression representinge’s original
context.

2.1 Variants, polymorphism, subtyping, and refinement

As explained in the introduction, our languageMLPolyR has poly-
morphic sum types in the style of OCaml.5 The type system is based
on Ŕemy-stylerow polymorphism, handles equi-recursive types,
and can infer principle types for all language constructs. For func-
tion convert in Figure 1, the compiler calculates the following
type:

val convert:

∀α.∀ξ : {‘App}, ζ : {‘Con,‘Lam,‘Var}.
(ε as <‘App of (ε, [ε]), ‘Con of α,

‘Lam of ([int], ε), ‘Var of int>) →
(ν as <‘Con of α,

‘Lam of ([int], <‘App of (ν, [ν]), ξ>),
‘Var of int, ζ>)

Here ε is a recursive sum type, indicated by keywordas and
a type row enclosed in< . . . >; ε can clearly be recognized as
the type of lambda expressions.6 Similarly, typeν is the type of
syntactic values. Functionconvert is polymorphic inα, the type
of values carried by‘Con. Finally, ξ andζ are row type variables
constrained to a particularkind. The kind is a set of labels that must
beabsentin any instantiation. Like in Standard ML, the type printer
in our compiler does not ever print universal quantifiers for ordinary

5 In fact, even our syntax for constructors is inspired by OCaml’s choice.
6 We use Haskell notation[t] for MLPolyR ’s built-in list type.

fun cvt app(cvt,e,~e,kv) = . . . as before. . .
fun cvt lam(cvt,~x,e) = . . . as before. . .

fun cvt c(cvt,kb) = cases. . . same cases as before. . .

fun mkConvert (c,e) =

let fun cvt(e,kb) = match e with c(cvt,kb)

in cvt lam(cvt,[],e) end

fun convert e = mkConvert(cvt c,e)

Figure 2. Preparing for extensibility.Explicitly open-code recursion
and separate the cases from the scrutinee in thematch-construct.

type variables, and it suppresses them for row variables whenever
the kind can be inferred from how the variable is used. In this case,
sinceξ appears in a row with‘App andζ appears in a row with
‘Con, ‘Lam, and‘Var, kind information can be left implicit. In
fact, even the identity of the variables is irrelevant since there is
only one occurrence of each. Therefore, the actual type expression
printed by theMLPolyR compiler is the following:

val convert:

(ε as <‘App of (ε, [ε]), ‘Con of α,
‘Lam of ([int], ε), ‘Var of int>) →

(ν as <‘Con of α,
‘Lam of ([int], <‘App of (ν, [ν]), . . .>),
‘Var of int, . . .>)

A remarkable fact about this inferred type is its precision. Even
though we had in mind only one restriction, namely that‘App
cannot appear directly inside another‘App, the inference engine
noticed that the converter enforces another invariant: all bodies of
‘Lam are instances of‘App. Nevertheless, this extra precision is not
harmful. The result type is polymorphic and can be instantiated to
the one we may have had in mind:

(ν as <‘Con of α,
‘Lam of ([int], (ε as <‘App of (ν, [ν]), ‘Con of α,

‘Lam of ([int], ε),
‘Var of int>)),

‘Var of int>)

In other words, although any occurrence of‘Lam in the output
will in fact have been applied to a value constructed with‘App, one
can send this output into a context that is prepared to also handle
other cases for‘Lam. In fact, the output type is flexible enough
to be instantiated to the original unrestricted expression type. This
means that we could, for example, compose theconvert function
with itself:

fun convert twice e = convert (convert e)

Doing so may be of limited use, but more importantly, existing
utility routines such as pretty-printers, evaluators, and so forth
that work on unrestricted expression can also be composed with
functionconvert.

Conversely, if the code forconvert contained a bug that can
cause its output to violate the intended invariant, then this fact
would also be visible in the type. Composition with code that
expectsthe invariant will then fail to type-check.

2.2 Preparing for extensibility

As we have seen, row polymorphism represents a form of type
refinement for the output of functionconvert. The input type,
however, is rigid. This means that we cannot applyconvert to a

fun Let(x,e1,e2) = ‘App(‘Lam([x],e2),[e1])

fun cvti c(cvt,kb) =

cases‘If(ec,et,ee)⇒withfresh(λxk.
Let(xk,kb2kv kb,cvt(ec,λvc.

let val k′b=kv2kb(‘Var xk)

in ‘If(vc,cvt(et,k′b),cvt(ee,k′b)) end)))
default: cvt c(cvt,kb)

fun converti e = mkConvert(cvti c,e)

Figure 3. Extending the CPS converter to handle‘If.

fun cvt lcc(cvt,xc,e,xk) =

withfresh(λxd.withfresh(λxr.
Let(xc,‘Lam([xd,xr],‘App(‘Var xk,[‘Var xr])),

cvt(e,kv2kb(‘Var xk)))))

fun cvtc c(cvt,kb) =

cases‘LetCC(xc,e)⇒
withfresh(λxk.Let(xk,kb2kv(kb),

cvt lcc(cvt,xc,e,xk)))

default: cvt c(cvt,kb)

fun convertc e = mkConvert(cvtc c,e)

Figure 4. Extending the CPS converter to handle‘LetCC.

value that potentially contains constructors other than‘Con, ‘Var,
‘Lam, and‘App. Clearly, the type system is doing the right thing
here, since the code itself is in no way prepared to handle anything
but those four cases.

To make the code extensible, we need a way of adding new
cases, i.e., new language constructs that are handled. Since these
new constructs should be allowed to appear anywhere within a
given input expression, we also must open up the recursion.

As explained earlier, inMLPolyR , the cases of amatch-
expression handling a sum type〈ρ〉 and returning a value of type
τ are represented by first-class values of type〈ρ〉 ↪→ τ , and these
values are extensible in the same sense in which records can be
extended with new fields. Thus, to prepare the code for future
extensions we separate the cases from the scrutinee and parame-
terizing them by closing over their free variables. By letting one
of these free variables be the recursive instance of functioncvt
itself we straightforwardly achieve open recursion. Finally, we put
the mechanism that closes the recursion into its own reusable rou-
tine mkConvert and then use it to recover the original function
convert by applyingmkConvert to cvt c (see Figure 2).

2.3 Extending the input language

With this preparation in place, it is now very easy to extend the con-
verter to handle new language constructs. For example, the code
in Figure 3 introduces a conditional‘If which can appear in the
input, and, if it does, will also appear in the output. The key con-
struct that makes this work is thecasesform with adefault: clause.
Here, a single new case (‘If) is handled, and the default explicitly
refers to the original set of four cases represented bycvt c. A new
converterconverti, now handling five cases including‘If, is ob-
tained by closing the recursion using the same functionmkConvert
as before.

Another example for an extension is the addition of‘LetCC to
the input language.‘LetCC is a binding construct which introduces
a variable that, within its scope, refers to an “escape procedure”

fun cvti c other c (cvt,kb) =

cases‘If(ec,et,ee)⇒ . . . as before. . .
default: other c(cvt,kb)

fun cvtc c other c (cvt,kb) =

cases‘LetCC(xc,e)⇒ . . . as before. . .
default: other c(cvt,kb)

fun converti e = mkConvert(cvti c cvt c,e)
fun convertc e = mkConvert(cvtc c cvt c,e)
fun convertci e = mkConvert(cvtc c(cvti c cvt c),e)

Figure 5. Extensions parameterized by what is being extended.

representing the current continuation.7 In CPS-converted code, the
current continuation is always directly available as a value, mean-
ing that‘LetCC can be supported without need for a new language
construct in the output language. As a result, the extension shown
in Figure 4 extends the input language only.

2.4 Linearly composable extensions

One major weakness of the two extensions (‘If and ‘LetCC)
shown so far is that they are not orthogonal since each of them
explicitly extends theoriginal converter rather than another, poten-
tially already extended version. But with the mechanisms shown,
this deficiency can be overcome quite easily by parameterizing the
extension over what is being extended. The resulting pattern is
shown in Figure 5. Notice how the two extensions have become
differencesin the sense explained in the introduction, so they are
now composable. We can think of them as layers of functionality
that can be “stacked.”

One can take the idea of extension composition to the extreme
by using a programming style (or “pattern”) where every case is
written individually as a single layer in the above sense. Givenk
such layers, one can easily generate a converter for any of the2k

possible input languages simply by stacking the corresponding sub-
set of layers. To support this idea,MLPolyR provides the syntactic
form nocasesof type〈〉 ↪→ α for anyα. This form represents “no
functionality” and can be used as the “base” upon which to stack.

3. ThePolyR Language
This section describes an idealization ofMLPolyR , calledPolyR,
with polymorphic, extensible sums, records, and first-class cases.
To compilePolyR, we first translate it into a version of SystemF,
called FR (Section 3.2).FR has support for records but not for
sums. For brevity, we give the static semantics forPolyR and the
translation toFR together (Section 3.3). Section 3.5 describes the
translation fromFR into an untypedλ-calculus.

3.1 Abstract Syntax

Figure 6 shows the abstract syntax for the languagePolyR. The
meta-variablex and its variants range over variables. Meta-variable
l and variants range over an unspecified set of labels. Meta variables
α andβ (and variants) range over type and row-type variables re-
spectively. Variables, labels, type variables, and row-type variables
are mutually disjoint sets.

The types of the language are separated into (ordinary) types
(denoted byτ and variants),row-types(denoted byρ and variants),
and type schemas (denoted byσ and variants). The types consist
of type variablesα, the base typeint, function types, record types
({ρ}), sum types (〈ρ〉), recursive sum types (α as 〈ρ〉), and case

7‘LetCC(x,e) is the same as Scheme’s(call/cc (lambda (x)
e)) [21].

τ ::= α | int | τ1 → τ2 | {ρ} | 〈ρ〉 | α as 〈ρ〉 | 〈ρ〉 ↪→ τ

ρ ::= β | � | l : τ, ρ

κ ::= {l1, . . . , lk}

σ ::= ∀(α1, . . . , αm). ∀(β1 : κ1, . . . , βn : κn).τ

v ::= n | fun f x = e | l v | { li = vi }k
i=1 | { li xi ⇒ ei }k

i=1

e ::= n | fun f x = e | x | l e | e1 e2 | let x = e1 in e2 |
{ li = ei }k

i=1 | e1 ⊗ {l = e2} | e � l |
{ li xi ⇒ ei }k

i=1 | e1 ⊕ { l x ⇒ e2 } | e 	 l |
e.l | match e1with e2

Figure 6. The abstract syntax ofPolyR.

τ̄ ::= α | int | τ̄1 → τ̄2 | {ρ̄} | α as τ̄ |
∀(α1, . . . , αm). ∀(β1::κ1, . . . , βn::κn).τ̄

ρ̄ ::= β | β � τ̄ | � | l : τ̄ , ρ̄

κ ::= {l1, . . . , lk}

v̄ ::= n | fun f x : τ̄ = ē | { li = v̄i }k
i=1 |

Λ(α1, . . . , αm).Λ(β1::κ1, . . . , βn::κn).ē

ē ::= x | n | fun f x : τ̄ = ē | let x : τ̄ = ē1 in ē2

Λ(α1, . . . , αm).Λ(β1::κ1, . . . , βn::κn).ē |
ē1 ē2 | ē[τ̄1, . . . , τ̄m][ρ̄1, . . . , ρ̄n] |
{ li = ēi }k

i=1 | ē.l | ē1 ⊗ {l = ē2} | ē � l

Figure 7. The abstract syntax ofFR.

types (〈ρ〉 ↪→ τ). We denote the set of free type variables of a
type τ by FTV(τ) and that of a typing contextΓ by FTV(Γ).
Row-types consist of a row(-type) variablesβ, and possibly empty
sequences of label and type matchings. The set of free row type
variables of a typeτ is denoted byFRV(τ). For that of a typing
contextΓ we writeFRV(Γ). The recursive sumα as 〈ρ〉 specifies
a sum type where the type variableα can recursively occur in the
definition ofρ.

Type schemas rely onkinds, denoted byκ and variants, defined
as sets of labels. Kinds are associated with row variables and spec-
ify the labels that a row variable must not contain. Type schemas,
denoted byσ (and variants), are defined as

σ ::= ∀(α1, . . . , αm). ∀(β1::κ1, . . . , βn::κn).τ

The quantifiers bind occurrences of type variables{α1, . . . , αm}
and of row variables{β1, . . . , βm} that are free inτ . The kinds of
the row variables are given by{κ1, . . . , κn}.

Expressions consist of values, functions, variables, data type
constructors (l e), applications, let bindings, record expressions,
case expressions, and cases. Record expressions consist of record
constructors{l1 = e1, . . . , lk = ek} (which we will often ab-
breviate as{ li = ei }k

i=1), record extensionse1 ⊗ {l = e2},
record subtractionse � l, and record selectionse.l. Case ex-
pressions are symmetric to records and consist of case constructors
{l1 x1 ⇒ e1, . . . , lk xk ⇒ ek} (abbreviated as{li xi ⇒ ei}k

i=1),
case extensionse1 ⊕ { l x ⇒ e2 }, and case subtractionse 	 l.
A match expressionmatch e1with e2 matchese1 to the expres-
sionse2 whose value must be a case. Values consist of numbers,
named functions, records where each field is a value, and cases.

3.2 System F

PolyR expressions can be translated into expressions of a variant
of SystemF with records and named functions. We call this lan-
guageFR. Figure 7 shows the syntax of theFR language. (For the
rest of the paper we will use the terms “System F” andFR in-
terchangeably.) The language can be derived fromPolyR by ex-

β I β � I �

τ I τ̄ ρ I ρ̄

l : τ, ρ I l : τ̄ , ρ̄

β; τ̄ I β � τ̄ � ; τ̄ I �

τ1 I τ̄1 ρ; τ̄2 I ρ̄

(l : τ1, ρ); τ̄2 I l : τ̄1 → τ̄2, ρ̄

α I α int I int

τ1 I τ̄1 τ2 I τ̄2
τ1 → τ2 I τ̄1 → τ̄2

τ ≈ τ ′ τ ′ I τ̄ ′

τ I τ̄ ′
ρ I ρ̄

{ρ} I {ρ̄}
ρ; α I ρ̄

〈ρ〉 I ∀α. {ρ̄} → α

〈ρ〉 I τ̄

α as 〈ρ〉 I α as τ̄

τ I τ̄ ρ; τ̄ I ρ̄

〈ρ〉 ↪→ τ I {ρ̄}

Figure 8. The translation of rows (top) and types (bottom) of
PolyR to FR.

cluding sum types, case types, operations on sum types and cases,
adding type abstraction, and type application. To distinguish be-
tweenPolyR types and expressions fromFR types and expressions,
theFR meta-variables for expressions and types are written with a
bar, e.g.,̄e, v̄, τ̄ .

The types ofFR consist of type variables, theint type, function
types, record types, recursive types, and polymorphic types. Record
types are defined in terms of row types denoted byρ̄ (and variants)
that consist of sequences of labeled types that can either end with
an empty row�, a row variableβ, or a row arrowβ � τ̄ . The key
difference between the row types of thePolyR language andFR

language is the inclusion of therow-arrowβ � τ̄ . Row arrows are
critical to represent sums and cases in terms of records.

The expressions of the language consist of variables, numbers,
type abstractions (Λ(α1, . . . , αm).Λ(β1::κ1, . . . , βn::κn).ē), type
applications (̄e[τ̄1, . . . , τ̄m][ρ̄1, . . . , ρ̄n]), functions, applications,
let expressions, and record expressions. The values consist of num-
bers, functions, type abstractions, and records where each field is a
value.

Throughout the paper, we omit empty bindings for type- and
row variables in type abstractions and empty type- and row type
arguments in type applications. For examples, we may write∀β :
κ.τ̄ or ē[ρ̄] when no type variables are quantified.

3.3 Static Semantics and Translation to System F

We present the static semantics ofPolyR and simultaneously show
the translation ofPolyR to SystemF.

Figure 8 shows the translation for row arrows and the translation
of types of thePolyR language to those ofFR. Row-types are
translated either directly, written asρ I ρ̄, or in the context of a
type τ̄ , written asρ; τ̄ I ρ̄. The translationρ I ρ̄ translatesρ
pointwise by translating each field. The judgmentρ; τ̄2 I ρ̄ relates
each fieldl : τ of ρ to a fieldl : τ̄ → τ̄2 of ρ̄ whereτ̄ is obtained
by translatingτ . If ρ is a row-type variableβ, then the result is
β � τ̄2.

The types ofPolyR are translated into SystemF by trans-
lating sums and cases into records (Figure 8). This makes the
rules that handle sums and cases particularly interesting. Sum
types are translated into record types where each field is a func-
tion from a member of the sum type to a universally quantified
type variableα. More precisely, the sum type〈ρ〉 is translated
by first translating the row typeρ into ρ̄ under a type variable
α and then generalizing the function type{ρ̄} → α. For ex-
ample, the sum type〈l1 : int, l2 : int → int〉 is translated into
the type∀α. {l1 : int → α, l2 : (int → int) → α} → α. As ex-

∆ ` � \ κ

κ ⊆ ∆(β)

∆ ` β \ κ

∆ ` ρ \ κ l 6∈ κ

∆ ` (l : τ, ρ) \ κ

∆ ` α ok ∆ ` int ok
∆ ` τ2 ok ∆ ` τ1 ok

∆ ` τ1 → τ2 ok

∆ ` ρ ok

∆ ` {ρ} ok

∆ ` ρ ok

∆ ` 〈ρ〉 ok

∆ ` ρ ok

∆ ` α as 〈ρ〉 ok

∆ ` ρ ok ∆ ` τ ok

∆ ` 〈ρ〉 ↪→ τ ok

∆ ` β ok ∆ ` � ok

∆ ` τ ok ∆ ` ρ \ {l} ∆ ` ρ ok

∆ ` l : τ, ρ ok

Figure 9. The lacks relations, and well-formed types and row-
types (from top to bottom in that order) .

pressed by the≈ relation, we ignore the order of labels in rows
(Appendix B).

Typing rules for thePolyR language (Figure 10) are non-
deterministic. Care must be taken to not introduce ill-formed types
when “guessing” the types of functions, i.e., when creating an in-
stance of a polymorphic type, and when constructing bigger row-
types from existing row-types. Figure 9 defines the notion of well-
formed types and row-types. The definitions rely on alacksrelation
between rows and sets of labels. We say that a rowρ lacksa set
of labelsκ under the kinding context∆, denoted∆ ` ρ \ κ, if ρ
does not contain any of the labels fromκ; if ρ contains a row-type
variableβ, then the kind ofβ (recorded in∆) must be a superset
of κ. We say that a row-typeρ is well formed under∆, denoted
∆ ` ρ ok if ρ consists of distinct labels and lacks the labels
specified by the kinding environment. We say that a typeτ is well-
formed under some kinding context∆, denoted∆ ` τ ok , if all
row-(sub)types ofτ are well formed under∆.

Figure 10 shows the typing rules forPolyR and their transla-
tion to SystemF. The judgments take place under a kinding con-
text ∆ and the typing contextΓ. The kinding context maps row
variables to kinds—the kind of a row variable is the set of labels
that the variable is known not to contain. The typing context maps
(ordinary) variables to type schemas. The judgments take the form
∆;Γ ` e : τ I ē : τ̄ and state that, under the kinding context
∆ and the typing contextΓ, the PolyR expressione has typeτ
and translates to theFR expression̄e with τ̄ . The following lemma
states that the translation preserves the types of terms with respect
to the translation. The proof of this lemma is omitted here.

Lemma 1
If ∆;Γ ` e : τ I ē : τ̄ , then τ I τ̄ .

The most interesting judgments are those that introduce and
eliminate polymorphism (thelet/val and thevar judgments),
and those that operate on sums, records, and cases.

The PolyR language supports ML-style polymorphism (let
polymorphism). How a let expression is type-checked depends on
whether the expression whose value is being bound is a syntactic
value or not. If the expression is of the formlet x = v1 in e2, then
the type of the valuēτ1 is generalized over all free type variables
and row-type variables; the generalization requires constructing
a kind for each row type (let/val judgment). If the expression is
of the form let x = e1 in e2, wheree1 is not a value, then the
type ofe1 is not generalized (let/non-val judgment). There are two

Γ(x) = ∀α1 . . . αm.∀β1 :: κ1 . . . βn :: κn.τ ′

∀i.∆ ` τi ok ∀j.(∆ ` ρj ok) ∧ (∆ ` ρj \ κj)

τ = τ ′[τi/αi, ρj/βj]i=1...m,j=1...n

τi I τ̄i ρi I ρ̄i τ I τ̄

∆; Γ ` x : τ I x[τ̄1, . . . , τ̄m][ρ̄1, . . . , ρ̄n] : τ̄
(var)

∆; Γ ` e : τ I ē : τ̄ τ ≈ τ ′

∆; Γ ` e : τ ′ I ē : τ̄
(reorder)

∆; Γ ` n : int I n : int
(int)

∆; Γ, f : τ2 → τ, x : τ2 ` e : τ I ē : τ̄ ∆ ` τ2 ok τ2 I τ̄2

∆; Γ ` fun f x = e : τ2 → τ I fun f x = ē : τ̄2 → τ̄
(fun)

∆; Γ ` e : τ I ē : τ̄ ∆ ` (l : τ, ρ) ok (l : τ, ρ); α I ρ̄

∆; Γ ` l e : 〈l : τ, ρ〉 I (let xv : τ̄ = ē in Λα.fun xr = xr.l xv) : ∀α. {ρ̄} → α
(data const.)

∆; Γ ` e1 : τ2 → τ I ē1 : τ̄2 → τ̄ ∆; Γ ` e2 : τ2 I ē2 : τ̄2

∆; Γ ` e1 e2 : τ I ē1 ē2 : τ̄
(app)

~α = α1, . . . , αm = FTV(τ1) \ FTV(Γ) β1, . . . , βn = FRV(τ1) \ FRV(Γ)
−−−→
β :: κ = β1 :: κ1, . . . , βn :: κn

∆,
−−−→
β :: κ; Γ ` e1 : τ1 I ē1 : τ̄1 ∆; Γ, x : ∀~α.∀

−−−→
β :: κ.τ1 ` e2 : τ2 I ē2 : τ̄2 e1is a syntactic value

∆; Γ ` let x = e1 in e2 : τ2 I let x : ∀~α.∀
−−−→
β :: κ.τ̄1 = Λ~α.Λ

−−−→
β :: κ.ē1 in ē2 : τ̄2

(let/val)

∆; Γ ` e1 : τ1 I ē1 : τ̄1 ∆; Γ, x : τ1 ` e2 : τ2 I ē2 : τ̄2 e1is not a syntactic value

∆; Γ ` let x = e1 in e2 : τ2 I let x : τ̄1 = ē1 in ē2 : τ̄2
(let/non-val)

∆; Γ ` e : 〈ρ[α as 〈ρ〉/α]〉 I ē : τ̄ [α as τ̄/α]

∆; Γ ` e : α as 〈ρ〉 I ē : α as τ̄
(roll)

∆; Γ ` e : α as 〈ρ〉 I ē : α as τ̄

∆; Γ ` e : 〈ρ[α as 〈ρ〉/α]〉 I ē : τ̄ [α as τ̄/α]
(unroll)

∀i.∆; Γ ` ei : τi I ēi : τ̄i

∆ ` l1, . . . , lk ok

∆; Γ ` { li = ei }k
i=1 : { li : τi }k

i=1

I { li = ēi }k
i=1 : { li : τ̄i }k

i=1

(r)

∀i.(∆; Γ ` τi ok) ∧ (∆; Γ, xi : τi ` ei : τ I ēi : τ̄)
∆ ` l1, . . . , lk ok ∀i.(τi I τ̄i)

∆; Γ ` { li xi ⇒ ei }k
i=1 : 〈 li : τi 〉ki=1 ↪→ τ

I { li = fun xi : τ̄i = ēi }k
i=1 : { li : τ̄i → τ̄ }k

i=1

(c)

∆; Γ ` e1 : {ρ} I ē1 : {ρ̄}
∆ ` ρ \ {l}

∆; Γ ` e2 : τ2 I ē2 : τ̄2

∆; Γ ` e1 ⊗ {l = e2} : {l : τ2, ρ}
I ē1 ⊗ {l = ē2} : {l : τ̄2, ρ̄}

(r/ext)

∆; Γ ` e1 : 〈ρ〉 ↪→ τ I ē1 : {ρ̄}
∆ ` ρ \ {l} ∆ ` τ1 ok τ1 I τ̄1
∆; Γ, x : τ1 ` e2 : τ I ē2 : τ̄

∆; Γ ` e1 ⊕ { l x ⇒ e2 } : 〈l : τ1, ρ〉 ↪→ τ
I ē1 ⊗ {l = fun x : τ̄1 = ē2} : {l : τ̄1 → τ̄ , ρ̄}

(c/ext)

∆; Γ ` e : {l : τ, ρ} I ē : {l : τ̄ , ρ̄}
∆; Γ ` e � l : {ρ} I ē � l : {ρ̄}

(r/sub)
∆; Γ ` e : 〈l : τ1, ρ〉 ↪→ τ I ē : {l : τ̄1 → τ̄ , ρ̄}

∆; Γ ` e 	 l : 〈ρ〉 ↪→ τ I ē � l : {ρ̄}
(c/sub)

∆; Γ ` e : {l : τ, ρ} I ē : {l : τ̄ , ρ̄}
∆; Γ ` e.l : τ I ē.l : τ̄

(select)

∆; Γ ` e1 : 〈ρ〉 I ē1 : ∀α.({ρ̄α} → α)
∆; Γ ` e2 : 〈ρ〉 ↪→ τ I ē2 : {ρ̄τ}

∆; Γ ` match e1with e2 : τ I ē1[τ̄] ē2 : τ̄
(match)

Figure 10. The static semantics and translation for basic terms (top), and records and cases.

motivations behind differentiating between syntactic values and
non-values: 1) it ensures that the transformation to SystemF pre-
serves non-termination semantics of the program, and 2) it makes
it easier to extend the language with side effects (e.g., references).
When used, a variable with a polymorphic type is instantiated to
a non-polymorphic type by selecting types and row types for its
polymorphic variables (var rule). An instantiation is translated into
SystemF as a type application.

The bottom box in Figure 10 shows the typing rules for records
(left) and cases (right). The judgments are arranged to bring out the
symmetry between these rules.

A record constructor is assigned the record type that maps the
labels to the types of the corresponding fields as long as the labels
are distinct. The type of a record extensione1 ⊗ {l = e2} is a
record type that extends the type{ρ} of the recorde1 with the

labell under the condition thatl is not included in the record type.
The type of a record subtraction̄e � l is a record where labell is
excluded under the condition thatē containsl. The type of a record
selection is the type of the fieldl being selected, under the condition
that the record expression contains the field with labell. Since the
FR language includes the record expressions included inPolyR, all
record expressions are translated into theFR language directly.

A case constructor is assigned a case type that identifies the
result typeτ of the bodies (ei’s) and maps each labelli to its
domain typeτi. A case is translated into a record of functions,
one for each labelli, whose argument type is equal to the domain
type τ̄i of li and whose body is the body of the caseei. A case
extension extends the type of a case with a new branch. A case
extension is translated to a record extension. A case subtraction
takes out the specified branch from a case type and translates it

t ::= n | x | t1 + t2 | t1 − t2 | len(t) |
fun f x = t | t1 t2 | 〈 si 〉ni=1 | t.t |
let x = t1 in t2

s ::= t | (t, t, t)
v ::= n | fun x t1 = t2 |

Figure 11. The abstract syntax forLRec.

into a record subtraction. A match expressionmatch e1with e2

is well typed if the domain type ofe2 is the same as the typee1.
Since data constructors are transformed into functions that select
the appropriate function from their argument and apply their value
to that function, a match expression is compiled into a function
application. Since translated sum expressions have polymorphic
type, this requires instantiating the function type first. We note that
the symmetry to a selection is indirect (through the translation of
data constructors).

3.4 Dynamic Semantics

The dynamic semantics ofPolyR is mostly standard. The full
semantics is given in Appendix A. Although thePolyR language
is purely functional, the dynamic semantics is written with the
same implicit threading of state in mind that is also used by the
Definition of Standard ML [20]. This removes all non-determinism
by enforcing an evaluation order. The primary motivation for this is
to enable a precise specification of the transformation ofPolyR into
an untypedλ-calculus (Section 3.5) without altering the execution
order. A secondary motivation is to ensure that the transformation
would be consistent with imperative features, if the languages are
extended with them.

3.5 Translation to Untypedλ-Calculus

We describe the translation of SystemF expressions (Section 3.2)
into an untyped language, calledLRec. TheLRec language extends
the untypedλ-calculus with (n-ary) tuples and named functions;
Figure 11 shows the abstract syntax forLRec. The terms of the
language, denoted byt (and variants), consist of numbersn, vari-
ablesx, the operations plus and minus,len(t) for determining the
number of fields in a tuplet, named functions, function applica-
tion, and introduction and eliminations forms for tuples. The in-
troduction form for tuples,〈 si 〉ni=1, specifies a sequence of slices
from which the tuple is being constructed. The elimination form for
tuples is selection (projection), writtent1.t2, that projects out the
field with indext2 from the tuplet1. The terms include a let expres-
sion (as syntactic sugar for application). Aslice, denoted bys (and
variants), is either a term, or a triple of terms(t1, t2, t3), wheret1
yields a record whilet2 andt3 must evaluate to numbers. A slice
(t1, t2, t3) specifies consecutive fields of the recordt1 between the
indices oft2 (including) andt3 (excluding).

Figure 12 shows the dynamic semantics forLRec. We enforce
an order on evaluation by assuming that the premises are evaluated
from left to right and top to bottom (in that order). The semantics
is largely standard. The only interesting judgments concern evalu-
ation of slices and construction of tuples. Slices evaluate to a se-
quence of values selected by the specified indices (if any). Tuple
selection projects out the specified field with the specified index
from the tuple. Since tuples can be implemented as arrays, selec-
tion can be implemented in constant time. Thus, if records can be
transformed into tuples and record selection can be transformed
into tuple selection, record operations can be implemented in con-
stant time. The computation of the indices is the key component of
the translation from SystemF to LRec.

Figure 13 shows the translation from SystemF (the FR lan-
guage) into theLRec language. The translation takes place under
anindex context, denoted by∆ that maps row variables to sets con-

v ⇓ v
(val)

t1 ⇓ n1 t2 ⇓ n2

t1 + t2 ⇓ n1 + n2
(plus)

t1 ⇓ n1 t2 ⇓ n2

t1 − t2 ⇓ n1 − n2
(minus)

t1 ⇓ fun f x = t′1 t2 ⇓ v2

t′1[fun f x = t′1/f1, v2/x] ⇓ v

t1 t2 ⇓ v
(app)

t1 ⇓ v1 t2[v1/x] ⇓ v

let x = t1 in t2 ⇓ v
(let)

t ⇓ 〈v0, . . . , vn−1〉
len(t) ⇓ n

(length)

t1 ⇓ 〈v0, . . . , vi, . . . , vn−1〉 t2 ⇓ i 0 ≤ i < n

t1.t2 ⇓ vi
(select)

s1 ⇓s v1,0, . . . , v1,k1−1 . . . sn ⇓s vn,0, . . . , vn,kn−1

〈s1, . . . , sn〉 ⇓ 〈v1,0, . . . , v1,k1−1, . . . , vn,0, . . . , vn,kn−1〉
(tuple)

t ⇓ v

t ⇓s v
(slice/singleton)

t1 ⇓ 〈v0, . . . , vi, . . . , vj , . . . , vn−1〉
t2 ⇓ i t3 ⇓ j 0 ≤ i ≤ j ≤ n

(t1, t2, t3) ⇓s vi, . . . , vj−1
(slice/sequence)

Figure 12. The dynamic semantics forLRec.

sisting of label and term pairs. More precisely, for a row variable
β, ∆(β) = {(l1, t1), . . . , (lk, tk)}, whereti is the term that will
aid in computing the index forli in a record. We write∆(β)(l) for
the index (term) ofl for β, i.e., if (l, t) ∈ ∆(β), then∆(β)(l) = t.
Given ∆, the kind of a row variableβ, denotedκ(∆, β) can be
recovered by projecting out the labels. More preciselyκ(∆, β) is
defined asκ(∆, β) = {l | (l, t) ∈ ∆(β)}.

The translation of numbers, variables, functions, applications,
and let expressions are straightforward. A record is translated into
a tuple of slices, each of which is obtained by translating the
label expressions. The slices are sorted based on the corresponding
labels. Since sorting can re-arrange the ordering of the fields, the
transformation first evaluates the fields in their original order by
binding them to variables and then constructs the tuple using those
variables.

A record selection is translated by computing the index for the
label being projected based on the type of the record. To compute
indices for record labels, the translation relies on two operations.
Given a set of labelsκ and a labell, define thepositionof l in κ,
denotedpos(l, κ), as the number of labels ofl that are less thanl in
the total order defined on labels. Formally,pos(l, κ) = |{l′ | l′ ∈
κ∧ l′ <l l}|, where<l denotes the ordering relation on labels. For
a given rowρ, definelabels(ρ) to be the pair consisting of the set
of variables ofρ and the remainder row, which is either empty or a
row variable. More precisely:

labels({l1, . . . , lk, ·}) = ({l1, . . . , lk}, ·)
labels({l1, . . . , lk, β}) = ({l1, . . . , lk}, β)

labels({l1, . . . , lk, β � τ}) = ({l1, . . . , lk}, β)

Notice that we treatβ � τ just like plainβ, taking advantage of
the fact that(β � τ) \ l if and only if β \ l.

Let τ be some record type, and let(L, ρ) = labels(τ). We
compute theindexof a labell in τ , denotedindexOf(∆, l, (L, ρ)),
as follows:

indexOf(∆, l, (L, ·)) = pos(l, L)

indexOf(∆, l, (L, β)) = ∆(β)(l)− pos(l, κ(∆, β) \ L)

To compute the indices for labels, the translation requires access
to the SystemF types of certain expressions. We denote the type of
an expressione by typeOf(e).

∆ ` n B n
(int)

∆ ` x B x
(var)

∆ ` e B t

∆ ` fun f x : τ = e B fun f x = t
(fun)

∆ ` e1 B t1 ∆ ` e2 B t2
∆ ` e1 e2 B t1 t2

(app)

∆ ` e1 B t1 ∆ ` e2 B t2
∆ ` let x : τ = e1 in e2 B let x = t1 in t2

(let)

∆ ` e B t t′ = indexOf(∆, l, labels(typeOf(e)))

∆ ` e.l B t.t′
(select)

∀i, j.i < j ⇒ l#(i) <l l#(j)

{l#(1), . . . , l#(n)} = {l1, . . . , ln}
∀i. (∆ ` ei B ti)

∆ ` { li = ei }n
i=1

B let x1 = t1 in . . . let xn = tn in
˙

x#(i)

¸n

i=1

(r)

∆ ` e1 B t1 ∆ ` e2 B t2
t0 = indexOf(∆, l, labels(typeOf(e1)))

∆ ` e1 ⊗ {l = e2}
B let x = t1 in 〈(x, 0, t0), t2, (x, t0, len(x))〉

(r/ext)

∆ ` e B t
t0 = indexOf(∆, l, labels(typeOf(e)))

∆ ` e � l
B let x = t in 〈(x, 0, t0), (x, t0 + 1, len(x))〉

(r/sub)

∆, . . . , βi::{(l1i , x1
i), . . . , (l

mi
i , x

mi
i)}, . . . ` ē B t

∀i. 1 ≤ i ≤ n. κi = {l1i , . . . , l
mi
i }

∆ ` Λ(α1, αk).Λ (β1::κ1, . . . , βn::κn).ē

B λx1
1 . . . λxm1

1 . . . λx1
n . . . λxmn

n . t

(ty/abs)

∆ ` e B t
typeOf(e) = ∀ (β1::κ1 . . . βn::κn). τ
∀i. 1 ≤ i ≤ n. κi = {l1i , . . . , l

mi
i }

∀i ∈ {1, . . . , n}∀j ∈ {1, . . . , mi}.
tji = indexOf(∆, lji , (Li ∪ κi, ρ

′
i))

where(Li, ρ
′
i) = labels({ρi})

∆ ` e[τ1, . . . , τk][ρ1, . . . , ρn]
B t t11 . . . tm1

1 . . . t1n . . . tmn
n

(ty/app)

Figure 13. The translation from theFR into theLRec language.

The record extensione1 ⊗ {l = e2} is translated by first finding
the index ofl in the tuple corresponding toe1, then splitting the
tuple into two slices at that index, and finally creating a tuple
that consists of the these two slices along with a slice consisting
of the new field. Similarly, record subtraction splits the tuple for
the record immediately before and immediately after the label
being subtracted into two slices and creates a tuple from these
slices. Type abstractions are translated into functions by creating
an argumentxj

i for each labellji in the kindκi of theβi. Note that
abstractions of ordinary type variables (αi’s) are simply dropped.
Type applications are transformed into function applications by
generating “evidence” for each substituted row-type variable. As
with type abstractions, substitutions into ordinary type variables
are dropped. Evidence generation requires computing the indices
of each labellji ∈ κi in any record type that extends{ρi} by adding
fields for every suchlji .

4. Implementation
The compiler forMLPolyR is written in Standard ML. It compiles
to relatively simple, yet reasonably efficient PowerPC assembly
code that can be assembled and executed under Mac OS X.

4.1 Basic language features

As currently implemented, theMLPolyR language takes a small
subset of the Standard ML core language and extends it with the
following features:

• Ohori-style record polymorphism
• polymorphic functional record extension and polymorphic

functional record trimming (dropping of fields via “row cap-
ture” patterns)

• inferred row-polymorphic sum types and equi-recursive types
• extensible first-class cases
• mutable record fields

4.2 Compiler Phases

The compiler is structured in a fairly traditional way and consists
of the following phases:

lexer lexical analysis, tokenization

parser LALR(1) parser, generating abstract syntax trees (AST)

elaborator perform type reconstruction and generation of anno-
tated abstract syntax (Absyn)

translate generate index-passingLRec code

anf-convert convertLRec code into A-normal form [7]

flatten flatten arguments, eliminating most record- and tuple argu-
ments by passing fields separately (i.e., in individual registers)

uncurry eliminate of most curried functions

anf-optimize constant folding, simple constant- and value propa-
gation, elimination of useless bindings, short-circuit selection
from known tuples, inline tiny functions, some arithmetic ex-
pression simplification; execution of this pass is repeated and
interleaved with other phases (e.g., flatten and uncurry)

closure convert to first-order code by closure conversion

clusters separate closure-converted blocks into clusters of blocks;
each cluster roughly corresponds to a single C function but may
have multiple entry points

treeify re-grow larger expression trees to make tree-tiling instruc-
tion selection more useful

traceschedulearrange basic blocks to minimize unconditional
jumps

cg instruction selection by tree-tiling (maximum-munch algo-
rithm)

regalloc graph-coloring register allocation

emit generate assembly code

4.3 Type-checking and translation

Type reconstruction is performed by a variant of the classic algo-
rithm W [19], augmented to handle Rémy-style row polymorphism
and equi-recursive types. Resembling the corresponding parts of
other compilers (e.g., SML/NJ [2]), the process of type checking
and translation is divided into two phases:elaborationandtransla-
tion.

The elaboration phase takes an abstract syntax tree and anno-
tates it with type information, using an imperative-style unification
algorithm as a subroutine. It permits equi-recursive types as long
as type-level recursion goes though at least one sum type8 by selec-

8 This is a pragmatic implementation decision based on experience with
fully general equi-recursive types that seems to indicate that most of the
time when such a type is inferred it was not actually intended by the
programmer [17].

tively turning the occurs check off. To avoid looping, the implemen-
tation of unification variables employs a union-find data structure
that is used to efficiently detect cycles. To enable the translation
phase to properly insert type abstractions and type applications, the
elaborator leavespoly-row informationconsisting of row type vari-
ables and label sets in the annotated syntax tree.

The translation phase combines generation of SystemF-code
and the transformation to index-passingLRec-code into a single
step. This means that in the current compiler there is no manifesta-
tion of the SystemF language.

4.4 Implementation of extensible polymorphic records

Indexing: Our implementation of polymorphic record indexing is
essentially equivalent to that of Ohori’s SML# [24]. Values that
are polymorphic in some row variable turn into functions taking
integer indices as arguments. The index calculation is given by
the indexOf(·, ·, ·) function in section 3.5. In many cases, row-
polymorphic values are themselves functions, which means that
the index-passing transformation creates curried functions. In most
cases, such currying is later eliminated by general-purpose uncur-
rying and argument-flattening passes within the optimizer.
Slices: In SML#, the only polymorphic record operation is field
access. For this, it suffices to have a field selection operation where
the index may be a variable. (For plain SML, the index is always a
constant.) InMLPolyR , however, due to the presence of functional
record extension and row capture, the compiler must also be able
to generate code for constructing new records whose shape is not
fully known at compile time. This is expressed by the “scatter-
gather” feature of tuple construction inLRec, where the values
for fields may be given as slices of other tuples. The compiler
attempts a number of optimizations on slices. In particular, if—after
constant propagation and similar transformations—the endpoints
of a slice become known to be constants, the slice is replaced with
a sequence of individual values. Still, in the general case there will
be slices that cannot be optimized away. In this case the instruction
selection phase will emit code for copying slices. Using the features
of the PowerPC and the memory allocation architecture used by
theMLPolyR runtime system, the inner loop in such code is quite
compact and consists of only three instructions.
Unit type: The empty record type is known as the singleton type
denoted().9 The compiler normally represents the only value of
this type by the scalar constant 0. However, with row capture it is
possible that at runtime an empty record is created without stati-
cally knowing this to be the case. In this situation the program will
actually allocate an empty record on the heap, which is supported
by our garbage collector. The representation of the empty record
does not matter since by soundness of the type system no program
will attempt to access any field within such a value. There can be
slices taken from the empty record, but those slices will be empty
themselves, so no actual runtime access will take place.
Record length: In section 3.5, theLRec language came with a
primitive len(·) for obtaining the number of fields in a tuple. While
length information is indeed present in the GC header of each tuple,
getting access to it is potentially expensive since it incurs memory
traffic. In the actual implementation, length information is passed
as an additional index to a “virtual”end-of-tuplefield. For this
purpose, the type system implemented in the compiler uses slightly
more complicated kinds: instead of plain sets of labels, a kind is a
label set together with a boolean flag. The flag indicates whether or
not length information is required for a given row variable.

One disadvantage of this approach is that the boolean flag truly
becomes part of the user-visible type. This might not be seen as a
big problem, since in our compiler all types are fully inferred any-
way. Still, even in our very small language the flag does show up in

9 In Standard ML this type is known asunit .

type error messages, which are often complicated enough already.
A more complete language that allows for type annotations and
comes with an ML-style module system, the programmer would
have to worry about this detail when writing types and module sig-
natures. A possible workaround would be to “clamp” the value of
the flag to true, implying that we always pass length information,
whether it is needed it or not. Of course, this trick does have some
runtime cost.
Record expressions and record patterns:In its concrete syntax,
MLPolyR establishes a high degree of symmetry between record
expressions and record patterns. In particular,row capturepatterns
generalize Standard ML’s ellipsis notation. For example, one can
define a functionf as follows:

fun f { name, age, ... = other } = e

Any argument tof must be a record containing at least fields
labeledname andage, but potentially more. Within the bodye, the
variablesname andage are bound to the values of these fields, and
other will be bound to a record value that contains allotherfields
exceptname andage that were present in the argument value. In
essence, this notation combines selection and functional removal
of fields.

Conversely, functional record extension is written using a record
expression involving an ellipsis:

val fred = { name = "Fred", age = 29,

... = fred’s other info }

Functional recordupdate, i.e., the replacement of existing fields
with new fields, can be synthesized from row capture and record
extension. TheMLPolyR language provides special syntax for
record update, but its meaning can be explained as a derived form.

4.5 Implementation of sums

Section 3.3 shows how sums and first-class cases are completely
eliminated and represented by corresponding record constructs us-
ing the well-known dual construction:

• Cases become records of functions.

• Sum values (aka “variants”)lv become functions that take cases
c (in form of function records) as arguments, select the function
c.l corresponding to labell, and invoke it with the constructor’s
argumentv.

This encoding is elegant and has the advantage of not needing
any new runtime machinery; everything is handled by the mech-
anisms that implement polymorphic extensible records. However,
the encoding is also inefficient, both in space consumption and in
performance. The variantlv becomesfun c = c.ilv whereil
is the index corresponding to labell. Such a function value would
normally be represented by a closure consisting of a code pointer
and a record of the free variables, hereil andv, in other words, at
least three distinct values. Two possible ways of implementing this
closure can be depicted as follows:

il v

il v

We obtain a less space-consuming and faster representation by
observing that the code is the same forevery element ofevery
sum type! Since the compiler also knows precisely where this code
is invoked, namely at call sites generated by translatingmatch

expressions where it can easily be inlined, the code pointer does not
need to be represented at all. This leaves us with a representation
of the variant as a pair consisting just ofil andv:

il v

But that is precisely the “traditional” representation of tagged
unions,il playing the role of the tag. Space is saved by the elimi-
nation of the code pointer and possibly the second indirection. The
time savings are due to the inlining of the code, since general func-
tion call overhead, the memory access for obtaining the entry ad-
dress, and the need for an indirect jump dominate the cost of the
naive implementation.

This optimization is implemented quite conveniently as part of
our translation phase. The fact that, as has been noted above, we
skip SystemF has practical benefits here. Normally, when generat-
ing plain SystemF code, we would lose information on which of
the closures correspond to sum values, and which applications cor-
respond tomatch. This information would either have to be recov-
ered by some flow analysis or preserved using ad-hoc annotation
on SystemF terms.

4.6 Coherence

Incoherence manifests itself in the translation phase as a non-
generalized and uninstantiated type variable. Since the transforma-
tion discards ordinary type variables, the lack of coherence only
matters when it involves row types. Here is a concrete example for
how this might happen:

fun loop() = loop()

val x = (loop()).a

The type ofloop is inferred to be∀α.() → α. The typing rule
for field selection can pick an arbitrary instantiation forα as long
as it is a record containing a fielda. But the underspecified shape
of the instantiation determines the index for accessinga! Notice,
however, thatloop() does not produce a record value. In fact, it
will never return at all, so the index fora does not matter at runtime.
In the elaboration/translation algorithm, this situation manifests
itself as an uninstantiated (unification-) row type variable.

The phenomenon of coherence (or rather: the lack thereof) is
well-known and has been studied in the context of the translation
of ML into an explicitly typed calculus (a variant of SystemF) by
Ohori [23]. It was later rediscovered in the context of Haskell’s type
class mechanism [14]. Like in SML#, we can take advantage of
what amounts to a parametricity result for ML, namely thatclosed
programs are, in fact, coherent.10 Intuitively, whenever incoherence
occurs, the actual choice of type will not matter at runtime because
the code in question will never get executed. Our compiler (like
Ohori’s) picks arbitrary index values for labels that belong to unin-
stantiated (unification-) row type variables.

4.7 Runtime system

The runtime system, written in C, implements a simple two-space
copying garbage collector [13] and provides basic facilities for
input and output.
Data representation and memory management:For the tracing
garbage collector to be able to reliably distinguish between point-
ers and integers, we employ the usual tagging trick. Integers are
31-bit 2’s-complement numbers. An integer valuei is represented
internally as a 2’s-complement 32-bit quantity of value2i. This
makes all integers even, with their least significant bits cleared.

10The same argument does not work for Haskell, because due to type
classes Haskell’s polymorphism is not parametric.

Heap pointers, on the other hand, are represented as odd 32-bit val-
ues. In effect, instead of pointing to the beginning of a word-aligned
heap object, they point to the object’s second byte. Generated load-
and store-instructions account for this skew by using an accord-
ingly adjusted displacement value. With this representation trick,
the most common arithmetic operations (addition and subtraction)
can be implemented as single instructions as usual; they do not need
to manipulate tag bits. The same is true for most loads and stores.

Allocation- and limit pointers are stored in registers, and taking
advantage of the PowerPC’sstwu instruction we can allocate one
memory word in a single instruction.11 As mentioned before, the
code for copying a slice out of an existing record into a newly
allocated one uses an inner loop of only three instructions (lwzu,
stwu, bdnz), but there is also a four-instruction preamble (addi,
srwi., mtctr, beq) that loads thecount registerand bypasses
the loop when the count is initially zero.
The String module: Our language does not yet have a module
system, but as long as only values but no types are involved, one
can use records as a poor-man’s substitute. The runtime system
exports a special record bound to the global variableString which
contains routines for manipulating string values, for converting
from and to strings, and for performing very basic input-output
operations. This record is allocated using C code and does not
reside within theMLPolyR heap.

4.8 Mutable record fields

Our type system supports mutable fields in records. Type recon-
struction still works since corresponding operations on mutable and
immutable fields are syntactically distinguishable. Records with
mutable fields have identity, and allocation of such records is a
side-effecting operation.

In hindsight it appears that it would have been better to instead
distinguish between two kinds of records: those that are guaranteed
to be immutable, and those thatmaycontain mutable fields. Muta-
bility interacts in some undesirable ways with row polymorphism.
For example, we cannot say that the right-hand side in the follow-
ing let-binding is a syntactic value and, therefore, its type cannot
be generalized:

let val r = { a = foo, ... = bar }

Whether or not the allocation of this record expands the store
depends on the type ofbar. Ignoring the problem with the value
restriction, in the general case the compiler is unable to perform
certain optimizations such as, e.g., common subexpression elimi-
nation for code like this:

let val r1 = { a = foo, ... = bar }
val r2 = { a = foo, ... = bar }

Therefore, with our current design, the mere existence of the
mutable fields feature in the language incurs certain penalties, both
in terms of the static semantics and in terms of runtime efficiency,
even if that feature is never used.

Since we prefer a pay-as-you go scheme where features incur
penalties only when they are actually being used, we plan to go
back to immutable general records in the style of Standard ML and
support mutable fields separately.

5. Related work
Record calculi and the study of record polymorphism have a long
history [31, 32, 26, 5, 25]. Ohori shows that polymorphic records

11The cost of the heap limit check is amortized over multiple allocations
within a basic block.

can be compiled very efficiently, using an index-passing transfor-
mation based on a kinded type system for records [25]. He also
points out the duality between records and sums and suggests that
the same index-passing techniques can be adopted to implement
polymorphic sums. Ŕemy gives a more general type system capable
of expressing linearlyextensiblepolymorphic records. Ŕemy’s cal-
culus employs row polymorphism and has an efficient type recon-
struction algorithm that infers principal types [26]. Jones and Pey-
ton Jones describe an implementation of extensible records based
on the same ideas for Haskell [15].

Gaster and Jones attempt a direct encoding of the dual construc-
tion for sum types within Haskell’s type system [12]. The encoding
requires type system features absent from most languages, in par-
ticular higher-order polymorphism and a type constructor which
roughly corresponds to the row arrow� in our SystemF. Type
inference in such a system seems difficult, and, indeed, Gaster and
Jones report that they had to impose an ad-hoc restriction to obtain
most general unifiers. Their restriction is to disallow empty rows,
meaning that they could not type ournocasesconstruct.

Garrigue implements a version of polymorphic sum types in
OCaml. His approach does not take advantage of the duality be-
tween sums and records but instead provides a form of extensibil-
ity based on so-calledvariant dispatching[10, 11]. As Zenger and
Odersky point out [33], variant dispatching requires writing addi-
tional functions to forward control to existing code. This is a con-
sequence of the fact that in Garrigue’s system, extensions need to
know what they are extending. As a result, extensions cannot be
composed directly.

It should be noted that a suitably modified typing rule for a
match expression with a default case could actually be used to give
Garrigue’s implementation the same power of extensibility that we
provide inMLPolyR . Consider the following example:

fun g y = . . .
fun f x = match x with

‘A () ⇒ print "A"

| y ⇒ g y

Here the types ofx and y should be related sums that share a
common row, the only difference being the presence of the‘A
constructor inx’s type and its absence iny’s type. The typing rule
for this could be:

Γ ` e1 : 〈l : τl, ρ〉 Γ, x : τl ` e2 : τ Γ, y : 〈ρ〉 ` e3 : τ

Γ ` match e1 with lx ⇒ e2 | y ⇒ e3 : τ

This approach does not require the alternative function arrow↪→
for cases but uses the ordinary function arrow in its place. The
main advantage of having the case arrow↪→ in the type system
and statically distinguishing cases from other functions lies in the
fact that this makes it very easy to use different runtime repre-
sentations for the two. In particular, we can representMLPolyR
cases as records of functions. These records represent jump tables.
In Garrigue’s implementation, however, case analysis for polymor-
phic variants proceeds by direct comparisons of constructor names
(significantly sped up via hashing). Thus, his implementation tech-
nique essentially corresponds to our semantics ofPolyR. In this
setting, extending functions by extra cases can be implemented by
simple chaining of conditionals.

6. Conclusions
We have presentedMLPolyR , a language with row polymorphism
for both records and sums.MLPolyR explicitly exposes the duality
between sums and products by providing a type of first-classcases.
Values of case type (like records, their dual counterpart) can be
functionally extended to handle larger sums.

This setup rests firmly on the well-understood theory of row
types. It allows for efficient type reconstruction and should yield
few surprises for programmers. On the other hand, we find that it
enables a very flexible style of programming where the treatment of
individual variants of a sum can be coded separately and combined
later with minimal notational overhead. In combination with ex-
plicitly coded open recursion (which requires equi-recursive types),
it provides an elegant approach to solving theexpression problem,
i.e., the problem of adding new constructors to a datatype and be-
ing able to re-use existing code. Since we are striving for simplicity,
we consciously left out features such as subtyping or inference of
intersections.

We implemented our language using a technique based on
Ohori’s index-passing scheme for polymorphic records and the
exploitation of the sum-product duality for first-class cases. In this
paper we explain this technique in terms of a 2-stage translation,
first into an explicitly-typed polymorphic lambda calculus (Sys-
tem F) where sums and cases are eliminated using duality with
records, then into an untypedλ-calculusLRec where records are
represented as vectors with numeric indices.

7. Acknowledgments
We would like to thank Atsushi Ohori for helpful discussions.
Jacques Garrigue as well as the anonymous reviewers provided
valuable feedback.

References
[1] A. W. Appel. Compiling with continuations. Cambridge University

Press, New York, NY, USA, 1992.

[2] A. W. Appel and D. B. MacQueen. Standard ML of New Jersey.
In M. Wirsing, editor,3rd International Symp. on Prog. Lang.
Implementation and Logic Programming, pages 1–13, New York,
Aug. 1991. Springer-Verlag.

[3] F. Bourdoncle and S. Merz. Type-checking higher-order polymorphic
multi-methods. InConference Record of POPL ’97: The 24th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 302–315, Paris, France, 15–17 1997.

[4] K. Bruce. Some challenging typing issues in object-oriented
languages.In Electronic notes in Theoretical Computer Science,
volume 82(8), 2003.

[5] L. Cardelli and J. C. Mitchell. Operations on records. In C. A.
Gunter and J. C. Mitchell, editors,Theoretical Aspects of Object-
Oriented Programming: Types, Semantics, and Language Design,
pages 295–350. The MIT Press, Cambridge, MA, 1994.

[6] R. B. Findler and M. Flatt. Modular object-oriented programming
with units and mixins. InICFP ’99: Proceedings of the fourth ACM
SIGPLAN international conference on Functional programming,
volume 34(1) ofSIGPLAN, pages 94–104, New York, NY, June 1999.
ACM.

[7] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The Essence of
Compiling with Continuations. In1993 Conference on Programming
Language Design and Implementation., pages 21–25, June 1993.

[8] M. Flatt. Programming Languages for Reusable Software Compo-
nents. PhD thesis, Department of Computer Science, Rice University,
1999.

[9] T. Freeman and F. Pfenning. Refinement types for ML. InPLDI ’91:
Proceedings of the ACM SIGPLAN 1991 conference on Programming
language design and implementation, pages 268–277, New York, NY,
USA, 1991. ACM Press.

[10] J. Garrigue. Programming with polymorphic variants. InACM
SIGPLAN Workshop on ML, 1998.

[11] J. Garrigue. Code reuse through polymorphic variants. InWorkshop
on Foundations of Software Engineering, Nov. 2000.

[12] B. R. Gaster and M. P. Jones. A polymorphic type system for
extensible records and variants. Technical Report NOTTCS-TR-96-3,
Department of Computer Science, University of Nottingham, 1996.

[13] K. Gowani and M. Blume. Writing a garbage collector for the
MLPolyR compiler, July 2005. Final report on independent study
project in the CSPP program.

[14] M. P. Jones. Coherence for qualified types. Technical Report
YALEU/DCS/RR-989, Yale University, New Haven, Connecticut,
USA, 1993.

[15] M. P. Jones and S. P. Jones. Lightweight extensible records for
Haskell, 1999.

[16] S. Krishnamurthi, M. Felleisen, and D. P. Friedman. Synthesizing
Object-Oriented and Functional Design to Promote Re-Use. In
European Conference on Object-Oriented Programming, 1998.

[17] X. Leroy. [caml-list] cyclic types. http://caml.inria.fr/pub/ml-
archives/caml-list/, Jan. 2005.

[18] T. Millstein, C. Bleckner, and C. Chambers. Modular typechecking
for hierarchically extensible datatypes and functions. InICFP ’02:
Proceedings of the seventh ACM SIGPLAN international conference
on Functional programming, pages 110–122, New York, NY, USA,
2002. ACM Press.

[19] R. Milner. A theory of type polymorphism in programming.Journal
of Computer and System Sciences, 13(3):348–375, 1978.

[20] R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Definition of
Standard ML (Revised). MIT Press, Cambridge, MA, 1997.

[21] I. N. I. Adams, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P.
Friedman, R. Halstead, C. Hanson, C. T. Haynes, E. Kohlbecker,
D. Oxley, K. M. Pitman, G. J. Rozas, J. G. L. Steele, G. J. Sussman,
M. Wand, and H. Abelson. Revised5 report on the algorithmic
language scheme.SIGPLAN Not., 33(9):26–76, 1998.

[22] M. Odersky and P. Wadler. Pizza into Java: Translating theory into
practice. InProceedings of the 24th ACM Symposium on Principles of
Programming Languages (POPL’97), Paris, France, pages 146–159.
ACM Press, New York (NY), USA, 1997.

[23] A. Ohori. A simple semantics for ml polymorphism. InFPCA, pages
281–292, 1989.

[24] A. Ohori. A compilation method for ml-style polymorphic record
calculi. In POPL ’92: Proceedings of the 19th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
154–165, New York, NY, USA, 1992. ACM Press.

[25] A. Ohori. A polymorphic record calculus and its compilation.ACM
Trans. Program. Lang. Syst., 17(6):844–895, 1995.

[26] D. Rémy. Type inference for records in a natural extension of
ML. Research Report 1431, Institut National de Recherche en
Informatique et Automatisme, Rocquencourt, BP 105, 78 153 Le
Chesnay Cedex, France, may 1991.

[27] D. Rémy and J. Vouillon. Objective ML: An effective object-oriented
extension to ML.Theory And Practice of Objects Systems, 4(1):27–
50, 1998.

[28] J. Reppy and J. Riecke. Simple objects for Standard ML. In
Proceedings of the ACM SIGPLAN ’96 Conference on Programming
Language Design and Implementation, pages 171–180, Philadelphia,
Pennsylvania, 21–24 1996.

[29] M. Torgersen. The expression problem revisited: Four new solutions
using generics. In M. Odersky, editor,ECOOP 2004—Object-
Oriented Programming, 18th European Conference, Oslo, Norway,
Proceedings, volume 3086 ofLNCS, pages 123–143, New York, NY,
July 2004. Springer-Verlag.

[30] P. Wadler. The expression problem. Email to the Java Genericity
mailing list, Dec. 1998.

[31] M. Wand. Complete type inference for simple objects. InProceedings
of the IEEE Symposium on Logic in Computer Science, Ithaca, NY,
June 1987.

[32] M. Wand. Type inference for record concatenation and multiple

inheritance.Information and Computation, 93(1):1–15, 1991.

[33] M. Zenger and M. Odersky. Extensible algebraic datatypes with
defaults. InICFP ’01: Proceedings of the sixth ACM SIGPLAN
international conference on Functional programming, pages 241–
252, New York, NY, USA, 2001. ACM Press.

[34] M. Zenger and M. Odersky. Independently extensible solutions to
the expression problem. InThe 12th International Workshop on
Foundations of Object-Oriented Languages (FOOL 12), Long Beach,
California, 2005. ACM.

A. Dynamic Semantics forPolyR
Figure 14 shows the dynamic semantics for thePolyR language.

v ⇓ v
(val)

e1 ⇓ fun f x = e′1 e2 ⇓ v2

e′1[fun f x = e′1/f, v2/x] ⇓ v

e1 e2 ⇓ v
(app)

e ⇓ v

l e ⇓ l v
(data const.)

e1 ⇓ v1 e2[v1/x] ⇓ v

let x = e1 in e2 ⇓ v
(let)

e1 ⇓ v1 . . . ek ⇓ vk

{ li = ei }k
i=1 ⇓ { li = vi }k

i=1

(r)

e1 ⇓
˘

li = v′i
¯k

i=1
e2 ⇓ v2

e1 ⊗ {l = e2} ⇓ {l1 = v′1, . . . , lk = v′k, l = v2}
(r/ext)

e ⇓ {l1 = v1, . . . , li = vi, . . . , lk = vk}
e � li ⇓ {l1 = v1, . . . , li−1 = vi−1,

li+1 = vi+1, . . . , lk = vk}

(r/sub)

e ⇓ {l1 = v1, . . . , li = vi, . . . , lk = vk}
e.li ⇓ vi

(select)

e1 ⇓ { li xi ⇒ e′i }k
i=1

e1 ⊕ { l x ⇒ e2 } ⇓ {l1 x1 ⇒ e′1, . . . ,
lk xk ⇒ e′k, l x ⇒ e2}

(c/ext)

e ⇓ { l1 x1 ⇒ e′1, . . . , li xi ⇒ e′i, . . . , lk xk ⇒ e′k }
e 	 li ⇓ {l1 x1 ⇒ e′1, . . . , li−1 xi−1 ⇒ e′i−1,

li+1 xi+1 ⇒ e′i+1, . . . , lk xk ⇒ e′k}

(c/sub)

e1 ⇓ li v
e2 ⇓ { l1 x1 ⇒ e′1, . . . , li xi ⇒ e′i, . . . , lk xk ⇒ e′k }

e′i[v/xi] ⇓ v′

match e1with e2 ⇓ v′
(match)

Figure 14. The dynamic semantics forPolyR.

B. Reordering rules
Figure 15 shows the reordering judgment≈ which expresses the
relationship between two types where they are considered equal up
to permutation of their fields.

α ≈ α int ≈ int

τ1 ≈ τ ′1 τ2 ≈ τ ′2

τ1 → τ2 ≈ τ ′1 → τ ′2

ρ ≈ ρ′

{ρ} ≈ {ρ′}

ρ ≈ ρ′

〈ρ〉 ≈ 〈ρ′〉
ρ ≈ ρ′

α as 〈ρ〉 ≈ α as 〈ρ′〉
ρ ≈ ρ′ τ ≈ τ ′

〈ρ〉 ↪→ τ ≈ 〈ρ′〉 ↪→ τ ′

β ≈ β � ≈ � l : τ, β ≈ l : τ, β l : τ, � ≈ l : τ, �

is a permutation of 1,. . . ,k

l1 : τ1, . . . , lk : τk, ρ ≈ l#(1) : τ#(1), . . . , l#(k) : τ#(k), ρ

Figure 15. The reordering judgment≈.

