Extensible Programming with First-Class Cases

Matthias Blume Umut A. Acar Wonseok Chae

Toyota Technological Institute at Chicago
{blume,umut,wchae}@tti-c.org

Abstract mediate language. This translation is formalized as part of our type
system.

As in any dual construction, the introduction form of the primal
orresponds to the elimination form of the dual. Thus, elimination
orms of sums (e.g.match or casg correspond to introduction
4orms of records. In particular, record extension (an introduction

orm) corresponds to extension ohses(an elimination form).
This duality motivates making cases first-class values as opposed
to mere syntactic formh With cases being first-class and extensible,

We study the proposed mechanisms in the context of an im- ON€ can use the usual mechanisms of functional abstraction in a

plicitly typed, purely functional languag@olyR. We give a type style of programming that facilitates composable extensions. We
system for the language and provide rules for a 2-phase transforma- show examples for this later in the introduction and in Section 2.
tion: first into an explicitly typed\-calculus with record polymor- ©ur polymorphic sums provide a notiontype refinemergim-
phism, and finally to efficient index-passing code. The first phase ilar to data sorts of Freeman and Pfenning [9] and give rise to a sim-

eliminates sums and cases by taking advantage of the duality with P/€ Programming pattern facilitatinlgpmposable extensiarSom-
records. posable extensions can be used as a principled approach to solv-

We implement a version folyR extended with imperative fea- N9 the well-knownexpression problerdescribed by Wadler [30].
tures and pattern matching—we call this langultiePolyR . Pro- There have been many attempts at solving the expression problem,
grams inMLPolyR require no type annotations—the implemen- most of them in an object-oriented context [28, 22, 3, 16, 27, 6, 8,
tation employs a reconstruction algorithm to infer all types. The 53 18, 4, 29, 34]. Garrigue shows an approach based on polymor-
compiler generates machine code (currently for PowerPC) and Op_phlc variants which is similar to our proposal, but somewhat less
timizes the representation of sums by eliminating closures gener- 9eneral [11].
ated by the dual construction.

We present language mechanisms for polymorphic, extensible
records and their exact dual, polymorphic sums with extensible
first-class cases. These features make it possible to easily extencf
existing code with new cases. In fact, such extensions do not re-
quire any changes to code that adheres to a particular programmin
style. Using that style, individual extensions can be written inde-

pendently and later be composed to form larger components. These
language mechanisms provide a solution to the expression problem

)))) Composable record extension and its dual
Categories and Subject DescriptordD.3.3 [Programming Lan-

guage§ Language Constructs and Features—Polymorphism To understand the underlying mechanism, it is instructive to first

look at an example. IMLPolyR we write{ a = 1, =r}
General Terms Design, Languages to create a new record which extends recerdith a new field
o a. Since records are first-class values, we can abstract over the
Keywords duality, first-class cases, records, sums record being extended and obtain a functiaii_a that extends
any argument record (as long as it does not already coajaiith
1. Introduction a field a. Such a function can be thought of as the “difference”
. . . between its result and its argument:
In this paper we study language mechanisms for polymorphic ex- fun addar={a=1, ... =1 }

te_nS|bIe recc_)rds and their duals_. polymorphlc sums with a mecha- Here the difference consists of a field labeledf type int and
nism for adding new cases to existing code handling such sums. We luei. The t f functiormdd.a is inferred ag

present a type system based on a straightforward application of row"a uel) dde Ype ot functiora. fa. IS Inierred as.
polymorphism [26] and incorporate it into a dialect of ML called Wevc?anawrﬁ(ae .si%igr}fu:ctign:&dISZHdﬁ d;:i of YDes
MLPolyR . Our compiler forMLPolyR provides efficient type re- b:bool d{ add-© . ype:
construction of principal types by using a variant of the well-known {h@g EE”{ W °° J B }ant_ {I/é') } — { c:string, G}
algorithm W [19]. The key technical insight to fully general type w 'fc add fields andc r(ispec IVely: _

inference is to keep separate type constructors for sums and cases " 2dd-b 7 ={b Erue’ |‘." =T }

during type inference. Taking advantage of duality, sums and case fun addc r = { ¢ = "hello", ... =

can be eliminated later by translation into an explicitly typed inter- "We can then “add up’ record differences representedadnya
add_b, add_c by composing these functions:

fun add_ab r = add_a (add_b 7)

fun add_.bc r = addb (addc r)
The inferred types are:

Permission to r_nake digital or hard copies_ of all or part of this work for pers_one_il or val add_ab: { 5 } N { a: int, b: bool, ﬁ }
classroom use is granted without fee provided that copies are not made or distributed .

for profit or commercial advantage and that copies bear this notice and the full citation val addbec: { 8 } — { b: bool, c: string, § }
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.)))
ICFP'06 September 16-21, 2006, Portland, Oregon, USA. LIn Standard ML [20], the corresponding syntactic form is knowmatch

Copyright© 2006 ACM 1-59593-309-3/06/0009. .. $5.00. 2We omit the universal quantifier and the kind of the row varighle

Finally, we can create actual records by “adding” differences to the
empty record:

val a = add-a {}
val ab = add_ab {}
val bc = add-bc {}

When translated to the dual, extensibility of records becomes exten-
sibility of code. Here is a function representing the difference be-
tween two code fragments, one of which can handle ¢asghile
the other, represented by the argumergannot:

fun add A ¢ = cases‘A () => print "A"

default: ¢

Note that functionadd_A corresponds tadd_a of the dual. The
type inferred foradd_A is:

val add_A: (k3> —) — (KA of O, B> — O)
Here a type(p) — 7 denotes the type of first-class cases where
(p) is the sum type that is being handled ané the result. One
can think of—— as an alternative function arrow whose elimination
form will be discussed below. Examples for functionsi B and
add_C (corresponding tadd_b andadd_c in the dual) are:

fun add B ¢ = cases‘B () => print "B"
default: ¢

fun addC ¢ = cases‘C () => print "C"
default: ¢

As in the dual, we can now compose difference functions to obtain
larger differences:

fun add_AB ¢ = add_A (add_B c¢)

fun add BC ¢ = add_B (add_C c¢)
By applying a difference to the empty casecasesve obtain case
values:

val case A = add_A nocases

val case_AB = add_AB nocases

val case BC = add_BC nocases
These values can be used imatch form. Thematch construct is
the elimination form for the case arrows. The following expres-
sion will cause'B" to be printed:

match ‘B () with case BC
The previous examples demonstrate how functional record exten-
sion in the primal corresponds to code extension in the dual. This
forms the basis for our proposed solution to the expression prob-

lem. In the non-recursive case, code extension is as straightforward

fun kv2kb k,
fun kb2kv k;

Av. ‘App (kv , [v])
withfresh(Az,.‘Lam([x,],ky (‘Var x,)))
let

(D}

fun cvt_app(e,€,ky)
fun 1c(0d,kp)
| 1c(e::€,kyp pcle, e, A (v, 0).kp(v:: 7))
and pc(e, €&, k) cvt (e, \v.1c (€, \V.ky (v,7)))
in pc(e,&,A\(v,?).App(v,ky::0)) end
and cvt_lam(Z,e) withfresh (Azg.
‘Lam(xy: : Z,cvt(e,kv2kb(‘Var z3))))
and cvt(e,kp) = match e with
cases ‘Con ¢ = kp(‘Con 1)
| ‘Var = = kp(‘Var z)
| ‘Lam(Z,e)= ky (cvt_lam(Z,e))
| ‘App(e,e)= cvt_app(e,&,kb2kv(kp))

cvt_lam([],e)

= Ky
) =

fun convert e

Figure 1. A simple CPS-convertewhen converting App, the contin-
uation builderk; must be turned into a syntactic valkg that can be passed
as an additional argument; thits is a new* Lam with a single parameter,.
and a body obtained by applyirig to z,- (see functiorkb2kv). Conversely,
to convert a‘Lam, an extra formal argument;, representing the continu-
ation is added. The correspondikg simply constructs afApp of zj, to
whatever argument is given tok;, (see functiorkv2kb). For clarity, the
code for‘ App and ‘Lam has been separated out into functiens _app and
cvt_lam; cvt_app uses helper functionsc andpc to recursively convert
the operatoe and all operands.

Following Appel [1], the conversion can be performed in
essentially linear time using an approach that could be called
“continuation-builder passing style” where the converter function
cvt (see Figure 1) receives the expressida be converted ank,
the continuation builder which represents the context in whieh
appeared within the original expression. Once the converter comes
up with a syntactic value for the result ofe, k; is invoked on this
v in order to produce the CPS expression represertigriginal
context.

2.1 \Variants, polymorphism, subtyping, and refinement

as shown above. Section 2 discusses extensible CPS conversion a&s explained in the introduction, our languagé&PolyR has poly-

a realistic example where a recursive type is extended in an inter-
esting way.

2. Case study: CPS conversion

Let us consider a recursive sum type whose values represent un-

typed A-terms. We use a Scheme-like calculus [21] with multi-
parameter function$Variables ‘Var z are represented by small
integersz, applications‘ App (e, €) by an operatoe and a list of
operand$é, and-abstractionsLam(Z, e) by a list of bound vari-
ablesz and a body. We also include constant€on c.

Terms whose outermost constructor @n, ‘Var or ‘Lam are
calledsyntactic valuesA commonly considered refinement of the
term type restricts App to only take such syntactic values. This
is known as the CPS-restriction, since assuming a particular eva
uation strategy (e.qg., call-by-value, left-to-right) every unrestricted
term can be converted into an “equivalent” CPS-term by making
use ofContinuation-Rssing $/le.

3 As we will see below, our CPS-converter requires this feature to accom-
modate continuation arguments.

4We use the vector-arrow notation asiito indicate variables or sub-terms
that are lists.

morphic sum types in the style of OCafrilhe type system is based
on Remy-stylerow polymorphismhandles equi-recursive types,
and can infer principle types for all language constructs. For func-
tion convert in Figure 1, the compiler calculates the following

type:

val convert:
Va.V¢ : {‘App},(: {“Con, ‘Lam, ‘Var}.
(e as <‘App of (e, [e]), ‘Con oOf a,
‘Lam of ([int], €), ‘Var of int>) —
(v as <‘Con of a,
‘Lam of ([int], <‘App of (v, [v]), &),
‘Var of int, (>)

Heree is a recursive sum type, indicated by keywasland
a type row enclosed iR ... >; ¢ can clearly be recognized as
the type of lambda expressiohSimilarly, typev is the type of
syntactic values. Functiotionvert is polymorphic ina, the type
of values carried by Con. Finally, ¢ and(are row type variables
constrained to a particul&ind. The kind is a set of labels that must
beabsenin any instantiation. Like in Standard ML, the type printer
in our compiler does not ever print universal quantifiers for ordinary

5|n fact, even our syntax for constructors is inspired by OCaml’s choice.
6We use Haskell notatiof#] for MLPolyR s built-in list type.

fun cvt_app(cvt,e,€,k,) = ... asbefore... fun Let(z,e1,e2) = ‘App(‘Lam([z],e2),[e1])
fun cvt_lam(cvt,Z,e) = ... as before...
fun cvti_c(evt,kp) =
fun cvt_c(cvt,k;) = cases... same cases as before . cases ‘If (ec,et,ee)=>withfresh(Axy.
Let (z ,kb2kv ky,cvt(ec, A\ve.
fun mkConvert (c,e) = letval kj=kv2kb(‘Var xj)
letfun cvt(e,kp) = match e with c(cvt,kp) in ‘If (ve,cvt(er,ky) ,cvtlee,ky)) end)))
in cvt_lam(cvt, [1,e) end default: cvt_c(cvt,kyp)
fun convert e = mkConvert(cvt_c,e) fun converti e = mkConvert(cvti_c,e)
Figure 2. Preparing for extensibilityExplicitly open-code recursion Figure 3. Extending the CPS converter to handet.

and separate the cases from the scrutinee imgteh-construct.

fun cvt_lcc(cvt,zc,e,zp) =
withfresh(Azy.withfresh(\x,.
Let (zc, ‘Lam([z4,z,]1, ‘App(‘Var zp,[‘Var z,])),
cvt(e,kv2kb(‘Var xx)))))

type variables, and it suppresses them for row variables whenever
the kind can be inferred from how the variable is used. In this case,
since¢ appears in a row with App and ¢ appears in a row with
‘Con, ‘Lam, and ‘Var, kind information can be left implicit. In
fact, even the identity of the variables is irrelevant since there is
only one occurrence of each. Therefore, the actual type expression
printed by theMLPolyR compiler is the following:

fun cvtc_c(evt,ky) =
cases ‘LetCC(xc,e)=
withfresh(A\xy.Let (zj ,kb2kv(ky),

val convert: cvt_lcc(evt,zc,e,2)))
(e as <‘App of (e, [€]l), ‘Con of a, default: cvt_c(cvt,kp)
‘Lam of ([int]l, €), ‘Var of int>) — fun convertc e = mkConvert(cvtc_c,e)
(v as <‘Con of «,
‘Lam of ([int], <‘App of (v, [¥1), ...>), Figure 4. Extending the CPS converter to handletCC.
‘Var of int, ...>)

A remarkable fact about this inferred type is its precision. Even) .
though we had in mind only one restriction, namely thapp value that potentially contains constructors other thewn, ‘Var,
cannot appear directly inside anotherpp, the inference engine Lam, and “App. Clearly, the type system is doing the right thing
noticed that the converter enforces another invariant: all bodies of Nere. since the code itself is in no way prepared to handle anything
‘Lam are instances ofApp. Nevertheless, this extra precision is not ~ Put those four cases. _)
harmful. The result type is polymorphic and can be instantiated to 10 Make the code extensible, we need a way of adding new

the one we may have had in mind: cases, i.e., new language constructs that are handled. Since these
new constructs should be allowed to appear anywhere within a
(v as <‘Con of a, given input expression, we also must open up the recursion.
‘Lam of ([int], (e as <‘App of (v, [v]1), ‘Con of a, As explained earlier, infMLPolyR, the cases of anatch-
‘Lam of ([int], ¢), expression handling a sum tygg) and returning a value of type
‘Var of int>)), T are represented by first-class values of type— 7, and these
‘Var of int>) values are extensible in the same sense in which records can be

extended with new fields. Thus, to prepare the code for future
extensions we separate the cases from the scrutinee and parame-
terizing them by closing over their free variables. By letting one

of these free variables be the recursive instance of funetian

itself we straightforwardly achieve open recursion. Finally, we put
the mechanism that closes the recursion into its own reusable rou-
tine mkConvert and then use it to recover the original function
convert by applyingmkConvert to cvt_c (see Figure 2).

In other words, although any occurrence‘@fm in the output
will in fact have been applied to a value constructed Withp, one
can send this output into a context that is prepared to also handle
other cases forLam. In fact, the output type is flexible enough
to be instantiated to the original unrestricted expression type. This
means that we could, for example, composedtevert function
with itself:

fun convert_twice e = convert (convert e)

2.3 Extending the input language

_Doing so may be of limited use, but more importantly, existing - wjth this preparation in place, it is now very easy to extend the con-
utility routines such as pretty-printers, evaluators, and so forth yerter to handle new language constructs. For example, the code
that work on unrestricted expression can also be composed within Figure 3 introduces a conditional £ which can appear in the
functionconvert.) input, and, if it does, will also appear in the output. The key con-

Conversely, if the code fotonvert contained a bug that can stryct that makes this work is tihasesform with adefault: clause.
cause its output to violate the intended invariant, then this fact Here, a single new caséx¢) is handled, and the default explicitly
would also be visible in the type. Composition with code that refers to the original set of four cases representeciiryc. A new

expectghe invariant will then fail to type-check. converterconverti, now handling five cases includirig, is ob-

. N tained by closing the recursion using the same funciiconvert
2.2 Preparing for extensibility as before.
As we have seen, row polymorphism represents a form of type Another example for an extension is the additiorf bétCC to
refinement for the output of functiononvert. The input type, the input languagé€.LetCC is a binding construct which introduces

however, is rigid. This means that we cannot apgiyivert to a a variable that, within its scope, refers to an “escape procedure”

fun cvti_c other_c (cvt,kp) =
cases ‘If (ec,et,e.)=> ... as before. ..
default: other_c(cvt,kp)

fun cvtc_c other_c (cvt,kp) =
cases ‘LetCC(z.,e)= ... as before...
default: other_c(cvt,kp)

fun converti e = mkConvert(cvti_c cvt_c,e)
fun convertc e = mkConvert(cvtc_c cvt_c,e)
fun convertci e = mkConvert(cvtc_c(cvti_c cvt_c),e)

Figure 5. Extensions parameterized by what is being extended.

representing the current continuatibm CPS-converted code, the
current continuation is always directly available as a value, mean-
ing that‘LetCC can be supported without need for a new language
construct in the output language. As a result, the extension shown
in Figure 4 extends the input language only.

2.4 Linearly composable extensions

One major weakness of the two extensiorigf(and ‘LetCC)
shown so far is that they are not orthogonal since each of them
explicitly extends theriginal converter rather than another, poten-
tially already extended version. But with the mechanisms shown,
this deficiency can be overcome quite easily by parameterizing the
extension over what is being extended. The resulting pattern is
shown in Figure 5. Notice how the two extensions have become
differencesin the sense explained in the introduction, so they are
now composableWe can think of them as layers of functionality
that can be “stacked.”

One can take the idea of extension composition to the extreme
by using a programming style (or “pattern”) where every case is
written individually as a single layer in the above sense. Given
such layers, one can easily generate a converter for any athe
possible input languages simply by stacking the corresponding sub-
set of layers. To support this iddd]_PolyR provides the syntactic
form nocaseof type () <— « for any«. This form represents “no
functionality” and can be used as the “base” upon which to stack.

3. ThePolyR Language

This section describes an idealizationMfPolyR , calledPolyR,

with polymorphic, extensible sums, records, and first-class cases.
To compilePolyR, we first translate it into a version of Systém
called Fr (Section 3.2).Fr has support for records but not for
sums. For brevity, we give the static semanticsFotyR and the
translation toFr together (Section 3.3). Section 3.5 describes the
translation fromFg into an untyped\-calculus.

3.1 Abstract Syntax

Figure 6 shows the abstract syntax for the languBg@R. The
meta-variable: and its variants range over variables. Meta-variable
[and variants range over an unspecified set of labels. Meta variable
« and g (and variants) range over type and row-type variables re-
spectively. Variables, labels, type variables, and row-type variables
are mutually disjoint sets.

The types of the language are separated into (ordinary) types
(denoted byr and variants)iow-types(denoted by and variants),
and type schemas (denoted dyand variants). The types consist
of type variablesy, the base typént, function types, record types
{p}), sum types (p)), recursive sum typesx(as (p)), and case

7¢LetCC(x,e) is the same as Scheme6call/cc (lambda (z)
e)) [21].

i= alint |7 — 72 | {p} | (p) |aas(p)|(p) =T

p = Bl.llimp
K ou= {l, . k)
o == Y(a1,...,om). Y(B1: Ki,...,Bn i kn).T

s=nlfunfz=c|lo|{L=v " [{liz; =e}r,

n|funfrx=c|xz|le|erez|letz=c¢cjines|
{li:ei}le\el ®@{l=ex}|eol]
{bizi=e} |en @ {lz=ex}|eol]
e.l | match e;with ez

Figure 6. The abstract syntax dfolyR.

alint |71 - T2 | {p} |aasT|

Y(at,...,am). Y(B1::K1,. .., Bniikn).T
p = 6‘/6>—>77'|-|l!’7',,5
K = {l,...,lk}
o u= nlfunfz:7T=¢c¢|{lLi=0}",]
Alat,...,am) A(B1::k1, ..., Bniikn).€
€ u= z|n|funfz:T=¢é|letz:T=¢é1iné;
Alat,...,am) A(Br:k1, ..., Bniikn).€ |
6162|6[7_—17"'7%7’n][ﬁ17"'7ﬁn}|

{li=e}f,|elle @ {i=e}leol

Figure 7. The abstract syntax ¢fz.

types (p) — 7). We denote the set of free type variables of a
type 7 by FTV(7) and that of a typing conteXt by FTV(T").
Row-types consist of a row(-type) variabl@sand possibly empty
sequences of label and type matchings. The set of free row type
variables of a type- is denoted byFRV (7). For that of a typing
contextl’ we write FRV (I"). The recursive sum as (p) specifies
a sum type where the type variahlecan recursively occur in the
definition of p.

Type schemas rely ckinds denoted by and variants, defined
as sets of labels. Kinds are associated with row variables and spec-
ify the labels that a row variable must not contain. Type schemas,
denoted by (and variants), are defined as

,Qm). Y(B1:K1, .« .y Britkin).T

The quantifiers bind occurrences of type variadles, . .., am }
and of row variableg§ 31, . . ., B} that are free imr. The kinds of
the row variables are given Hys1, ..., kn }.

Expressions consist of values, functions, variables, data type
constructors [(), applications, let bindings, record expressions,
case expressions, and cases. Record expressions consist of record
constructors{l; = e1,...,lx = ex} (which we will often ab-
breviate as{ l; = e; }_,), record extensions; ® {l=e2},
record subtractiong @ [, and record selections.l. Case ex-
pressions are symmetric to records and consist of case constructors

o ==VY(a,...

s{ll X1 = €1,..., Ik 1 = ek} (abbreviated a@li Ti = €4 }i_c:1),

case extensions; @& {!x = e; }, and case subtractiorso .

A match expressiomatch e; with e; matches:; to the expres-
sionses whose value must be a case. Values consist of numbers,
named functions, records where each field is a value, and cases.

3.2 SystemF

PolyR expressions can be translated into expressions of a variant
of SystemF with records and named functions. We call this lan-
guageFg. Figure 7 shows the syntax of tig language. (For the
rest of the paper we will use the terms “System F” dndin-
terchangeably.) The language can be derived fRatyR by ex-

T»T pPp
s» B . l:T,p»l:T,p
TIL»TL p;T2 PP
BT B—T . (l:71,p); 2171 — T2, p
TIPTL T2 P T2
ap o int » int LT — T2 B T1 — T2
Il p»p Py p
L {ot > {5} (o) »Va.{p} =«
(o) » 7 T pTRp
aas (p) »aasT (p) — 7 » {p}

Figure 8. The translation of rows (top) and types (bottom) of
PolyR to Fg.

k CA(B)
At B\ k

AFp\k l€k
AE(l:71,p)\ K

AF..\k

AFmok AF 70k
AF 71 — 120k
A F pok
A+ (p) ok
At pok AFTo0k
AF (p) — 7ok

A F int ok
A F pok
A+ {p} ok
A+ pok
A+ «aas (p) ok

AF o ok

A+ Bok A+ .ok
AkFTok AFp\{l} AFpok
AF1l:7 pok

Figure 9. The lacks relations, and well-formed types and row-
types (from top to bottom in that order) .

cluding sum types, case types, operations on sum types and cases,

adding type abstraction, and type application. To distinguish be-
tweenPolyR types and expressions frofa types and expressions,
the Fr meta-variables for expressions and types are written with a
bar, e.g.g,v, 7.

The types of consist of type variables, that type, function

pressed by the- relation, we ignore the order of labels in rows
(Appendix B).

Typing rules for thePolyR language (Figure 10) are non-
deterministic. Care must be taken to not introduce ill-formed types

types, record types, recursive types, and polymorphic types. Recordwhen “guessing” the types of functions, i.e., when creating an in-

types are defined in terms of row types denoted lfgnd variants)

stance of a polymorphic type, and when constructing bigger row-

that consist of sequences of labeled types that can either end withtypes from existing row-types. Figure 9 defines the notion of well-

an empty row, a row variables3, or a row arrow3 — 7. The key
difference between the row types of tRelyR language andFg
language is the inclusion of thew-arrow 3 — 7. Row arrows are
critical to represent sums and cases in terms of records.

formed types and row-types. The definitions rely dacksrelation
between rows and sets of labels. We say that a gdacksa set
of labelsx under the kinding contexA, denotedA + p \ &, if p
does not contain any of the labels framif p contains a row-type

The expressions of the language consist of variables, numbers variable3, then the kind of3 (recorded inA) must be a superset

type abstractions(as, . . .
applications &[7, . ..

, 0m) A(Br::R1, - ., Briikn).€), type
, Tm][P1, - - -, pn]), functions, applications,

of k. We say that a row-type is well formed underA, denoted
A F pok if p consists of distinct labels and lacks the labels

let expressions, and record expressions. The values consist of numspecified by the kinding environment. We say that a tyjewell-
bers, functions, type abstractions, and records where each field is #ormed under some kinding contest, denotedA - 7 ok , if all

value.

Throughout the paper, we omit empty bindings for type- and
row variables in type abstractions and empty type- and row type
arguments in type applications. For examples, we may wiite
k.7 or €[p] when no type variables are quantified.

3.3 Static Semantics and Translation to System F

We present the static semanticsRaflyR and simultaneously show
the translation oPolyR to SystenfF.

Figure 8 shows the translation for row arrows and the translation
of types of thePolyR language to those dfr. Row-types are
translated either directly, written as» p, or in the context of a
type 7, written asp; 7 » p. The translatiorp » p translates
pointwise by translating each field. The judgmgntz » p relates
each field : T of pto afieldl : 7 — 7» of p where7 is obtained
by translatingr. If p is a row-type variable3, then the result is
ﬁ — Ta.

The types ofPolyR are translated into Systeffi by trans-

lating sums and cases into records (Figure 8). This makes the

row-(sub)types of are well formed undeA.

Figure 10 shows the typing rules fBolyR and their transla-
tion to SystenF. The judgments take place under a kinding con-
text A and the typing contexf'. The kinding context maps row
variables to kinds—the kind of a row variable is the set of labels
that the variable is known not to contain. The typing context maps
(ordinary) variables to type schemas. The judgments take the form
A;T F e: 7 » e : T and state that, under the kinding context
A and the typing context’, the PolyR expressiore has typer
and translates to tHex expressiore with 7. The following lemma
states that the translation preserves the types of terms with respect
to the translation. The proof of this lemma is omitted here.

Lemma 1l
IfA;THe:7w» e:T,thent » 7.

The most interesting judgments are those that introduce and
eliminate polymorphism (thé@et/val and thevar judgments),
and those that operate on sums, records, and cases.

The PolyR language supports ML-style polymorphism (let

rules that handle sums and cases particularly interesting. Sumpolymorphism). How a let expression is type-checked depends on

types are translated into record types where each field is a func-

tion from a member of the sum type to a universally quantified
type variablea. More precisely, the sum typép) is translated
by first translating the row type into g under a type variable

a and then generalizing the function tyg@} — «. For ex-
ample, the sum typél, : int, > : int — int) is translated into
the typeVa. {l; : int — o,z : (int — int) — a} — a. As ex-

whether the expression whose value is being bound is a syntactic
value or not. If the expression is of the folet © = v; in ez, then

the type of the valué;, is generalized over all free type variables
and row-type variables; the generalization requires constructing
a kind for each row type (let/val judgment). If the expression is
of the formlet x = e: in ez, wheree; is not a value, then the
type ofe; is not generalized (let/non-val judgment). There are two

I(z) =Voai...am.VB1 1 Kk1...0n i kn.T’
Vi.A F 7; ok Vj.(Aij Ok)/\(Aij\Hj)
T =7'[1i/0i, pj/Bjli=1..m,j=1...n
Ti B Ti pi » pi TMT AThe:Twe: 7 7T
— — — — (var) — (reorder)
AThEzor 0 z[T,. TP, -5 Pn] 0 T AiTke:T'pe:7T

AT, fimm—7z:mmbe:Tpe: T AFmok m P T

ATHfunfa=e:m —7hfunfrz=¢e: 7 —> 7T

(fun)

in
A;Fkn:intbn:int(l g

AiTke:rwpe:T AF({l:1,p)ok (L:7,p);app
A;THIe:(U:T,p) » (letzy : T=€in Aafun _z, = 2.l) : Va. {p} — «

(data const.)

A;TkFep:mp—T7wer:T2a—T A;'Fex:maper: T

A;ThHejes:TPeéEréx: T (@pp)

—

d=ai,...,am =FTV(r) \FTV(') pB1,...,8, =FRV(m1)\FRV(I') B:k=p1:Kl,...,0n kn
ABurTher:mper 71 AT x:VavVp: kT bex:m P eéx: T erisasyntactic value

(let/val)
A;THletz =ejines : o B let z: VAa.V3 :: k.71 = AG.ASB :: k.1 inéy : T
A;ThRer:mpper 71 A;Tz:7iFex:m P éx: 7o erisnotasyntactic value
T = — (let/non-val)
A;THletz=ejines : o pletz: 7 = €1 ineés : T2
A;THe: (plaas (p)/a]) »e: TlaasT/al A;THe:aas(p)pe:aasT
— — (roll) — — (unroll)
A;ThHe:aas(p)pe:aasT AT ERe: (plaas (p)/a]) »e: TlaasT/a)
Vi.\;T ke :m, € : 7 Vi. (A;TEm ok) A (A T,z i be T € 7)
AbFly,..., 1ok ® AFly,..., 1l 0k Vi.(ﬂ'bﬂ) ©
r C
AT F {li=€i}l-€:11{lii7'i}l-€:1 AT b {lLigi=er (Lim) o7
> (L=} LT, > {lLi=fun_z;:7=¢}" {li:7m -7},
As;Ther:{p} » ei:{p} A;Ther:(py—7 » e :{p}
Akp\{l} AFp\{l} A+ 711 0k T1 P T1
A;ThHey:m2 B é3:72 ANsT,x:mpbex:7 B e2:7
(r/ext) (clext)
AT Foer @ {l=ex}: {l:72,p} AT B oer @ {le=e}:(liT,p)—T
» él®{l=ég}:{l:7’2,ﬁ} » él®{l:fun,:v:ﬂ:éz}:{l:ﬁH‘T‘,ﬁ}
AsTEe:{l:m,p}pe:{l:7,p ANsTRe:(l:m,p)—>Twe:{l:71 —7T,p
{t:7p} 7{ ’f}(r/sub) (l:71,p) 7{ il p}(clsub)
ATHeo l:{p}w»eol:{p} AsTEe o l:{(p)—>Trwe o l:{p}
AT h [[ﬁ;ll:ielz(p?sa:Va.({ﬁa}?a]?
s PHe:{l:T, »eé: T, P ; e — T P €2 : 1P
{:m e} — {, P} (select) o1 TS (match)
A;Thel:Twel: T A; T+ match eywithes : 7 » &1[F] &2 : 7

Figure 10. The static semantics and translation for basic terms (top), and records and cases.

motivations behind differentiating between syntactic values and labell under the condition thdtis not included in the record type.
non-values: 1) it ensures that the transformation to Sys$temre- The type of a record subtractien® [is a record where labélis
serves non-termination semantics of the program, and 2) it makesexcluded under the condition thatontaing. The type of a record
it easier to extend the language with side effects (e.g., references)selection is the type of the fieldbeing selected, under the condition
When used, a variable with a polymorphic type is instantiated to that the record expression contains the field with ldb8ince the
a non-polymorphic type by selecting types and row types for its Fgr language includes the record expressions includé&wipR, all
polymorphic variables (var rule). An instantiation is translated into record expressions are translated intokRhdanguage directly.
SystemF as a type application. A case constructor is assigned a case type that identifies the
The bottom box in Figure 10 shows the typing rules for records result typer of the bodies ¢;'s) and maps each labé] to its
(left) and cases (right). The judgments are arranged to bring out thedomain typer;. A case is translated into a record of functions,
symmetry between these rules. one for each labdl;, whose argument type is equal to the domain
A record constructor is assigned the record type that maps thetype 7; of [, and whose body is the body of the case A case
labels to the types of the corresponding fields as long as the labelsextension extends the type of a case with a new branch. A case
are distinct. The type of a record extension ® {l =e2} is a extension is translated to a record extension. A case subtraction
record type that extends the tyge} of the recorde; with the takes out the specified branch from a case type and translates it

t s=n|xz|ti+t2]t1 —te|len(t) | (val)
fun fo=1t|t1ta| (s)0 |tt] vl
let z =t int t1dn1 talng t1 dn1 t2{ne
ST 2V 2 (ol e 2V (mi
s == 1] (t,1,1) t1 +t2 J n1+ne (plus) t1 —t2 dn1 —no (minus)
v u=n|funzt; =t2 |
t1 | fun f oz =1t} to | va
Figure 11. The abstract syntax fdrRec. thlfun fo =11 /f1,v2/z] Y v
o (app)
1t v

into a record subtraction. A match expressinatch e; with ey v b [.”1/5”’] Yo (let) td (v, vn-1) (length)
is well typed if the domain type of, is the same as the typs. letz =t1intz Jv len(t) n
Since data constructors are transformed into functions that select t1 4 (Vo,. ..,V Uno1) ta i 0<i<n
the appropriate function from their argument and apply their value _ (select)

. . X X v) ty.ta | v;
to that function, a match expression is compiled into a function
application. Since translated sum expressions have polymorphic| 51 ¥s v1,05-- V18 -1 -+ Sn s Un0s 3 Vnkn—1 (tuple)
type, this requires instantiating the function type first. We note that | (s;,...,s,) |} (v1,0,.. ULy —1s- -3 Un,0s s Un kp—1) P
the symmetry to a selection is indirect (through the translation of Vo
data constructors). (slice/singleton)

s U

3.4 Dynamic Semantics 110 (U0, -y Vis e Vg ey Une1)
The dynamic semantics dPolyR is mostly standard. The full t2di tsdj 0<i<j<n (slice/sequence)
semantics is given in Appendix A. Although tifelyR language (ti,t2,t3) s vi, ... 051
is purely functional, the dynamic semantics is written with the

same implicit threading of state in mind that is also used by the
Definition of Standard ML [20]. This removes all non-determinism
by enforcing an evaluation order. The primary motivation for this is
to enable a precise specification of the transformatidPodfR into
an untypedi-calculus (Section 3.5) without altering the execution Sisting of label and term pairs. More precisely, for a row variable
order. A secondary motivation is to ensure that the transformation 3, A(8) = {(l1,t1), ..., (Ix, tx)}, wheret; is the term that will
would be consistent with imperative features, if the languages are @id in computing the index fds; in a record. We writeA (3)(1) for
extended with them. the index (term) of for 3, i.e., if (I,t) € A(B), thenA(B)(I) = t.

Given A, the kind of a row variablg3, denotedx (A, 3) can be
3.5 Translation to Untyped A-Calculus recovered by projecting out the labels. More precisgl\, 3) is
defined as:(A, 3) = {l| (I,t) € A(B)}.

The translation of numbers, variables, functions, applications,
and let expressions are straightforward. A record is translated into
a tuple of slices, each of which is obtained by translating the
label expressions. The slices are sorted based on the corresponding
labels. Since sorting can re-arrange the ordering of the fields, the
transformation first evaluates the fields in their original order by
binding them to variables and then constructs the tuple using those

Figure 12. The dynamic semantics fauRec.

We describe the translation of Systénexpressions (Section 3.2)
into an untyped language, calle®ec. ThelLRec language extends
the untyped\-calculus with f.-ary) tuples and named functions;
Figure 11 shows the abstract syntax fdRec. The terms of the
language, denoted hiy(and variants), consist of numbers vari-
ablesz, the operations plus and minden(t) for determining the
number of fields in a tuple, named functions, function applica-
tion, and introduction and eliminations forms for tuples. The in- variables

troduction form for tuples(s;);_,, specifies a sequence of slices A record selection is translated by computing the index for the
from whlch the t_uple is t_)eln_g const_ructed. The ellml_natlon formfor |apel being projected based on the type of the record. To compute
tuples is selection (projection), writtefi.¢2, that projects out the indices for record labels, the translation relies on two operations.
field with indext. from the tuplet: . The terms include alet expres- Given a set of labels and a label, define thepositionof [in &,

sion (as syntactic sugar for application)shce, denoted by (and denotedos(l, k), as the number of labels bthat are less thahin
variants), is either a term, or a triple of terifis, ¢2, t3), wheret, the total order defined on labels. Formathys(l,x) = |{I' | I’ €
yields a record whilé, andts must evaluate to numbers. A slice xAl’ <; I}|, where<; denotes the ordering relation on labels. For
(t1,t2,t3) specifies consecutive fields of the recordetween the a given rowp, definelabels(p) to be the pair consisting of the set

indices ofts (including) andts (excluding). of variables ofp and the remainder row, which is either empty or a
Figure 12 shows the dynamic semantics lfRec. We enforce ~ row variable. More precisely:

an order on evaluation by assuming that the premises are evaluated labels({l1, ..., 1,) = ({1, e} ")

from left to right and top to bottom (in that order). The semantics labels({l1, .. 10 BY) = ({1, 1}, B)

is largely standard. The only interesting judgments concern evalu-
ation of slices and construction of tuples. Slices evaluate to a se- labels({l1, ..., 1k, f > 7}) SUSEN D)

quence of values selected by the specified indices (if any). Tuple Notice that we treaB — 7 just like plain3, taking advantage of
selection projects out the specified field with the specified index the factthat3 — 7) \ lif and only if 3 \ I.

from the tuple. Since tuples can be implemented as arrays, selec- Let 7 be some record type, and léL, p) = labels(7). We
tion can be implemented in constant time. Thus, if records can be compute thendexof a labell in 7, denotedndexOf(A, I, (L, p)),
transformed into tuples and record selection can be transformedas follows:

into tuple selection, record operations can be implemented in con- indexOf(A, L, (L,-)) = pos(l,L)
stant time. The computation of the indices is the key component of _ I ’
the translation from Féystelh'ﬁto LRec. yeomp indexOf(A, 1, (L, 8)) = AB)() —posl,x(A,)\ L)
Figure 13 shows the translation from Systén{the Fr lan- To compute the indices for labels, the translation requires access

guage) into thd_Rec language. The translation takes place under to the Systent types of certain expressions. We denote the type of
anindex contextdenoted byA that maps row variables to sets con- an expression by typeOf(e).

Al—n[>n(mt) A)—xbx(var)

AFep>t

AFfunfz:7=eD>funfa=

AbterD>ti1 AbFesD>to
At e1 e >t ta

- (fun)

(app)

AlFei>ti1 AbFes>ts
Abletx:7=e1ines >letz =t ints
AFep>t t'=indexOf(A,l,labels(typeOf(e)))
Arelptt

(let)

(select)

{l#(1)1 e ,l#(")} = {ll, e ,ln}
Vi.(AFe; > ty)
A F {lz =€ }?:1
> letx; =tiin...let z, = tp in<x#(i) >?:1

®)

Atel >t At es > to
to = indexOf(A, [, labels(typeOf(e1)))
A F e ® {l = 62}
> letz =t; in ((z,0,%),t2, (z,to, len(z)))
AFep>t
to = indexOf(A, I, labels(typeOf(e)))
A F eol
> letz =tin ((z,0,t0), (z,to + 1,len(z)))
J N T L 0 N
Vi.l<i<mn.ok;={l,..., 0"}
A F o Aox,ak). A (Brike, ..., Briikn).@
> Azi.oo oo Azh o dapnlt

AFep>t
typeOf(e) =V (B1::k1 ... Bniikn). T
Vi.l<i<mn.w; ={l},..., "}
i {l,...,n}Vje{L,...,m}.
t] = indexOf (A, I, (L; U K4, p}))
where(L;, p;) = labels({p;})

(r/ext)

(r/sub)

(ty/abs)

(ty/app)
A Foefr,]l
> tthott Lt

7pn]
Lt

Figure 13. The translation from th&g into theLRec language.

The record extensiosy ® {I = e} is translated by first finding
the index ofl in the tuple corresponding te, then splitting the
tuple into two slices at that index, and finally creating a tuple

that consists of the these two slices along with a slice consisting

of the new field. Similarly, record subtraction splits the tuple for

the record immediately before and immediately after the label

4.1 Basic language features

As currently implemented, thBILPolyR language takes a small
subset of the Standard ML core language and extends it with the
following features:

e Ohori-style record polymorphism

¢ polymorphic functional record extension and polymorphic
functional record trimming (dropping of fields via “row cap-
ture” patterns)

e inferred row-polymorphic sum types and equi-recursive types
e extensible first-class cases
e mutable record fields

4.2 Compiler Phases

The compiler is structured in a fairly traditional way and consists
of the following phases:

lexer lexical analysis, tokenization
parser LALR(1) parser, generating abstract syntax trees (AST)

elaborator perform type reconstruction and generation of anno-
tated abstract syntax (Absyn)

translate generate index-passidRec code
anf-convert convertLRec code into A-normal form [7]

flatten flatten arguments, eliminating most record- and tuple argu-
ments by passing fields separately (i.e., in individual registers)

uncurry eliminate of most curried functions

anf-optimize constant folding, simple constant- and value propa-
gation, elimination of useless bindings, short-circuit selection
from known tuples, inline tiny functions, some arithmetic ex-
pression simplification; execution of this pass is repeated and
interleaved with other phases (e.qg., flatten and uncurry)

closure convert to first-order code by closure conversion

clusters separate closure-converted blocks into clusters of blocks;
each cluster roughly corresponds to a single C function but may
have multiple entry points

treeify re-grow larger expression trees to make tree-tiling instruc-
tion selection more useful

traceschedulearrange basic blocks to minimize unconditional
jumps

cg instruction selection by tree-tiling (maximum-munch algo-
rithm)

regalloc graph-coloring register allocation
emit generate assembly code

being subtracted into two slices and creates a tuple from these4-3 Type-checking and translation
slices. Type abstractions are translated into functions by creating Type reconstruction is performed by a variant of the classic algo-

an argument’ for each label? in the kind; of the 3;. Note that
abstractions of ordinary type variables;§) are simply dropped.

rithm W [19], augmented to handlegRy-style row polymorphism
and equi-recursive types. Resembling the corresponding parts of

Type applicati(_)ns are transformed in_to function applica_tions by other compilers (e.g., SML/NJ [2]), the process of type checking
generating “evidence” for each substituted row-type variable. As and translation is divided into two phasetaborationandtransla-
with type abstractions, substitutions into ordinary type variables tion.

are dropped. Evidence generation requires computing the indices

of each Iabe]{ € £, in any record type that extendlg; } by adding
fields for every sucty .

4. Implementation
The compiler foMLPolyR is written in Standard ML. It compiles

The elaboration phase takes an abstract syntax tree and anno-
tates it with type information, using an imperative-style unification
algorithm as a subroutine. It permits equi-recursive types as long
as type-level recursion goes though at least one surfi bypselec-

8This is a pragmatic implementation decision based on experience with
fully general equi-recursive types that seems to indicate that most of the

to relatively simple, yet reasonably efficient PowerPC assembly time when such a type is inferred it was not actually intended by the

code that can be assembled and executed under Mac OS X.

programmer [17].

tively turning the occurs check off. To avoid looping, the implemen- type error messages, which are often complicated enough already.
tation of unification variables employs a union-find data structure A more complete language that allows for type annotations and
that is used to efficiently detect cycles. To enable the translation comes with an ML-style module system, the programmer would
phase to properly insert type abstractions and type applications, thehave to worry about this detail when writing types and module sig-

elaborator leavegoly-row informationconsisting of row type vari- natures. A possible workaround would be to “clamp” the value of
ables and label sets in the annotated syntax tree. the flag to true, implying that we always pass length information,
The translation phase combines generation of Sydtetnde whether it is needed it or not. Of course, this trick does have some

and the transformation to index-passibBec-code into a single runtime cost.

step. This means that in the current compiler there is no manifesta-Record expressions and record patternstn its concrete syntax,
tion of the Systent language. MLPolyR establishes a high degree of symmetry between record
expressions and record patterns. In particutaw, capturepatterns
generalize Standard ML’s ellipsis notation. For example, one can
Indexing: Our implementation of polymorphic record indexing is define a functiort as follows:

essentially equivalent to that of Ohori's SML# [24]. Values that
are polymorphic in some row variable turn into functions taking
integer indices as arguments. The index calculation is given by

the indexOf(,, -, -) function in section 3.5. In many cases, row- Any argument taf must be a record containing at least fields
poly_morphlc vqlues are them_selves functlon_s, Whlch_ means that |zpeledname andage, but potentially more. Within the body; the
the index-passing transformation creates curried functions. In most,, iaplesname andage are bound to the values of these fields, and
cases, such currying is later eliminated by general-purpose uncur-,yor will be bound to a record value that containsatherfields
rying and argument-flattening passes within the optimizer. exceptname andage that were present in the argument value. In

Slices: In SML#, the only polymorphic record operation is field gggence, this notation combines selection and functional removal
access. For this, it suffices to have a field selection operation whereys fic|ds.

the index may be a variable. (For plain SML, the index is always a conversely, functional record extension is written using a record
constant.) IrMI__PolyR , however, due to the presence of functional expression involving an ellipsis:

record extension and row capture, the compiler must also be able
to generate code for constructing new records whose shape is not
fully known at compile time. This is expressed by the “scatter- val fred = { name = "Fred", age = 29,
gather” feature of tuple construction irRec, where the values -+. = fred’s_other-info }
for fields may be given as slices of other tuples. The compiler . . L
attempts a number of optimizations on slices. In particular, if—after _Functional recordipdatei.e., the replacement of existing fields
constant propagation and similar transformations—the endpoints With néw fields, can be synthesized from row capture and record
of a slice become known to be constants, the slice is replaced with €xtension. TheMLPolyR language provides special syntax for

a sequence of individual values. Still, in the general case there will '€cOrd update, but its meaning can be explained as a derived form.
be slices that cannot be optimized away. In this case the instruction4 5
selection phase will emit code for copying slices. Using the features ™
of the PowerPC and the memory allocation architecture used by Section 3.3 shows how sums and first-class cases are completely
theMLPolyR runtime system, the inner loop in such code is quite €liminated and represented by corresponding record constructs us-
compact and consists of only three instructions. ing the well-known dual construction:

Unit type: The empty record type is known as the singleton type
denoted().° The compiler normally represents the only value of
this type by the scalar constant 0. However, with row capture itis ® Sum values (aka “variantsly become functions that take cases
possible that at runtime an empty record is created without stati- ¢ (in form of function records) as arguments, select the function
cally knowing this to be the case. In this situation the program will c.l corresponding to labé] and invoke it with the constructor’s
actually allocate an empty record on the heap, which is supported argument.

by our garbage collector. The representation of the empty record

does not matter since by soundness of the type system no program This encotqing is elﬁgant gnd hatsr];he .adr\]/angellgg gf r:ﬁt needLng
will attempt to access any field within such a value. There can be &1 NeW runtime machinery, everytning IS handied by the mech-

slices taken from the empty record, but those slices will be empty anisms ‘h?“ '”ﬁp'eme.”t pc_JIymorphlc _exten5|ble records._Howeve_r,
themselves, so no actual runtime access will take place. the encoding is also |neﬁ|0|ent, both in space cor!sumptlon .and in
Record length: In section 3.5, the Rec language came with a Performance. The variadv becomesfun _ ¢ = c.ijv wherei
primitive len(-) for obtaining the number of fields in a tuple. While Is the index corresponding to labklSuch a fL_mgtlon value WOU"?'
length information is indeed present in the GC header of each tuple, normally be represented by_ a closur.e consisting of a code pointer
getting access to it is potentially expensive since it incurs memory and a record_ of the free variables, h@randu, in ther words., at
traffic. In the actual implementation, length information is passed €St three distinct values. Two possible ways of implementing this
as an additional index to a “virtualénd-of-tuplefield. For this closure can be depicted as follows:

purpose, the type system implemented in the compiler uses slightly
more complicated kinds: instead of plain sets of labels, a kind is a
label set together with a boolean flag. The flag indicates whether or
not length information is required for a given row variable.

One disadvantage of this approach is that the boolean flag truly
becomes part of the user-visible type. This might not be seen as a
big problem, since in our compiler all types are fully inferred any- ~ We obtain a less space-consuming and faster representation by
way. Still, even in our very small language the flag does show up in observing that the code is the same &wery element ofevery
sum type! Since the compiler also knows precisely where this code
91n Standard ML this type is known asit. is invoked, namely at call sites generated by translatirajch

4.4 Implementation of extensible polymorphic records

fun f { name, age, ... = other } = ¢

Implementation of sums

e Cases become records of functions.

code

expressions where it can easily be inlined, the code pointer does notHeap pointers, on the other hand, are represented as odd 32-bit val-
need to be represented at all. This leaves us with a representatiorues. In effect, instead of pointing to the beginning of a word-aligned

of the variant as a pair consisting justipfando:

o]

But that is precisely the “traditional” representation of tagged
unions,i; playing the role of the tag. Space is saved by the elimi-
nation of the code pointer and possibly the second indirection. The
time savings are due to the inlining of the code, since general func-
tion call overhead, the memory access for obtaining the entry ad-
dress, and the need for an indirect jump dominate the cost of the
naive implementation.

This optimization is implemented quite conveniently as part of

heap object, they point to the object’s second byte. Generated load-
and store-instructions account for this skew by using an accord-
ingly adjusted displacement value. With this representation trick,
the most common arithmetic operations (addition and subtraction)
can be implemented as single instructions as usual; they do not need
to manipulate tag bits. The same is true for most loads and stores.
Allocation- and limit pointers are stored in registers, and taking
advantage of the PowerPGswu instruction we can allocate one
memory word in a single instructiot.As mentioned before, the
code for copying a slice out of an existing record into a newly
allocated one uses an inner loop of only three instructiangy,
stwu, bdnz), but there is also a four-instruction preambdddsi ,

our translation phase. The fact that, as has been noted above, werwi., mtctr, beq) that loads theount registerand bypasses

skip Systent has practical benefits here. Normally, when generat-
ing plain Systent code, we would lose information on which of

the loop when the count is initially zero.
The String module: Our language does not yet have a module

the closures correspond to sum values, and which applications cor-system, but as long as only values but no types are involved, one

respond tanatch. This information would either have to be recov-
ered by some flow analysis or preserved using ad-hoc annotation
on Systenf terms.

4.6 Coherence

Incoherence manifests itself in the translation phase as a non-

can use records as a poor-man’s substitute. The runtime system
exports a special record bound to the global varigbleing which
contains routines for manipulating string values, for converting
from and to strings, and for performing very basic input-output
operations. This record is allocated using C code and does not
reside within theMLPolyR heap.

generalized and uninstantiated type variable. Since the transforma-4_8 Mutable record fields

tion discards ordinary type variables, the lack of coherence only
matters when it involves row types. Here is a concrete example for
how this might happen:

fun loop() = loop()
val z = (loop()).a

The type ofloop is inferred to beva.() — «. The typing rule
for field selection can pick an arbitrary instantiation foas long
as it is a record containing a field But the underspecified shape
of the instantiation determines the index for accessaihijotice,
however, thatloop() does not produce a record value. In fact, it
will never return at all, so the index fardoes not matter at runtime.

In the elaboration/translation algorithm, this situation manifests
itself as an uninstantiated (unification-) row type variable.

The phenomenon of coherence (or rather: the lack thereof) is
well-known and has been studied in the context of the translation
of ML into an explicitly typed calculus (a variant of Systdiby
Ohori [23]. It was later rediscovered in the context of Haskell's type
class mechanism [14]. Like in SML#, we can take advantage of
what amounts to a parametricity result for ML, namely ttiased
programs are, in fact, coheréfitintuitively, whenever incoherence
occurs, the actual choice of type will not matter at runtime because
the code in question will never get executed. Our compiler (like
Ohori’s) picks arbitrary index values for labels that belong to unin-
stantiated (unification-) row type variables.

4.7 Runtime system

The runtime system, written in C, implements a simple two-space
copying garbage collector [13] and provides basic facilities for
input and output.

Data representation and memory managementFor the tracing
garbage collector to be able to reliably distinguish between point-
ers and integers, we employ the usual tagging trick. Integers are
31-bit 2's-complement numbers. An integer vaiue represented
internally as a 2's-complement 32-bit quantity of vafie This
makes all integers even, with their least significant bits cleared.

10The same argument does not work for Haskell, because due to type
classes Haskell’'s polymorphism is not parametric.

Our type system supports mutable fields in records. Type recon-
struction still works since corresponding operations on mutable and
immutable fields are syntactically distinguishable. Records with
mutable fields have identity, and allocation of such records is a
side-effecting operation.

In hindsight it appears that it would have been better to instead
distinguish between two kinds of records: those that are guaranteed
to be immutable, and those thaaycontain mutable fields. Muta-
bility interacts in some undesirable ways with row polymorphism.
For example, we cannot say that the right-hand side in the follow-
ing let-binding is a syntactic value and, therefore, its type cannot
be generalized:

let val r foo, ...

{ a

Whether or not the allocation of this record expands the store
depends on the type @fr. Ignoring the problem with the value
restriction, in the general case the compiler is unable to perform
certain optimizations such as, e.g., common subexpression elimi-
nation for code like this:

= bar }

let val 71 = { a
val 1o = { a

Therefore, with our current design, the mere existence of the
mutable fields feature in the language incurs certain penalties, both
in terms of the static semantics and in terms of runtime efficiency,
even if that feature is never used.

Since we prefer a pay-as-you go scheme where features incur
penalties only when they are actually being used, we plan to go
back to immutable general records in the style of Standard ML and
support mutable fields separately.

foo, ...
foo, ...

bar }
bar }

5. Related work

Record calculi and the study of record polymorphism have a long
history [31, 32, 26, 5, 25]. Ohori shows that polymorphic records

11 The cost of the heap limit check is amortized over multiple allocations
within a basic block.

can be compiled very efficiently, using an index-passing transfor- This setup rests firmly on the well-understood theory of row
mation based on a kinded type system for records [25]. He also types. It allows for efficient type reconstruction and should yield
points out the duality between records and sums and suggests thatew surprises for programmers. On the other hand, we find that it
the same index-passing techniques can be adopted to implemenenables a very flexible style of programming where the treatment of
polymorphic sums. Bmy gives a more general type system capable individual variants of a sum can be coded separately and combined
of expressing linearlgxtensiblgpolymorphic records. &ny’s cal- later with minimal notational overhead. In combination with ex-
culus employs row polymorphism and has an efficient type recon- plicitly coded open recursion (which requires equi-recursive types),
struction algorithm that infers principal types [26]. Jones and Pey- it provides an elegant approach to solving éx@ression problem
ton Jones describe an implementation of extensible records based.e., the problem of adding new constructors to a datatype and be-
on the same ideas for Haskell [15]. ing able to re-use existing code. Since we are striving for simplicity,
Gaster and Jones attempt a direct encoding of the dual construcawe consciously left out features such as subtyping or inference of
tion for sum types within Haskell's type system [12]. The encoding intersections.
requires type system features absent from most languages, in par- We implemented our language using a technique based on
ticular higher-order polymorphism and a type constructor which Ohori’s index-passing scheme for polymorphic records and the
roughly corresponds to the row arrow in our SystemF. Type exploitation of the sum-product duality for first-class cases. In this
inference in such a system seems difficult, and, indeed, Gaster andpaper we explain this technique in terms of a 2-stage translation,
Jones report that they had to impose an ad-hoc restriction to obtainfirst into an explicitly-typed polymorphic lambda calculus (Sys-
most general unifiers. Their restriction is to disallow empty rows, tem F) where sums and cases are eliminated using duality with
meaning that they could not type otocasesonstruct. records, then into an untypedcalculusLRec where records are
Garrigue implements a version of polymorphic sum types in represented as vectors with numeric indices.
OCaml. His approach does not take advantage of the duality be-
tween sums and records but instead provides a form of extensibil-
ity based on so-calledariant dispatching10, 11]. As Zengerand /. Acknowledgments

Odersky point out [33], variant dispatching requires writing addi- \ve would like to thank Atsushi Ohori for helpful discussions.

sequence of the fact that in Garrigue’s system, extensions need ta,gjyable feedback.

know what they are extending. As a result, extensions cannot be
composed directly.
It should be noted that a suitably modified typing rule for a References
matc_h exw_essmn with a default case could actually b_e l_,l_sed togive [1] A. W. Appel. Compiling with continuationsCambridge University
Garrigue’s implementation the same power of extensibility that we Press. New York. NY. USA. 1992.

provide inMLPolyR . Consider the following example:
[2] A. W. Appel and D. B. MacQueen. Standard ML of New Jersey.

fun gy = ... In M. Wirsing, editor,3rd International Symp. on Prog. Lang.
fun £ = = match z with Implementation and Logic Programmingages 1-13, New York,
‘A () = print "A" Aug. 1991. Springer-Verlag.
ly =gy [3] F. Bourdoncle and S. Merz. Type-checking higher-order polymorphic
multi-methods. InConference Record of POPL '97: The 24th
Here the types of: and Y should be related sums that share a ACM SIGPLAN-SIGACT Symposium on Principles of Programming
common row, the only difference being the presence of ‘the Languagespages 302—315, Paris, France, 15-17 1997.

constructor inz’s type and its absence is type. The typing rule

- ; [4] K. Bruce. Some challenging typing issues in object-oriented
for this could be: languages.In Electronic notes in Theoretical Computer Science,
volume 82(8)2003.
Pre:{:imp) Tw:inbe:r Ty:lp)Fes:r [5] L. Cardelli and J. C. Mitchell. Operations on records. In C. A.
' matche; withlz = e2 |y =e3:7 Gunter and J. C. Mitchell, editor§heoretical Aspects of Object-
) - - - Oriented Programming: Types, Semantics, and Language Design
This approach does not require the alternative function arrew pages 295-350. The MIT Press, Cambridge, MA, 1994,
for cases but uses the_ordlnary function arrow in its place. The [6] R. B. Findler and M. Flatt. Modular object-oriented programming
main advantage of having the case arrewin the type system with units and mixins. INCFP '99: Proceedings of the fourth ACM
and statically distinguishing cases from other functions lies in the SIGPLAN international conference on Functional programming
fact that this makes it very easy to use different runtime repre- volume 34(1) ofSIGPLAN pages 94-104, New York, NY, June 1999.
sentations for the two. In particular, we can repreddhPolyR ACM.
cases as records of functions. These records represent jump tables. 7] ¢. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The Essence of
In Garrigue’s implementation, however, case analysis for polymor- Compiling with Continuations. 11993 Conference on Programming

phic variants proceeds by direct comparisons of constructor names Language Design and Implementatigpages 21-25, June 1993.

(significantly sped up via hashing). Thus, his implementation tech- [8] M. Flatt. Programming Languages for Reusable Software Compo-

nique essentially corresponds to our semanticBa@fR. In this nents PhD thesis, Department of Computer Science, Rice University,
setting, extending functions by extra cases can be implemented by 1999.

simple chaining of conditionals. [9] T. Freeman and F. Pfenning. Refinement types for MLPLDI '91:

. Proceedings of the ACM SIGPLAN 1991 conference on Programming
6. Conclusions language design and implementatigages 268-277, New York, NY,

We have presenteddLPolyR , a language with row polymorphism USA, 1991. ACM Press.

for both records and sumBILPolyR explicitly exposes the duality ~ [10] J. Garrigue. Programming with polymorphic variants. AGM
between sums and products by providing a type of first-alasss SIGPLAN Workshop on M11998.

Values of case type (like records, their dual counterpart) can be [11] J. Garrigue. Code reuse through polymorphic variantaMamkshop
functionally extended to handle larger sums. on Foundations of Software Engineerjri¢gov. 2000.

[12] B. R. Gaster and M. P. Jones. A polymorphic type system for
extensible records and variants. Technical Report NOTTCS-TR-96-3,
Department of Computer Science, University of Nottingham, 1996.

[13] K. Gowani and M. Blume. Writing a garbage collector for the
MLPolyR compiler, July 2005. Final report on independent study
project in the CSPP program.

[14] M. P. Jones. Coherence for qualified types. Technical Report
YALEU/DCS/RR-989, Yale University, New Haven, Connecticut,
USA, 1993.

[15] M. P. Jones and S. P. Jones. Lightweight extensible records for
Haskell, 1999.

[16] S. Krishnamurthi, M. Felleisen, and D. P. Friedman. Synthesizing
Object-Oriented and Functional Design to Promote Re-Use. In
European Conference on Object-Oriented Programmirg$8.

[17] X. Leroy. [caml-list] cyclic types.
archives/caml-list/, Jan. 2005.

[18] T. Millstein, C. Bleckner, and C. Chambers. Modular typechecking
for hierarchically extensible datatypes and functionsIQRP '02:
Proceedings of the seventh ACM SIGPLAN international conference
on Functional programmingpages 110-122, New York, NY, USA,
2002. ACM Press.

[19] R. Milner. A theory of type polymorphism in programmindpurnal
of Computer and System SciencE3(3):348-375, 1978.

[20] R. Milner, M. Tofte, R. Harper, and D. MacQueeThe Definition of
Standard ML (RevisedMIT Press, Cambridge, MA, 1997.

[21] I. N. I. Adams, D. H. Bartley, G. Brooks, R. K. Dybvig, D. P.
Friedman, R. Halstead, C. Hanson, C. T. Haynes, E. Kohlbecker,
D. Oxley, K. M. Pitman, G. J. Rozas, J. G. L. Steele, G. J. Sussman,
M. Wand, and H. Abelson. Revised5 report on the algorithmic
language schem&IGPLAN Not.33(9):26-76, 1998.

[22] M. Odersky and P. Wadler. Pizza into Java: Translating theory into
practice. InProceedings of the 24th ACM Symposium on Principles of
Programming Languages (POPL'97), Paris, Franpages 146—159.
ACM Press, New York (NY), USA, 1997.

[23] A. Ohori. A simple semantics for ml polymorphism. FPCA pages
281-292, 1989.

[24] A. Ohori. A compilation method for ml-style polymorphic record
calculi. In POPL '92: Proceedings of the 19th ACM SIGPLAN-
SIGACT symposium on Principles of programming languagages
154-165, New York, NY, USA, 1992. ACM Press.

[25] A. Ohori. A polymorphic record calculus and its compilatiohkCM
Trans. Program. Lang. SysfL7(6):844—-895, 1995.

[26] D. Remy. Type inference for records in a natural extension of
ML. Research Report 1431, Institut National de Recherche en
Informatique et Automatisme, Rocquencourt, BP 105, 78 153 Le
Chesnay Cedex, France, may 1991.

[27] D. Rémy and J. Vouillon. Objective ML: An effective object-oriented
extension to ML.Theory And Practice of Objects Systeril):27—
50, 1998.

[28] J. Reppy and J. Riecke. Simple objects for Standard ML. In
Proceedings of the ACM SIGPLAN '96 Conference on Programming
Language Design and Implementatigrages 171-180, Philadelphia,
Pennsylvania, 21-24 1996.

[29] M. Torgersen. The expression problem revisited: Four new solutions
using generics. In M. Odersky, editdECOOP 2004—Object-
Oriented Programming, 18th European Conference, Oslo, Norway,
Proceedingsvolume 3086 oL NCS pages 123-143, New York, NY,
July 2004. Springer-Verlag.

http://caml.inria.fr/pub/ml-

[30] P. Wadler. The expression problem. Email to the Java Genericity
mailing list, Dec. 1998.

[31] M. Wand. Complete type inference for simple objectsPtaceedings
of the IEEE Symposium on Logic in Computer Science, Ithaca, NY
June 1987.

[32] M. Wand. Type inference for record concatenation and multiple

inheritance Information and Computatiqrd3(1):1-15, 1991.

[33] M. Zenger and M. Odersky. Extensible algebraic datatypes with
defaults. InICFP '01: Proceedings of the sixth ACM SIGPLAN
international conference on Functional programmjn@ges 241—
252, New York, NY, USA, 2001. ACM Press.

[34] M. Zenger and M. Odersky. Independently extensible solutions to
the expression problem. [fhe 12th International Workshop on
Foundations of Object-Oriented Languages (FOOL, 12ng Beach,
California, 2005. ACM.

A. Dynamic Semantics forPolyR
Figure 14 shows the dynamic semantics forBloéyR language.

er | fun fr=¢e] e2 || v
ejlfun fx=c¢€|/f,v2/x] v
(val) (app)
v{v ey ez v
el v erdv1 eavi/z] Yo
dat t. let
lelllv(aacons) letz =ejines Jv (le9
erdvi...exdop ®
{li=eitioy W{li=vi 1,
61U{li=v§}f:1 ez || v2 (rlext)
r/iex
e1 @ {Il=e2} § {li =01,...,lx = v}, l =v2}
e lh=v1,...,0l; =v5,...,lp =0
J{li=wu i = k= Uk} (t/sub)
el {li=v,...,li-1 =vi—1,
lit1 = Vg1, 1 = v}
el {li=v1,....0 =vi,...,lxg = v
tih=u SR b k}(select)
e.liUUi
et {lizi =€)}
RALE] ¢ li=l - (clext)
e1 ® {le=e} | {hhzi=¢€,...,
I o, = €], 1z = e}
el{lizi=¢l,....Lizi=el, ... gz =€}
y y (c/sub)
eol; I {l1 x1 :>€1,...,li_1 Ti—1 = €;_q,
Lit1 Tig1 = € g, b ok = €}
e1 ;v
el {liz1=>e),....Lkizi=>e,. . lpzr =€}
’ . /
elfv/z] Jv
. (match)
match e;with es || v/

Figure 14. The dynamic semantics fétolyR.

B. Reordering rules

Figure 15 shows the reordering judgmeatwhich expresses the
relationship between two types where they are considered equal up
to permutation of their fields.

TIRT T2 R Th p=p
ar~a int ~ int Lo T2 RT — T {p} = {r'}
~p prp p=p T
(P =) aas{p)maas(p) (o) —>Tm{) =T
B=p ~ l:r,B=l:1,0 liTyeml:Ty.
is a permutation of 1,... k
Lo, e s Tl p & Ly S Ty - Lgp(h) P TH(R) P

Figure 15. The reordering judgmeng.

