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ABSTRACT

The need for computational resources has, over the years, become a fundamental requirement
in both science and industry. In many cases, this need is transient: a user may only require
computational resources for the duration of a well-defined task. For example, a scientist
could require a large number of computers to run a simulation for just a few hours, but
might not need those computers at any specific time (as long as they are made available in a
reasonable amount of time). A college instructor may want to make a cluster of computers
available to students during the course’s lab sessions, at very specific times during the week,
and with a specific software configuration. A telecommunications company could possess an
existing infrastructure that hosts a number of websites, but may need to supplement that
infrastructure with additional resources during periods of unforeseen increased web traffic,
meaning those resources have to made available right away with very little advance notice.
These transient resource usage scenarios pose the problem of how to provision shared
computational resources efficiently. This problem has been studied for decades, resulting in
approaches that tend to be highly specialized to specific usage scenarios. For example, the
problem of how to run multiple jobs on a shared cluster has been extensively studied, result-
ing in job management systems systems like Torque/Maui, Sun Grid Engine, LoadLeveler,
and many others, that can queue and prioritize job requests efficiently (in these systems,
efficiency is defined in terms of a variety of metrics, including waiting times and resource
utilization). Such a system would meet the requirements of the scientist wanting to run sim-
ulations during a few hours but, on the other hand, the college instructor and the telecom-
munications company mentioned above would be ill-served by a job management system
and the efficiency metrics typically used in job management. Conversely, other resource
provisioning approaches are not particularly well suited for job-oriented computations.
Thus, there is no general solution that can provision resources meeting the requirements
of different usage scenarios simultaneously, such as those mentioned above, reconciling the

xiil



different measures of efficiency in each scenario. More specifically, much of my work is
motivated by the combination of best-effort resource requirements, where a user needs com-
putational resources but is willing to wait for them (possibly setting a deadline), and advance
reservation resource requirements, where the resources must be available at a specific time.
In the former, efficiency is typically measured in terms of waiting times (or similar metrics
such as turnaround times or slowdowns) or throughput, while the latter is usually concerned
with providing the requested resources at exactly the agreed-upon times without interrup-
tion, and both are concerned with maximizing the use of hardware resources and possibly
monetary profit. Although both best-effort and advance reservation provisioning have been
studied separately, the combination of both is known to produce utilization problems and is
discouraged in practice.

In this dissertation I develop a resource provisioning model and architecture that can
support multiple resource provisioning scenarios efficiently and simultaneously, with an initial
focus on the best-effort and advance-reservation cases mentioned above, and arguing in favour
of a lease-based model, where leases are implemented as virtual machines (VMs). The main

contributions of this dissertation are:

1. A resource provisioning model and architecture that uses leases as a fundamental ab-

straction and virtual machines as an implementation vehicle.

2. Lease scheduling algorithms that mitigate the utilization problems typically encoun-

tered when scheduling advance reservations.

3. A model for the various overheads involved in using virtual machines, and algorithms
that (a) allow lease terms to be met even in the presence of this overhead, and (b)

mitigate this overhead in some cases.

4. Price-based policies for lease admission, showing that an adaptive pricing strategy can,

in some cases, generate more revenue than other baseline pricing strategies, but does

Xiv



so by using fewer resources, thus giving resource providers more excess capacity that

can potentially be sold to other users.

As a technological contribution, I also present Haizea (http://haizea.cs.uchicago.edu/),
an open source reference implementation of the architecture and algorithms described in this

dissertation.
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CHAPTER 1
INTRODUCTION

From the moment that mainframes, back in the 1950s, had to be shared by more than one
user, considerable effort has been spent in finding an answer to a simple question: “Who
goes first?” How to allocate shared computational resources is, perhaps, one of the oldest
practical problems in computing and many solutions have been developed over the decades,
from operating systems that decide which user’s process gets the CPU next, to sophisticated
schedulers that decide if the tens of thousands of processors in a supercomputer will be
dedicated next to simulating a supernova or to modelling global climate changes.

In this dissertation, I address a number of specific problems that arise when provisioning
computational resources in a distributed system (involving multiple computers connected
by a network, such as a cluster), and show how some of those problems can be overcome
through the use of virtual machines and a leasing abstraction. This introduction provides an
informal bird’s—eye view of the scientific work presented in my dissertation, including what

to expect in each chapter.

The problem in a nutshell

The problem I address in my dissertation is, broadly speaking, how to provision computa-
tional resources and, more specifically, how to do so in a distributed system. When these
systems are shared, as they almost always are, by multiple users competing for these re-
sources, something has to determine who gets the resources (if at all) and when. If I have a
cluster of ten machines, and five users want to use all ten machines at the same time, how
do T decide who gets the machines first? First come, first serve? What if one of the users
has a pressing deadline? What if one of the users has historically used more resources than

the other users? Wouldn’t it be ‘fair’ to then give priority to the other users? etc.



Back in the 1950s, the solution was fairly rudimentary: users printed their programs on
punched cards and submitted them to a human operator, who decided the order in which
those programs would be run by the mainframe. Nowadays, this task is handled more au-
tomatically by software and, although many software solutions have emerged, some geared
for managing just a few networked computers and others capable of managing supercom-
puters with more than a million cores, these solutions have tended to be specialized towards
particular use cases.

For example, provisioning resources for batch jobs on a shared cluster has been extensively
studied, resulting in job management systems systems like Torque/Maui, Sun Grid Engine,
LoadLeveler, and many others, that can queue and prioritize job requests efficiently (in these
systems, efficiency is defined in terms of a variety of metrics, including waiting times and
resource utilization). These systems are ideal for scenarios where users are willing to wait
for resources and, once they get them, use them for a relatively short time (in the order of
minutes, hours, and sometimes days, but never indefinitely). However, these systems are
not necessarily good at dealing with other provisioning scenarios, such as users that need
resources at specific times or need guaranteed resources with very short notice. Similarly,
resource provisioning approaches geared towards provisioning resources at specific times or
immediately are not typically well suited for running batch jobs.

Thus, there is no general resource provisioning system that meets the requirements of
different usage scenarios simultaneously, reconciling the different measures of efficiency in

each scenario. That, in a nutshell, is the problem that I address in this dissertation.

The solution in a nutshell

If the problem is that there is no general resource provisioning system, a necessary first step
is, thus, to define a general-purpose resource provisioning abstraction (i.e., one not coupled to

a particular use case). In this dissertation, I propose using a lease abstraction. Informally, a
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lease is a form of contract where one party —the lessor, or resource provider— agrees to provide
a set of resources (an apartment, a car, computational resources, etc.) to another party —
the lessee, or resource consumer— under a set of terms governing the amount of resources,
access to the resources, the duration of the lease, etc. In the context of leasing computation
resources, these terms should encompass the hardware resources required by the resource
consumer, such as CPUs, memory, and network bandwidth; a software environment required
on the leased resources; and an availability period during which the requested hardware and
software resources must be available.

Of course, there are many different types of resource providers, such as a university’s batch
job scheduler, computational grids, Infrastructure-as-a-Service (IaaS) clouds, and companies
that sell servers on their datacenters. When we obtain resources from any of these providers,
we are implicitly entering into a lease agreement, although the set of possible terms we can
specify to each provider is limited. For example, we can specify detailed software terms
(by providing our own software stack in the form of a disk image) when requesting resources
from an TaaS cloud, such as Amazon EC2, whereas job schedulers and grids typically provide
little control over the software stack the jobs will run on. On the other hand, the availability
terms in laaS clouds only allow users to request resources for immediate use; unlike some
job schedulers and grid interfaces, there is no possibility of reserving resources in advance or
specifying other lease terms governing Quality-of-Service (QoS).

The lease abstraction that I propose in this dissertation aims to be expressive enough
to support a variety of terms. Of course, defining a lease abstraction —and fantasizing
about all sorts of lease terms— is easy. In fact, a leasing abstraction has been used in
multiple fields of computer science, most notably networking, although there is no universally
accepted definition of “lease”. The hard part of solving this problem —the lack of a resource
provisioning system supporting a general-purpose lease abstraction is simultaneously and

efficiently supporting leases with terms that have conflicting measures of efficiency.



For example, consider the problem of simultaneously supporting best-effort batch jobs,
where the resource consumer needs some resources but is willing to wait for them, and
advance reservations, where the resource consumer needs resources at a very specific time.
In advance reservations, the measure of efficiency is very simple: the resources are either
provisioned at the exact time they are requested or they are not. In best-effort jobs, the
measure of efficiency is typically some variation on the turnaround time of the job: if a
job runs for ten hours, and the job scheduler is able to provision resources for that job
in less than an hour, most users may consider that “efficient”. However, if we want to
support both best-effort jobs and advance reservations, these measures of efficiency are in
conflict. If T accept a reservation for all my resources from 2pm to 4pm, this introduces
a ‘roadblock’ in the resource schedule, and best-effort jobs requested before or during that
time may experience longer turnaround times. In fact, although many job schedulers do
support advance reservations, system administrators use them judiciously, precisely because
they are known to impact the performance of best-effort jobs negatively.

In this dissertation I hold that the best way of simultaneously and efficiently supporting
multiple types of leases is by implementing them with virtual machines (VMs), which have
a number of properties that make them attractive for this purpose. If we want to support
hardware lease terms, virtualization technology can be used to partition a single physical
machine into multiple virtual machines, allowing fine-grained division of hardware resources.
Additionally, we can also support software lease terms since each VM can have its own
software stack. Finally, the ability to suspend, resume, and migrate VMs transparently
(without affecting computation inside the VM) is a promising mechanism for supporting
multiple availability terms (best-effort, advance reservation, deadlines, etc.), and one that
receives considerable attention in this dissertation.

So, in a nutshell, the solution to the problem is leases and virtual machines. In this

dissertation, I flesh out this solution in five steps:



Step 1: I begin by providing a formal definition of a lease.

Step 2: Next, I explore whether VMs are, in fact, an adequate vehicle for implementing
leases. I present and evaluate several scheduling algorithms that exploit the sus-
pend/resume/migrate capability of VMs to determine if they can be used to support at
least three types of leases efficiently: best-effort, advance reservation, and best-effort

with deadlines.

However, using VMs is itself problematic, since it introduces a number of overheads
that can negatively impact performance. Most notably, running a VM with a custom
software stack may involve transferring potentially large disk images to the physical
machine where the VM will run. Similarly, although we can suspend the VMs in a
lease to free up resources for another lease, this operation requires saving the VMs’
entire memory and state to disk, which should be done before the start of the other

lease.

Thus, in my initial analysis of the benefits and drawbacks of using VMs to implement
leases, I make two simplifying assumptions about the VMs: (A) disk images for VMs
are predeployed in the machines where they are needed and (B) there is at most one
VM per physical machine. T also make a simplifying assumption about leases: (C) a

lease request is never rejected if there are enough resources to satisfy that request.

Step 3: Although these two assumptions simplify an initial analysis, they must be removed.
So, the next step is to remove assumption (A). I present and evaluate strategies for
transferring and reusing disk images in such a way that lease terms are not broken
(e.g., by guaranteeing that a required disk image is transferred before the start of an
advance reservation) and to mitigate the overhead of having to deploy large disk images

before the start of a lease.

Step 4: Next, I address assumption (B). In particular, supporting multiple VMs per physical
5



machines will affect how VMs are suspended and resumed, since there will now be
multiple suspend /resume operations competing for I/O. I present a more general model
for suspending and resuming VMs in a lease, and explore the effects of having multiple

VMs per physical node.

Step 5: Finally, I address assumption (C). Having an “accept all” policy provides no in-
centives for resource consumers to not request more resources than they need, and
also provides a resource provider with no mechanism other than lease refusal to signal
that a resource is overloaded. I address this lack of admission policies by exploring
price-based policies for lease admission, hypothesizing that prices can be used both to
affect demand (by pricing leases according to the requested terms) and to signal (via

higher prices) when a resource is overloaded.

In this dissertation, I also present an architecture for leasing with VMs and provide an
open source reference implementation called Haizea (http://haizea.cs.uchicago.edu/). All
the experiments in this paper have been performed using Haizea, which can simulate the
scheduling of lease workloads. Haizea can also act as a drop-in scheduler for the open source
virtual infrastructure manager OpenNebula (http://www.opennebula.org/) and some of the
experiments were performed in this configuration, with Haizea using OpenNebula to manage

real VMs on a pool of physical resources.

How this dissertation is structured

This dissertation is divided into several chapters that follow the general outline described

above, but present my arguments more formally and in greater details:

Chapter 2: The Problem of Provisioning Computational Resources presents a more
concise problem statement, with a discussion of prior work on this problem, and enu-

merating the precise goals that a solution should meet.

6



Chapter 3: Resource and Leasing Model provides a formal definition of leases. This

corresponds to Step 1 above.

Chapter 4: The Haizea Lease Manager. Since all the experiments presented in subse-
quent chapters rely on the Haizea Lease Manager, this chapter provides a description

of Haizea and its architecture.

Chapter 5: Scheduling Leases with Virtual Machines corresponds to Step 2 of the
solution. The work presented in this chapter expands on the work presented in the

following papers:

B.Sotomayor, K.Keahey, I.Foster, Combining Batch FEzxecution and Leasing Us-
ing Virtual Machines. The 17th International Symposium on High Performance
Distributed Computing (HPDC 2008), June 23-27, 2008, Boston, Massachusetts,
USA.

B.Sotomayor, K.Keahey, [.Foster, T.Freeman, Enabling Cost-Effective Resource
Leases with Virtual Machines. Hot Topics session in the 16th International Sym-
posium on High Performance Distributed Computing (HPDC 2007), June 27-29,
2007, Monterey Bay, California, USA.

B.Sotomayor. A Resource Management Model for VM-based Virtual Workspaces.
Master’s Paper, University of Chicago, Department of Computer Science. Febru-
ary 23rd, 2007.

Chapter 6: Scheduling Disk Image Transfers corresponds to Step 3 of the solution,

also expanding on the work presented in the above three papers.

Chapter 7: Modelling and Scheduling Virtual Machine Suspension and Resump-

tion Times corresponds to Step 4 of the solution and expands on the following paper:

B.Sotomayor, R.Santiago Montero, I.Martin Llorente, I.Foster, Resource Leasing
and the Art of Suspending Virtual Machines. The 11th IEEE International Confer-
ence on High Performance Computing and Communications (HPCC 2009), June
25-27, 2009, Seoul, Korea.



Chapter 8: Pricing Strategies for Leases corresponds to Step 5 of the solution.

This dissertation concludes with Chapter 9, a discussion of the extent to which my
solution meets the goals presented in Chapter 2 and what my future work will involve. A
single appendix provides detailed instructions on how to reproduce the results presented in
this text.

Supplementary files, including files necessary to reproduce the results, and errata for this

dissertation can be found at the following URL:

http://people.cs.uchicago.edu/~borja/dissertation/



CHAPTER 2
THE PROBLEM OF PROVISIONING COMPUTATIONAL
RESOURCES

The need for computational resources has, over the years, become a fundamental requirement
in both science and industry. In many cases, this need is transient: a user may only require
computational resources for the duration of a well-defined task. For example, a scientist
could require a large number of computers to run a simulation for just a few hours, but
might not need those computers at any specific time (as long as they are made available in a
reasonable amount of time). A college instructor may want to make a cluster of computers
available to students during the course’s lab sessions, at very specific times during the week,
and with a specific software configuration. A telecommunications company could posses an
existing infrastructure that hosts a number of websites, but may need to supplement that
infrastructure with additional resources during periods of unforeseen increased web traffic,
meaning those resources have to made available right away with very little advance notice.

These transient resource usage scenarios pose the problem of how to provision shared
computational resources efficiently. This problem has been studied for decades, resulting
in approaches that tend to be highly specialized to specific usage scenarios. For example,
the problem of how to run multiple jobs on a shared cluster has been extensively studied,
resulting in job management systems systems like Torque/Maui [31], Sun Grid Engine!,
LoadLeveler?, and many others, that can queue and prioritize job requests efficiently (in
these systems, efficiency is defined in terms of a variety of metrics, including waiting times
and resource utilization). Such a system would meet the requirements of the scientist want-
ing to run simulations during a few hours but, on the other hand, the college instructor and

the telecommunications company mentioned above would be ill-served by a job management

1. http://gridengine.sunsource.net/

2. http://www.ibm.com/systems/clusters/software/loadleveler.html

9



system and the efficiency metrics typically used in job management. Conversely, other re-
source provisioning approaches are not particularly well suited for job-oriented computations
(this point will be explored in greater detail throughout this chapter).

Thus, there is no general solution that can provision resources meeting the requirements
of different usage scenarios simultaneously, such as those mentioned above, reconciling the
different measures of efficiency in each scenario. More specifically, much of my work is
motivated by the combination of best-effort resource requirements, where a user needs com-
putational resources but is willing to wait for them (possibly setting a deadline), and advance
reservation resource requirements, where the resources must be available at a specific time.
In the former, efficiency is typically measured in terms of waiting times (or similar metrics
such as turnaround times or slowdowns) or throughput, while the latter is usually concerned
with providing the requested resources at exactly the agreed-upon times without interrup-
tion, and both are concerned with maximizing the use of hardware resources and possibly
monetary profit. Although both best-effort and advance reservation provisioning have been
studied separately, the combination of both is known to produce utilization problems (dis-
cussed in Section 2.3) and is discouraged in practice.

In this dissertation I seek to develop a resource provisioning model and architecture that
can support multiple resource provisioning scenarios efficiently and simultaneously, with an
initial focus on the best-effort and advance-reservation cases mentioned above, and arguing
in favour of a lease-based model, where leases are implemented as virtual machines (VMs).

This model must meet the following goals:

G1-RESPrOV Provide an abstraction focused solely on resource provisioning
Although the lease abstraction has been used in multiple fields of computer science,
most notably networking, there is no universally accepted definition of “lease.” How-
ever, leases generally always provide an abstraction for, first and foremost, provisioning
a resource (bandwidth in networks, raw hardware resources in datacenters, etc.) oper-

10



ated by a lessor (or resource provider and provided to a lessee (or resource consumer),
with relatively few restrictions on how the provisioned resources can be used. So, when
proposing a lease-based model, the implied goal is that resource consumers will be able
to use a general-purpose resource provisioning abstraction (i.e., not one that is coupled

to a particular use case).

G2-HwSwAVAIL Provision hardware, software, and availability
Resource provisioning can encompass three dimensions: hardware resources, the soft-
ware available on those resources, and the time during those resources must be guar-
anteed to be available. A complete resource provisioning model must allow resource
consumers to specify requirements across these three dimensions, and the resource

provider to efficiently satisfy those requirements.

G3-RECONCILE Reconcile requirements of different types of leases
Best-effort and advance reservation provisioning have different measures of efficiency
and, in some cases, these measures will be in conflict. For example, accepting advance
reservations unconditionally may delay or even preempt best-effort leases but, on the
other hand, a policy of not allowing best-effort leases to be delayed or preempted may
reduce the number of advance reservations that can be accepted. Reconciling these
measures of efficiency requires developing scheduling algorithms capable of combining
both types of leases, and potentially others, and policies that can guide the scheduling
decisions based on the goals and requirements of the resource provider. Furthermore,
policies for lease admission are also required to determined whether a lease should be
accepted or rejected up front, regardless of whether it can be scheduled (e.g., a provider
may be unwilling to accept advance reservations that are requested less than 24 hours
in advance). Taking into account the different overheads of virtual machines adds an

additional layer of complexity to the problem of scheduling VM-based leases.
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G4-MODELVIRT Model virtual resources accurately and schedule them efficiently
The choice of virtual machines to implement leases requires modelling virtualized re-
sources and operations on those resources. In particular, using virtual machines in-
volves different types of overhead (most notably the overhead of transferring virtual
machine images, and the overhead of suspending and resuming virtual machines) that
must be modelled accurately so they can be taken into account when scheduling virtual

machines.

The remainder of this chapter reviews existing approaches to this problem, including
VM-based approaches (Section 2.1), lease-based approaches (Section 2.2), and job-based
approaches (Section 2.3). After describing these approaches and, in particular, to what
extent they meet the four goals described above, the chapter concludes with a discussion
of their common shortcomings (Section 2.4) and presents the contributions this dissertation

makes to the state of the art (Section 2.5).

2.1 VM-based approaches

In my work, I argue in favour of using virtual machines as a vehicle for implementing leases.
Virtual machines are an appealing vehicle for resource management because they can be

used to provision hardware, software, and availability (G2-HwSwAVAIL):

Hardware resources Virtual machines can be mapped to all or part of a physical node’s
hardware resources, allowing users to request fine-grained resource allocations. Addi-
tionally, virtual machines have the added property of allowing these allocations to be

strictly enforceable.

Software environment A virtual machine can encapsulate a custom software environ-
ment, allowing users to support existing applications without modification. Resource

providers can also allow users to have administrative privileges within their VMs, with
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a reduced risk of malicious use thanks to the security and isolation properties of VMs.
Additionally, popular VM systems, such as Xen and VMWare, primarily support the
x86 architecture, facilitating virtualization of existing x86 computational resources. Al-
though these systems require the VMs to use the x86 architecture too, a model based
on VMs could easily support additional architectures once the VM vendors supported

them.

Availability VMs can be suspended, potentially migrated, and resumed without modifying
any of the applications running inside the VM. This functionality has the potential to
allow leases with best-effort and advance reservation availability periods to be com-
bined efficiently (G3-RECONCILE), by suspending VMs of best-effort leases before
the start of advance reservation leases. Although there are other mechanisms to sus-
pend/resume/migrate computation (such as checkpointing and preempting schedulers,
described below), VMs provide a more versatile solution because they do not require

applications, or even the OS running inside the VM, to be checkpointing-aware.

Although an attractive option, virtual machines also raise additional challenges (G4-

MODELVIRT) related to the overhead of using VMs:

Preparation overhead When using VMs to implement leases, a VM disk image must be
either prepared on-the-fly or transferred to the physical node where it is needed. Since
a VM disk image can have a size in the order of gigabytes, this preparation overhead
can delay significantly the starting time of leases. This delay may, in some cases, be

unacceptable for advance reservations that must start at a specific time.

Runtime overhead Once a VM is running, actions like checkpointing and resuming can
incur in significant overhead since a VM'’s entire memory space must be saved to disk,

and then read from disk. Migration involves transferring this saved memory along
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with the VM disk image. Similar to deployment overhead, this overhead can result in

noticeable delays.

Several groups have explored the use of virtual machines as a resource provisioning mech-
anism, sometimes providing lease-like semantics. These approaches are broadly divided into
those that propose using virtual machines to create “virtual clusters” and those that provide

lease-like semantics on large datacenters.

2.1.1 Virtual clusters

A number of groups have developed solutions that use VMs to create “virtual clusters” on
top of existing infrastructure. Nishimura et al.’s [41] system for rapid deployment of virtual
clusters can deploy a 190-node cluster in 40 seconds. Their system accomplishes these low
deployment times by representing software environments as binary packages that are installed
on the fly on generic VM images. They optimize installation by caching packages on the
nodes, thus reducing the number of transfers from a package repository. This approach limits
the possible software environments to those that are expressible as installable binary packages
(which is not always possible; e.g., highly specialized scientific environments where installable
binary packages may not be readily available) but does provide a faster alternative to VM
image deployment if the installation time is short enough. Yamasaki et al. [58] improved this
system by developing a model for predicting the time to set up a new software environment
on a node, allowing their scheduler to choose nodes that minimize the time to set up a new
virtual cluster. This model takes node heterogeneity into account and uses the parameters of
each node (CPU frequency and disk read/write speeds) and empirical coefficients to predict
the time to transfer and install all required packages, and then reboot the node. However,
their model does not include an availability dimension and assumes that all resources are

required immediately.
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The Nimbus toolkit? [32] has the ability to deploy “one-click” virtual clusters [19, 34]
in sites with different software and network configurations, eliminating the need to adapt
virtual machine images manually each time they are deployed in a new site (where, for
example, the NFS server might have a different address, or services on the network might
expect a digital host certificate signed by the local Certificate Authority). This automated
configuration is accomplished by using a standalone context broker that contextualizes disk
images to work in a specific site.

Fallenbeck et al. [12] extended the Sun Grid Engine scheduler to use the save/restore
functionality of Xen VMs, allowing large parallel jobs to start earlier by suspending VMs
running serial jobs, and resuming them after the large parallel job finished. Emeneker et al.
[11] extended the Moab scheduler to support running jobs inside VMs, and explored different
caching strategies for faster VM image deployment on a cluster. However, both studies use
VMs only to support the execution of best-effort jobs and do not currently schedule image
transfers separately; moreover, the Moab work does not integrate caching information into
scheduler decisions.

Walters et al. [57] have proposed the use of a new VM-centric job scheduler, called
UBIS, capable of scheduling both traditional batch jobs and high-priority interactive jobs
by using the suspend/resume capability of virtual machines to preempt running batch jobs
and accommodate incoming requests for interactive jobs. The UBIS scheduler not only
facilitates support for interactive jobs, it also accomplishes impressive improvements (up
to 500%) in resource utilization and response time for batch jobs. However, it does not
support advance reservation of resources, instead focusing on supporting interactive jobs with
near-immediate resource requirements, which simply allows the UBIS scheduler to perform
preemption operations when an interactive job is requested. Supporting advance reservations

in such a way that starting times can be guaranteed would require modelling this overhead

3. Previously known as the Virtual Workspaces Service [33]
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and scheduling the preemption operations to finish before the start of a reservation.

Other groups have explored a variety of challenges involved in deploying and running a
virtual cluster, including virtual networking and load balancing between multiple physical
clusters (VIOLIN/VioCluster [49, 48]), automatic configuration and creation of VMs (In-
VIGO [1] and VMPlants [36]), and communication between a virtual cluster scheduler and
a local scheduler running inside a virtual cluster (Maestro-VC’s two-level scheduling [35]).
However, they do not explore workloads that combine best-effort and advance reservation
requests, nor do they schedule deployment overhead of VMs separately.

In general, all these solutions use virtual machines to great effect, addressing goal G2-
HwSwAvAIL and, to a certain extent, G4-MODELVIRT. However, all of them focus on
provisioning resources for batch jobs (not providing a general provisioning abstraction, G1-
RESPROV) and focus on a single availability scenario (mostly the execution of batch jobs on
a virtual cluster, which makes G3-RECONCILE moot), except for Walters et al., who consider
workloads combining both batch jobs and interactive jobs with near-immediate availability
requirements. As far as G4-MODELVIRT, only Nishimura et al. and Yamasaki et al. model
and schedule the deployment overhead of virtual machines, while other groups either assume
that this overhead does not exist (e.g., by assuming that VM disk images are predeployed)

or can be ignored.

2.1.2 Datacenter-based solutions

Whereas the above solutions focus on creating virtual clusters, mostly for the purposes
of job-based batch processing, other solutions focus on providing lease-like semantics where
resource providers manage a datacenter and allow resource consumers to lease parts of it using
virtual machines; a virtual cluster would be just one possible application of what the resource
consumers could do with their virtual machines. In the server hosting arena, datacenters with

virtualized resources have been a popular option for several years as a way of leasing resources
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where clients are given complete control over the leased resources, but without requiring a
dedicated server per client. These are a popular option for hosting web/mail/DNS/etc.
servers at a low price, but typically require leases with a minimum duration of a month.
More recently, Amazon’s EC2% introduced the notion of cloud computing, where virtual
machines are provisioned immediately with customized software environments and charging
for use by the hour. OpenNebula [55], Nimbus, and Eucalyptus [42] provide an open-source
alternative to Amazon’s EC2, using the same web services interface and providing similar
functionality.

Since this datacenter-based approach typically involves managing a large amount of vir-
tual and physical servers, in the order of hundreds or thousands, efficiently managing the
virtual infrastructure in the datacenter becomes a major concern. Several solutions, such as
VMWare VirtualCenter, Platform Orchestrator, Enomalism, or OpenNebula have emerged
to manage virtual infrastructures, providing a centralized control platform for the automatic
deployment and monitoring of virtual machines (VMs) in datacenters. These solutions excel
at providing users with exactly the software environment they require, and most provide
a large number of hardware options. However, they depend on an immediate provisioning
model, where virtualized resources are allocated at the time they are requested, without the
possibility of requesting resources at a specific future time and, at most, being placed in a
simple first-come-first-serve queue when no resources are available.

Since the workloads in datacenters typically involve servers running for long periods of
time (in the order of months) with variable resource requirements, several groups have looked
into the problem of how to use fewer physical servers by consolidating multiple virtual servers
into single physical machines. This challenging problem involves characterizing server work-
loads, predicting future resource demand [3], and then using this information to consolidate

multiple servers on a single machine in such a way that the probability of breaching existing

4. http://aws.amazon.com/ec2/
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service-level agreements (SLAs) is minimized. This consolidation can be done when process-
ing the requests for new servers (static consolidation) or it can be done while the servers are
running (dynamic consolidation [3, 39]), typically by leveraging the live migration capability
of virtual machines to optimize the mapping of VMs to physical machines.

Although all these solutions use a general lease-like abstraction (G1-RESPROV) that al-
lows users to request both hardware and a specific software environment (G2-HWSWAVAIL),
the lease terms are limited to just immediate availability; there is no possibility of requesting
resources in advance or queuing requests, meaning these solutions have no need to address
G3-RECONCILE. Nimbus, Eucalyptus, OpenNebula, and Enomalism all use a basic resource
model that does not explicitly schedule VM overhead (G4-MODELVIRT). Since the other
cited work is closed-source and not peer-reviewed, it is hard to assess to what extent it

addresses G4-MODELVIRT.

2.2 Lease-based approaches

A purely lease-based approach to resource provisioning has been proposed by Grit et al.
23] and other members of Jeff Chase’s research group [30, 45]. However, their work focuses
mainly on leases in federated systems managed by their ORCA and Shirako systems. In
such a system, resource providers can donate part of their resources to a broker (or multiple
brokers) which can, in turn, give resource consumers “tickets” redeemable for actual resources
when presented to a resource provider. Federation of leases across multiple sites is outside the
scope of my work, which focuses on how resources are managed inside the resource provider.
In fact, in the ORCA architecture, the work resulting from this dissertation would be a
resource provisioning “actor”, the internal workings of which are supposed to be independent
of ORCA, although the resources are assumed to be partitionable.

Most of their work uses virtual machines, managed by their Cluster-On-Demand system,

as an example of a partitionable resource (although they emphasize that their work is ap-
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plicable to any partitionable resource), and more recent work has focused on how to enable
batch job execution within their architecture [22, 24]. However, their model assumes that
any overhead involved in deploying and managing the VM will be deducted from the lease’s
availability, instead of scheduling it separately (G4-MODELVIRT). Additionally, despite
providing a well thought-out leasing abstraction (G1-RESPrOV and G2-HwWSwWAVAIL), this
abstraction focuses on federated systems, whereas I focus on leasing at the local level (i.e.,
within a single administrative domain), which allows me to assume that a lease scheduler

will have absolute control over all resources.

2.3 Job-based approaches

In science and academia and, to some extent, in industry, resource provisioning has been
mostly tied to running jobs and many job schedulers have been developed over the years,
such as Maui® (31], Moab®, LSF7, LoadLeveler®, PBS Pro?, and SGE.10 However, job-based
systems provision resources as a side-effect of having to run a job. So, although these systems
can support both best-effort and advance reservation provisioning, resource consumers are
required to interact with those resources using the job abstraction (i.e., goal GI-RESPROV
is not met). Additionally, these systems include limited support for custom software en-
vironments (G2-HWSWAVAIL), typically limiting resource consumers to whatever software
environment happens to be available on the hardware resources being provisioned. The only
exception is Moab, which provides limited support for starting up a virtual machine encap-

sulating the software environment required by the job. However, Moab only allows access to

. http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php/

. http://www.clusterresources.com/pages/products/moab-cluster-suite/workload-manager.php

5

6

7. http://www.platform.com/

8. http://www.ibm.com/systems/clusters/software/loadleveler.html
9

. http://www.pbspro.com/
10. http://gridengine.sunsource.net/
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a limited number of VM-based environments, which still require considerable software con-
textualization on the part of the cluster administrator, and does not address the overhead
of setting up those VMs (G4-MODELVIRT)

Nonetheless, job scheduling has driven a considerable amount of research and led to
important algorithms and results relevant to best-effort scheduling, including how to schedule
advance reservations alongside best-effort workloads. Job schedulers typically depend on
queues to prioritize access to resources, using backfilling [37, 40, 16] to optimize queue
ordering. When using backfilling, the scheduler can make reservations in the future for
requests that cannot be scheduled immediately, allowing subsequent requests to skip to the
front of queue, as long as they finish before the future reservations. Some of the scheduling
algorithms used in this dissertation depend on backfilling, but extend it by leveraging the
suspend /resume capability of virtual machines.

The remainder of this section describes how advance reservations are supported in job-
based systems, and how they can result in utilization problems. Although preempting sched-
ulers partially palliate the utilization problems of advance reservations, they do not fully ad-
dress some of the goals in my dissertation. Finally, I discuss multi-level scheduling solutions
which use job-based systems purely as a resource provisioning tool (which would meet goal
G1-RESPROV), sidestepping the job abstraction and using other provisioning abstractions

on the resources

2.3.1 Advance reservations in job-based systems

Although job schedulers can schedule advance reservations alongside best-effort workloads
and, arguably, could be used to implement best-effort and advance reservation leases, these
advance reservations fall short in several aspects. First of all, they are constrained by the
job abstraction which, as described above, does not meet some of the goals I outlined for

my dissertation. More specifically, when a user makes an advance reservation in a job-based
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system, the user does not have direct access to those resources but, rather, is allowed to
submit jobs to them. For example, PBS Pro creates a new queue that will be bound to the
reserved resources, guaranteeing that jobs submitted to that queue will be executed on them
(assuming they have permission to do so). Maui and Moab, on the other hand simply allow
users to specify that a submitted job should use the reserved resources (if the submitting
user has permission to do so). There are no mechanisms to directly login to the reserved
resources, other than through an interactive job, which does not provide unfettered access
to the resources (i.e., no possibility of root access), or more ad-hoc methods, like requesting
login privileges from the cluster administrator for the duration of the reservation.

Additionally, it is well-known that advance reservations lead to utilization problems [18,
53, 54, 38|, caused by the need to vacate resources before a reservation can begin. Unlike
future reservations made by backfilling algorithms, where the start of the reservation is
determined on a best-effort basis, advance reservations introduce roadblocks in the resource
schedule. Thus, traditional job schedulers are unable to schedule workloads combining both
best-effort jobs and advance reservations efficiently (G3-RECONCILE).

However, advance reservations can be supported more efficiently by using a scheduler
capable of preempting running jobs at the start of the reservation and resuming them at the
end of the reservation. Preemption can also be used to run large parallel jobs (which tend to
have long queue times) earlier, and is especially relevant in the context of urgent computing,
where resources have to be provisioned on very short notice and the likelihood of having jobs
already assigned to resources is higher. While preemption can be accomplished trivially by
cancelling a running job, the least disruptive form of preemption is checkpointing, where the
preempted job’s entire state is saved to disk, allowing it to resume its work from the last
checkpoint. Additionally, some schedulers also support job migration, allowing checkpointed
jobs to restart on other available resources, instead of having to wait until the preempting

job or reservation has completed.
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However, although many modern schedulers support at least checkpointing-based pre-
emption, the job’s executable must itself be checkpointable. An application can be made
checkpointable by explicitly adding that functionality to an application (application-level
and library-level checkpointing) or transparently by using OS-level checkpointing, where the
operating system (such as Cray, IRIX, and patched versions of Linux using BLCR [25]) check-
points a process, without rewriting the program or relinking it with checkpointing libraries.
However, this requires a checkpointing-capable OS to be available.

Thus, a job scheduler capable of checkpointing-based preemption and migration could
be used to address G3-RECONCILE, by checkpointing jobs before the start of an advance
reservation, minimizing their impact on the schedule. However, the application- and library-
level checkpointing approaches burden the user with having to modify their applications to
make them checkpointable, imposing a restriction on the software environment being leases
(G2-HwSwAvAIL). OS-level checkpointing, on the other hand, is a more appealing option,
but still imposes certain software restrictions on resource consumers. Systems like Cray and
IRIX still require applications to be compiled for their respective architectures, which would
only allow a small fraction of existing applications to be supported within leases, or would
require existing applications to be ported to these architectures. This porting is an excessive
restriction for supporting leasing, given the large number of clusters and applications that
depend on the x86 architecture. Although the BLCR project does provide a checkpointing
x86 Linux kernel, this kernel still has several limitations, such as not being able to checkpoint
network traffic properly, and not being able to checkpoint MPI applications unless they are
linked with BLCR-aware MPI libraries.

An alternative approach to supporting advance reservations was proposed by Nurmi et
al. [43], which introduced “virtual advance reservations for queues” (VARQ). This approach
overlays advance reservations over traditional job schedulers by predicting the time a job

would spend waiting in a scheduler’s queue, and submitting a job (representing the advance
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reservation) at a time such that, based on the wait time prediction, the probability that it
will be running at the start of the reservation is maximized. Since no actual reservations
can be done, VARQ jobs can run on traditional job schedulers, which will not distinguish
between the regular best-effort jobs and the VARQ jobs. Although these virtual reservations
are an interesting approach that can be realistically implemented in practice (since it does
not require modifications to existing schedulers), it still depends on the job abstraction
(G1-RESPROV).

Hovestadt et al. [27, 26] propose a planning-based (as opposed to queuing-based) ap-
proach to job scheduling, where job requests are immediately planned by making a reserva-
tion (now or in the future), instead of waiting in a queue. Thus, advance reservations are
implicitly supported by a planning-based system. Additionally, each time a new request is re-
ceived, the entire schedule is reevaluated to optimize resource usage. For example, a request
for an advance reservation can be accepted without using preemption, since the jobs that
were originally assigned to those resources can be assigned to different resources (assuming
the jobs were not already running). Although this approach is promising, and is arguably
better in qualitative terms to a queuing-based approach, the authors show no quantitative
results comparing their approach to a queue-based system or to a checkpointing-capable

system.

2.3.2  Hierarchical/multi-level scheduling

In a hierarchical, or multi-level, scheduling model, a scheduler allocates resources that will
be managed by a different scheduler. This approach has been widely used in the context
of OS process scheduling, where one scheduler is responsible for allocating and managing
heavy processes, while a separate scheduler, inside the process or as part of the OS, manages
the threads more efficiently than the heavy process scheduler. Since job-based systems

tightly couple job execution to resource provisioning, multi-level scheduling solutions have
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emerged to circumvent this coupling: a job-based system is used to provision the resources
but, instead of “running a job”, the provisioned resources are then managed by a different
scheduler, which can use different provisioning abstractions. Thus, multi-level scheduling
approaches could be used to meet goal G1-RESPROV, allowing resource providers to lease
resources without having to shift from a job-based system to a purely lease-based resource
manager.

The Condor scheduler’s “glidein” mechanism [21] was the first to apply this model on
compute clusters, using existing job schedulers to provision resources, starting (or “gliding
in”) Condor daemons on the provisioned resources, and then using an existing Condor pool
to manage those resources. The MyCluster project [56] similarly allows Condor or SGE
clusters to be overlaid on top of TeraGrid resources to provide users with “personal clusters.”
The Falkon task scheduler [29] can also be deployed through a GRAM interface on compute
resources, and is specifically optimized to manage the execution of lightweight tasks, typically
in a workflow managed by the Swift [60] system. Virtual workspaces [33, 19] also follow a
multi-level scheduling approach by allowing users to create a workspace (represented as
either a virtual machine or a dynamically-created UNIX account) on a remote site through
a Virtual Workspace Service (VWS), and then allowing the user to access that workspace
directly, and not through the VWS. The Workspace Pilot furthermore allows a job scheduler
to allocate resources for the VWS, which are then managed by the VWS to create a virtual
workspace on those resources|20).

By using a multi-level scheduling approach, Condor, MyCluster, Falkon, and the VWS
can use their respective provisioning abstractions, sidestepping the site’s job scheduling en-
tirely. The first level of these multi-level scheduling solution approximates leasing, since it
focuses only on resource provisioning. However, it is still limited to requesting the availabil-
ity periods supported by job schedulers (best-effort jobs or advance reservations), and does

not allow users to access them directly. Condor still requires the user to access the resources
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through Condor job submissions; similarly, MyCluster requires Condor or SGE jobs to be
used, and Falkon requires computation to be expressed as tasks. Even if we overcame this
issue (e.g., in theory, a job scheduler could be used to provision resources that could then be
used to run an SSH server that allows the user to log into the provisioned resources), there

is no support for deploying custom software environments.

2.3.83  Quality-of-Service and pricing in resource provisioning

Support for advance reservations is sometimes framed in the more general context of provid-
ing specific Quality-of-Service (QoS) guarantees, including scheduling jobs with deadlines.
Approaches to guaranteeing QoS include the use of preemption [14, 13, 10], laxity in reser-
vations [28, 14, 13, 46], and incentives to request constraints that maximize performance [4].
The benefits of ARs to provide QoS in distributed systems has also been explored by Siddiqui
et al. [50] and Castillo et al. [5, 6, 7].

A related problem is how resources are priced in systems that provide QoS. Singh et
al. [52] propose an adaptive pricing scheme for ARs where the price of the reservation is
based not just on its size and duration, but also on how much it delays other running (non-
AR) jobs. Additionally, consumers are given a choice of several possible start times for their
reservations (with different prices) and can choose the one that minimizes a cost function
that depends on how urgently the user needs the resources. In our work, consumers are given
a single price determined by an adaptive pricing strategy that seeks to maximize provider
revenue.

Infrastructure-as-a-Service “clouds” allow consumers to purchase metered capacity in
the form of VMs with some QoS guarantees, albeit not for each individual request. For
example, Amazon EC2 guarantees “an Annual Uptime Percentage of at least 99.95% dur-

ing the Service Year”1!, but consumers cannot request stricter guarantees such as ARs or

11. http://aws.amazon.com/ec2-sla/
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deadlines. Large public clouds such as Amazon EC2 arguably do not need to offer ARs or
deadline-sensitive provisioning because they have enough resources to provide the illusion
of infinite capacity where resources can be provisioned immediately. Also of note are the
pricing levels offered by Amazon. On-demand instances are provisioned immediately and
charged at a flat rate (between $0.085 and $2.88 depending on the VM’s capacity and OS),
and are recommended for “applications with short term, spiky, or unpredictable workloads
that cannot be interrupted”12; Reserved Instances'?, allow users to pay a lower hourly rate
per instance during a one or three year term if they make an up-front payment for that
instance and are recommended for “applications with steady state or predictable usage [or
requiring] reserved capacity, including disaster recovery”; Spot instances are charged at a
variable rate, and remain available as long as that rate is below a maximum rate specified
by the consumer, and are recommended for “applications that have flexible start and end
times [or| that are only feasible at very low compute prices”, thus providing a lower QoS al-
ternative to on-demand instances. In our work, we propose a model suitable for applications
with rigid QoS requirements. In this model, leases are priced at a variable rate but, unlike
Amazon’s spot pricing, but the terms of a lease cannot be breached.

Since part of G3-RECONCILE involves developing policies to determine whether a provider
should enter into a lease agreement, regardless of whether the lease can be scheduled or not,
the problem of how to price resources involving a QoS guarantee, such as advance reserva-

tions, is relevant to my work because it provides a way of performing lease admission.

2.4 Discussion of Existing Approaches

Although many of the approaches described in this chapter excel at addressing one or more of

the four goals described earlier, no single solution manages to meet all four goals (Figure 2.1

12. http://aws.amazon.com/ec2/purchasing-options/

13. http://aws.amazon.com/ec2/reserved-instances/
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provides a summary of the extent to which each type of solution meets these goals). Most
of these solutions share the same two shortcomings: focusing on just one provisioning use
case, and not fully modelling virtual resources.

As described earlier, particularly in the case of best-effort provisioning and advance reser-
vations, different types of provisioning use cases tend to have conflicting measures of effi-
ciency. Thus, it is not surprising that the solutions that have emerged over time have tended
to focus on supporting one use case and supporting it well. In some cases, the provisioning
abstraction itself precludes supporting multiple use cases; for example, datacenter-based so-
lutions, such as clouds, do not allow resource consumers to specify availability constraints
beyond immediate availability. In other cases, although the architecture might support
multiple use cases, such as batch job schedulers that support both best-effort provisioning
and advance reservations, these are rarely combined in practice because of the utilization
problems they pose.

This raises the question of whether there would be any value in developing a system that
is capable of supporting a general-purpose lease abstraction. Although specialization has
resulted in impressive solutions (both experimental and in production), it has done so to the
detriment of use cases with stricter resource requirements such as coscheduling of multiple re-
sources [18, 61, 9], urgent computing applications [44], applications expressible as a workflow
of independent tasks that can be executed more efficiently by multilevel scheduling methods
[51, 59, 29|, and service provisioning clouds like the one being built by the RESERVOIR
project! [47], requiring reservation of cloud resources at specific times to meet service-level
agreements or peak capacity requirements.

A solution that meets all the goals described earlier would allow these use cases to be
supported more widely, while allowing resource providers to continue to support existing

users. However, this poses the following research question:

14. http://www.reservoir-fp7.eu/
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What are the benefits, disadvantages, and tradeoffs of a general-purpose resource

leasing architecture?

In this dissertation, I explore this question specifically in the case where virtual machines
are used to provision resources in such an architecture. Although some of the work discussed
earlier has already explored the use of virtual machines for resource provisioning, most of
these approaches use a basic resource model that neglects the overhead of deploying and
running VMs and, even when deployment overhead is modelled and taken into account
for scheduling, as in Nishimura et al. and Yamasaki et al., they focus only on immediate
availability, and do not support workloads combining different types of leases. Thus, we also

need to address the following question:

How can we control and mitigate the various overheads involved in using virtual

machines as a resource provisioning mechanism?

2.5 Contributions to the State of the Art

In pursuit of an answer to the above research question, and of a solution to the resource
provisioning problem that meets the four goals described at the beginning of this chapter,

the main contribution of this dissertation are:

1. A resource provisioning model and architecture that uses leases as a fundamental ab-

straction and virtual machines as an implementation vehicle (Chapters 3 and 4).

2. Lease scheduling algorithms that mitigate the utilization problems typically encoun-

tered when scheduling advance reservations (Chapter 5)

3. A model for the various overheads involved in using virtual machines, and algorithms
that (a) allow lease terms to be met even in the presence of this overhead, and (b)

mitigate this overhead in some cases (Chapters 6 and 7).
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4. Price-based policies for lease admission, showing that an adaptive pricing strategy can,
in some cases, generate more revenue than other baseline pricing strategies, but does
so by using fewer resources, thus giving resource providers more excess capacity that

can potentially be sold to other users (Chapter 8)

As a technological contribution, I also present Haizea (http://haizea.cs.uchicago.edu/),
an open source reference implementation of the architecture and algorithms described in this

dissertation.
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CHAPTER 3
RESOURCE AND LEASING MODEL

The fundamental resource provisioning abstraction in this work is the lease. Informally, a
lease is a form of contract where one party —the lessor, or resource provider— agrees to provide
a set of resources (an apartment, a car, computational resources, etc.) to another party —the
lessee, or resource consumer— under a set of terms governing the amount of resources, access
to the resources, the duration of the lease, etc. Although the lease abstraction has already
been used in the context of computer systems, most notably in computer networks, there is
no universally accepted definition of “lease.”

Thus, this chapter provides a formal definition of what a lease is within the context of
this work. Since the leasable resources in this work are computational resources, Section 3.1
starts by defining what resources are subject to be leased and provides a formal resource

model, followed by a definition of leases and lease terms in Section 3.2.

3.1 Resource model

This work focuses on leasing computational resources from a within a single administrative
domain, or site. The set of leasable computers, or nodes, in a site is denoted P. FEach
node x € P has leasable resources and attributes. Leasable resources within a node can be
allocated to one or more leases, up to a maximum capacity, and may include processors,
memory, disk space, network bandwidth, etc. The set of the types of leasable resources in
a site is denoted T'p (e.g., ['p = {memory, disk,...}). A specific quantity of a resource is

denoted r, with the following fields:
1. type|r] € TR, the type of resource.

2. Some resources can appear multiple times within a same node, e.g., a node has only

“one memory” but can have multiple processors. Instead of modelling each processor
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as a separate resource, these types of resources are modelled as a single resource with

multiple instances. Thus, n[r] € N is the number of instances of the resource.

3. The quantity of the resource in each instance, qq[r], g2[r], .. ., Qnlr] [r]. Every quantity

is a positive integer. When n[r| = 1, the quantity is denoted ¢[r].

Attributes are used to denote properties of a node that may be used for match-making
(e.g., the node’s architecture). The set of types of attributes in a site is denoted T' 4 (e.g.,
'y = {arch,vmm,...}. The domain of an attribute type 7, is denoted Dom(7,) (e.g.,

Dom(arch) could be {x86,x86_64,...}). An attribute a has the following fields:

1. typela] € T' 4, the type of the attribute.

2. wvaluea] € Dom(typelal), the value of the attribute.

The set of all possible resource quantities is denoted R, and the set of all possible at-
tributes is denoted A.

Every node = € P is defined with the following fields:

1. res[z] C R, the set of leasable resources in node x. There cannot be more than one

resource of the same type in the same node (Vq € res[z|Vr € res[z].q # r = type[q] #
typefr])

2. attrjz] C A, the set of attributes in node z. There cannot be more than one attribute

of the same type in the same node (Vg € attr[z|Vr € attr[z].q # r = type[q] # typelr])

Some discussions in the following chapters will assume a site with homogeneous resources,
such that every node has p processors, m MB of memory, d of disk space, bi MB /s of incoming

bandwidth, and bo MB/s of outgoing bandwidth. The site is defined as follows:

I'r = {proc, mem, disk, net-in, net-out}
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(Vx € P)(Vr € res[z]) (type[r] = proc — n[r] = p)

(Vx € P)(Vr € reslz])(Vi € {1...p}) (type[r] = proc — ¢;[r] = 1.0)

(Vz € P)(Vr € res[z]) (type[r] € {mem, disk, net-in, net-out} — nfr] =1)
(Vz € P)(Vr € reslz]) (type[r] = mem — q[r] = m)

(Vz € P)(Vr € res[z]) (type[r] = disk — q[r] = d)

(Vz € P)(Vr € res|z]) (type[r] = net-in — ¢[r] = bi)

(Vx € P)(Vr € res[z]) (type[r] = net-out — ¢[r] = bo)

3.2 Leases

A lease is a negotiated and renegotiable agreement between a resource provider and a resource
consumer, where the former agrees to make a set of resources available to the latter, based

on a set of lease terms presented by the resource consumer. More specifically:

Agreement: An arrangement between parties regarding the delivery of a service by one of
the parties. In the context of this work, only two parties are involved —a resource
provider and a resource consumer,— and the service to be provided is access to com-

putational resources!.

Terms: The specification of the resources to be provided by the resource provider to the

resource consumer. The specific lease terms used in this work are described below.

Negotiable agreement: An agreement where the resource consumer must first propose a

set of terms to the resource provider. In turn, the resource provider can accept, reject,

1. This definition is based on the definition provided in the WS-Agreement specification [2]: “An agree-
ment defines a dynamically established and dynamically managed relationship between parties. The object
of this relationship is the delivery of a service by one of the parties within the context of the agreement.
The management of this delivery is achieved by agreeing on the respective roles, rights and obligations of the
parties. The agreement may specify not only functional properties for identification or creation of the service,
but also non-functional properties of the service such as performance or availability. |[...]. Agreement terms
define the content of an agreement. It is expected that most terms will be domain-specific defining qualities
such as for example service description, termination clauses, transferability options and others.”
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or send back to the former an alternate set of terms it would be willing to accept. If
the resource provider accepts the terms presented by the resource consumer, or if the
resource consumer accepts the alternate terms presented by the resource provider, the

agreement is established.

Renegotiable agreement: An agreement such that, once the terms have been agreed to
by the resource consumer and resource provider, the former can request an alteration
of the terms, without having to form a new agreement. The resource provider can

accept or reject the new terms.

The lease terms encompass the hardware resources required by the resource consumer,
such as CPUs, memory, and network bandwidth; a software environment required on the
leased resources; and an availability period during which the requested hardware and software

resources must be available. The terms of a lease [ are specified through the following fields:

1. nodesll], a set of nodes requested by the user. Similarly to the nodes in P, each node

x € nodes|l] has the following fields:
(a) reslz] C R, the set of resources required for node z. There cannot be more than
one resource of the same type in the same node (ﬂr@“es[x] type[r] = 0)
(b) attr[z] C A, the set of attributes required in node x. There cannot be more than

one attribute of the same type in the same node (ﬂaeattr[x] typela] = 0)

2. regstart[l], the requested starting time. This field can either be an exact time ¢, indi-
cating that the lease must start no earlier than ¢, or can be left unspecified, indicating
that the resource provider can set any starting time (as long as all the other lease terms

are met).

3. reqduration[l] € N, the requested duration of the lease in seconds.
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4. deadlinell], the time by which the lease must have been satisfied to its full duration.

Can be left unspecified.

5. pricell], the price the resource provider expects the resource consumer to pay for this

lease.
6. user[l], the resource consumer, or user, who requested this lease.

7. preemptible[l] € {true, false}, indicating whether the resource consumer allows the lease
to be preempted. When a lease is preempted, the resources allocated to the lease are
freed up and reallocated in the future in the same state they were at the time they

were preempted.

8. softwarell], the software environment. In this work, a software environment is specified
in the form of a file with the entire contents of a disk, or disk image. A disk image
img has a single field size[img|, the size in bytes of the file. In cases where a resource
consumer needs to reserve computational capacity in advance, but the required software
environment is not yet known, this field can be left unspecified when the lease is

requested.

There are several other ways of representing a software environment, such as listing the
names of software packages that would have to be installed in the software environment,
and, in general, they could be used in this model as long as there is a way of estimating

the time and resources required to deploy a given software environment.

3.2.1 Characteristic lease types

Throughout this dissertation, some discussions and analysis will revolve around certain char-

acteristic types of lease:
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Best-effort lease without deadline or, simply, a best-effort lease. A lease where both

requested[start[l]] and deadlinell] are left unspecified.

Best-effort lease with deadline or deadline lease. A lease where deadlinell] is specified.

If requested|start[l]] is specified, then:

deadline[l] — requested|start[l]] > requested|duration]|l]]

i.e., there may potentially be several starting times for the lease such that the deadline

is still met.

Advance reservation lease or AR lease. A lease where requested|start[l]] and deadline|l|

are both specified, and

deadline|l| — requested|start|l]| = requested|duration]|l||

i.e., the only starting time that can satisfy the deadline constraint is requested|start[l]],

with the lease ending at exactly requested|start|l]] + requested|duration|l]].

Immediate lease . A special case of an AR lease where requested|start[l]] equals the time

when the lease was submitted.

3.2.2 Internal lease attributes

The above fields are enough to express the hardware, software, and availability terms of a
lease. In other words, a resource consumer requesting a lease would have to present values
for all the above fields to a resource provider. However, a lease [ has additional fields that
are not part of the lease terms, but are necessary to discuss lease scheduling algorithms in

the following chapters:
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1. state[l], the state of the lease. These states are described in Section 3.2.3
2. submission|l], the time at which the lease was submitted by the resource consumer.
3. actual_start[l], the actual time at which the lease started.

4. elapsed_duration]l], the duration in seconds that the lease has accrued. In other words,
this field keeps track of how much time the requested resources have been available to

the resource consumer.
5. end|l], the time at which the lease ended.

6. Based on the lease terms presented by the resource consumer, the resource provider
must allocate resources in P to satisfy those lease terms. A lease may include multiple
allocations. For example, besides allocating the actual nodes requested in the lease, a
lease could require transferring a disk image (containing a software environment) to a
node, and resources must also be allocated for this operation. Thus, a lease has a set

of allocations allocations|l], with each allocation alloc having the following fields:
(a) start|alloc], the starting time of the allocation.
(b) end[alloc], the ending time of the allocation.
(c) reslalloc], a set of tuples of the form (z,71,79,...) where z € P and r; € R,

representing the resources allocated in each node of P.

Subsequent chapters describe the algorithms used to determine these allocations based

on the lease terms.

3.2.8 Lease states

Before a lease is submitted to a resource provider, it is in a New state. Once it is submitted,
the lease can either be accepted (Pending) or rejected (Rejected). When a lease is accepted,
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the resource provider agrees to abide by the lease terms; however, in the Pending state, the
resource provider has not yet allocated specific resources for that lease. Once a resource
provider has done this, the lease is Scheduled. Once the resources become available and the
resource consumer can access them, the lease is in an Active state, although it may have to
pass through a Preparing state first if any actions have to be completed before the resources
are ready (e.g., transferring a disk image to a node). If the lease is preemptible, it may be
preempted while in the Active state. When this happens, all the lease’s state information
is saved (Suspending), the resources allocated to the lease are freed up and resources are
allocated for it in the future, possibly migrating all the lease’s state information to new
nodes (Migrating). Before it can be active again, the lease’s state information must be
loaded again (Resuming). Once a lease is finished, it reaches the final state Done. The
full state machine of leases is shown in Figure 3.1, and the description of the states and

transitions is shown in Table 3.1.
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Figure 3.1: Lease state machine
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CHAPTER 4
THE HAIZEA LEASE MANAGER

Haizea (http://haizea.cs.uchicago.edu/) is an open-source lease manager implemented in
Python that has been developed as part of this dissertation. It can take leases (as described
in the previous chapter), schedule them on physical resources, and send enactment commands
(start VM, stop VM, etc.) to those physical nodes based on the lease schedule. Originally,
Haizea was designed as an experimentation tool, providing a framework where multiple
scheduling algorithms could be implemented and compared using a simulator. Nonetheless,
Haizea eventually also became a drop-in scheduler for the open source virtual infrastructure
manager OpenNebula (http://www.opennebula.org/).

In particular, Haizea can currently run in three modes:

Unattended simulation mode In this mode, Haizea takes a list of lease requests (speci-
fied in a file) and a configuration file specifying simulation and scheduling options (such
as the characteristics of the hardware to simulate), and processes them in simulated
time. Enactment commands are not sent to any physical hardware, and are assumed
to complete successfully. The goal of this mode is to obtain the final schedule for a set
of leases, without having to wait for all those leases to complete in real time (allowing
explorations of the effect that a certain scheduling configuration could have over a
period of weeks or months). The final result of an unattended simulation is a datafile

with scheduling data and metrics that can be used to generate reports and graphs.

Interactive simulation mode The datafile produced in unattended simulation mode is
not directly human-readable and instead meant for consumption by other programs
(e.g., to generate graphs and reports). Thus, the unattended simulation mode can
be cumbersome for getting immediate feedback on a scheduling action. In interactive

simulation mode, enactment actions are still simulated, but Haizea runs in real time
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Scheduler

Enactment Utilities

Figure 4.1: Haizea Architecture

and, instead of processing a prepared list of lease requests, Haizea provides a command-
line interface to request leases interactively and query the status of Haizea’s schedule

(e.g., to find out the state of a lease).

OpenNebula mode OpenNebula is a virtual infrastructure manager that handles the de-
ployment and configuration of virtual machines on a pool of physical resources. Al-
though OpenNebula handles all the low-level details of managing distributed VMs
(Xen, KVM, and VMWare VMs are currently supported), its default scheduler is de-
signed with immediate scheduling in mind. Haizea can be used as a drop-in replacement
for OpenNebula’s scheduling daemon, providing support for advance reservations, pre-

emption, deadlines, etc.
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All the algorithms, models, and policies presented in the following chapters have been
implemented on Haizea. All the experiments have also been carried out with Haizea (most
in simulation, some in combination with OpenNebula). Thus, this chapter provides an
introduction to the Haizea architecture, summarized in Figure 4.1. Haizea’s architecture
is divided into five major components, each of which is described in further detail in the

remainder of this chapter:

Request Frontends To process and schedule a lease, the resource consumer must provide
Haizea with a lease request. Haizea supports, and includes, multiple frontends for

requesting a lease.
Scheduler This component contains all the scheduling code.

Policy Engine Certain scheduling decisions depend on resource provider-specific policies
(e.g., a resource provider might have a policy of never accepting AR leases). Haizea
includes a policy engine that allows a variety of leasing and scheduling policies to
be implemented as pluggable modules, allowing new policies to be deployed without

modifying Haizea’s source code.

Enactment This component handles the enactment of the scheduling decisions made by
the Scheduler component (e.g., sending a command to start a VM on a certain physical

node).

Utilities This component contains miscellaneous utilities used by all the other components.

4.1 Request Frontends

Leases are requested through a request frontend. Haizea has been designed to support
multiple frontends, and currently includes three frontends: the OpenNebula frontend, the

XML-RPC frontend, and the LWF frontend.
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4.1.1  OpenNebula

When running in OpenNebula mode, lease requests are not sent directly to Haizea. Instead,
users request individual VMs using OpenNebula’s command-line interface or its XML-RPC
API, both of which expect certain basic information about the VM: the number of CPUs it
needs, the kernel it requires, etc. This request is stored in OpenNebula’s database, but is
also accessible through OpenNebula’s XML-RPC API. Haizea’s request frontend uses this
API to poll the requests received by OpenNebula, converting them to leases, scheduling
them, and managing the leases’ VMs using the OpenNebula enactment module (described
in Section 4.4). Thus, in OpenNebula mode, users continue to request their VMs through
OpenNebula, but Haizea handles all the scheduling decisions in the backend.

However, as mentioned earlier, the OpenNebula scheduler is designed with immediate
scheduling in mind, resulting in an API that does not support specification of certain schedul-
ing constraints natively, such as an advance reservation. To work around this, users can spec-
ify an additional HAIZEA parameter when requesting a VM from OpenNebula; this parameter,
which can be used to specify additional scheduling constraints, is ignored by OpenNebula
but passed along to Haizea. Figure 4.2 shows a sample OpenNebula request with an HATZEA

parameter.

4.1.2 XML-RPC

The XML-RPC frontend allows users to request leases and query their state using an XML-
RPC API. Although this API can be accessed programmatically, Haizea also includes a
command-line interface to it. The XML-RPC API is used in interactive simulation mode,
and can be used in OpenNebula mode to query the state of leases but not to request leases.

Figure 4.3 show a few sample commands and their output.
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NAME = vm-example

CPU =1
MEMORY = 1024
0s = [
kernel = "/vmlinuz",
initrd = "/initrd.img",
root = "sda" ]
DISK = [
source = "/local/xen/domains/etch/disk.img",
target = "sda",
readonly = "no" ]

NIC = [ mac="00:ff:72:17:20:27"]

HAIZEA = [
start = "+01:00:00",
duration = "00:30:00",
preemptible = "no"

]

Figure 4.2: Sample OpenNebula file with HAIZEA parameter

$ haizea-request-lease -f ar.xml
Lease submitted correctly.

Lease ID: 1

$ haizea-list-leases
ID Type State Starting time Duration Nodes
1 AR Scheduled 2009-08-04 11:25:57.00 00:10:00.00 1

Figure 4.3: Sample Haizea commands
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<lease id="1" preemptible="true">
<nodes>
<node-set numnodes="4">
<res amount="100" type="CPU"/>
<res amount="1024" type="Memory"/>
</node-set>
</nodes>
<start>
<exact time="00:30:00.00"/>
</start>
<duration time="01:00:00.00"/>
<deadline time="03:00:00.00"/>
<software>
<disk-image id="foobarl.img" size="1024"/>
</software>
</lease>

Figure 4.4: Sample Haizea lease XML

/1.8 LWF

The LWF (Lease Workload Format) is an Haizea-specific XML format that can be used to
describe a workload of leases to be processed in unattended simulation mode. The main
element in this format is the <lease> element, which provides an XML representation of
leases as specified in the previous chapter (see Figure 4.4 for a sample XML representation of
a lease). An LWF file contains a sequence of <lease> elements with additional information,
such as the time at which the lease must be submitted when simulating the workload and

information about the site to be simulated (Figure 4.5 shows a sample LWF file).

4.2 Scheduler

The scheduler is the main component of Haizea, and is responsible for scheduling leases. It
is divided into two schedulers, one to schedule VMs on physical hosts, and one to schedule

the preparation of a lease (e.g., transferring a disk image to a physical node).
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<lease-workload name="sample">
<description>
Sample LWF file
</description>

<site>
<resource-types names="CPU Memory"/>
<nodes>
<node-set numnodes="4">
<res type="CPU" amount="100"/>
<res type="Memory" amount="1024"/>
</node-set>
</nodes>
</site>
<lease-requests>

<lease-request arrival="00:00:00.00">
<lease ...>
</lease>

</lease-request>

<lease-request arrival="00:20:00.00">
<lease ...>
</lease>

</lease-request>

</lease-requests>
</lease-workload>

Figure 4.5: Sample Haizea LWF
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4.2.1 VM Scheduler

The VM scheduler is in charge of determining how a lease will map on to VMs and on what
physical hosts those VMs will be deployed. The scheduling algorithms used in this module

are described in the next chapter.

4.2.2  Preparation Scheduler

A lease may need to be prepared before it can start. In this dissertation, I focus on the
scenario where disk images for a lease’s VMs must be transferred to certain physical nodes.
The preparation scheduler will schedule these transfers separately; the actual algorithms are

described in Chapter 6.

4.2.3  Mapper

The mapper is used by the VM Scheduler to map VMs to physical hosts at a specific time
(the VM scheduler is responsible for determining this time). The mapper is a pluggable
module, meaning that developers can write custom mappers without modifying Haizea’s

source code. Haizea’s default mapper uses a greedy algorithm described in the next chapter.

4.2.4  Slot Table

The slot table is one of the main data structures in Haizea. It contains the resource allocations
of all the leases (i.e., allocations|l], as defined in the previous chapter), and can thus be used
to determine the current and future capacity of the physical nodes. The slot table is queried
heavily by the VM scheduler and the mapper to determine if and when an allocation can
be made for a lease. Since querying resource allocations is the most frequent operation in
Haizea, the slot table provides O(logn) access to allocations starting or ending at a given

time or falling within an interval of time (where n is the number of resource allocations).
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This access time is currently achieved by storing allocations in two ordered lists (one ordered
by starting time and another by ending time). Although using ordered lists results in O(n)
time for removals and insertions of allocations into the slot table, slot table queries far
outweigh insertion and removal operations. Furthermore, lists (which are native data types
in Python and implemented internally as C arrays) are also preferable as they allow faster
iteration through an interval of allocations (once the first allocation at a given starting time

is located) than O(logn) structures such as trees.

4.3 Policy Engine

Haizea includes a policy engine that allows certain scheduling decisions to be delegated
to pluggable policies, allowing developers to write their own scheduling policies by writing
a single Python class (implementing an interface for pluggable policies) which can then
be plugged into Haizea without having to modify Haizea’s source code. Four policies are
currently pluggable: lease preemptability (“Can lease L1 preempt lease Lo?”), host selection
(“Given a VM, what physical node should it be assigned to?”), lease admission (“Given a
lease, should it be accepted or rejected?”), and lease pricing (“Given a lease, what price

should be assigned to it?”).

4.3.1 Lease Admission

A lease admission policy determines whether a given lease request should be accepted or not
by Haizea. Admission is distinct from whether a lease can be scheduled or not (although
schedulability could be a part of the policy); the policy takes a lease in a Pending state (see
Section 3.2.3) and decides whether the lease can be considered for scheduling or not. For
example, a user could submit an AR lease that must start in 5 hours, but the policy could
dictate that all ARs must be requested at least 24 hours in advance (and the lease would be

rejected, regardless of whether there were resources available for it in 5 hours). Similarly, an
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AR lease could be requested 48 hours in advance, be accepted by the lease admission policy,

but then be rejected by the scheduler if there are no resources available.

4.3.2 Lease Preemption

Given a lease that needs to preempt resources (the “preemptor”), another lease (the “pre-
emptee” ) that may be preempted by it, and a time, this policy determines if the preemptor
can preempt the premptee. More specifically, this policy will assign a preemptability score
to the preemptee, meaning some leases may be more preemptable than others. For example,
a policy could be specified where AR leases can preempt any best-effort leases and preferring
the leases that have been running the least. Thus, if an AR lease can only run by preempting
either lease [, which has been running for 24 hours, or lease l9, which has been running for

only 5 minutes, the policy will determine that lo has to be preempted.

4.8.83 Lease Pricing

The lease pricing policy determines a lease’s price (pricel], as defined in the previous chap-
ter). For example, a resource provider may determine the price of a lease based on the

requested duration and number of nodes. Pricing policies are discussed in Chapter 8.

4.8.4 Host Selection

When the mapper maps VMs to physical hosts, this policy determines what hosts are more
desirable. For example, an energy-saving policy might value hosts that already have VMs
running (to leave as many empty machines as possible, which could then be turned off),
whereas another policy might prefer empty hosts to make sure that VMs are spread out
across nodes. Similar to the lease preemption policy, this ranking is done by assigning a

score to each host.
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[generall

loglevel: INFO

mode: opennebula
lease—preparation: unmanaged

[opennebula]
host: localhost

[scheduling]

policy-preemption: ar-preempts—everything
backfilling: aggressive

suspension: all

suspend-rate: 32

resume-rate: 32

suspendresume-exclusion: global
migration: no

[accounting]
datafile: /var/tmp/haizea/results.dat
probes: ar best-effort immediate cpu-utilization

Figure 4.6: Sample Haizea configuration file

4.4 Enactment

The enactment component is responsible for translating Haizea’s scheduling decisions into
concrete actions. For example, if an AR lease is scheduled to start at time ¢, the scheduler
will use the enactment component to start the VMs for that lease. Haizea currently includes
two enactment modules: an OpenNebula one and a simulation one. With the OpenNebula
enactment module, Haizea will use OpenNebula’s XML-RPC API to instruct OpenNebula
to start, stop, suspend, and resume VMs for a lease. The simulation enactment module,
on the other hand, does not manage real VMs. Instead, given an enactment request by the

scheduler, it will always respond instantly that the request succeeded.

4.5 Utilities

The utilities component contains an assortment of modules that are used across Haizea. The
Configuration File module takes care of loading Haizea’s configuration file, where most of

the scheduling options are specified (See Figure 4.6 for an example). The Accounting module
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collects information while Haizea is running and saves it to a data file for off-line processing.
The related Accounting Probe module allows developers to write their own “probes” to collect
specific information when certain events happen (e.g., a developer can write a probe that is
run every time a lease is completed to collect information about its final state). The Logging
module provides various levels of logging, facilitating troubleshooting of problems without
debugging the code. The Command-line Clients module contains all of Haizea’s command-

line clients. Finally, a Unit Tests module is used to test many of Haizea’s modules.

4.6 Getting Haizea and Additional Documentation

Haizea is available for download at http://haizea.cs.uchicago.edu/. This site includes a
manual (http://haizea.cs.uchicago.edu/manual/) providing instructions on how to install
Haizea, and how to use it in the three modes (unattended simulation, interactive simulation,
OpenNebula) described at the beginning of this chapter. This manual also provides a more

detailed specification of Haizea’s configuration file options, command-line interface and the

LWEF format.
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CHAPTER 5
SCHEDULING LEASES WITH VIRTUAL MACHINES

So far, I have presented a leasing model (Chapter 3) and a leasing architecture (Chapter 4)
without explaining how those leases would be scheduled, or exploring the benefits and draw-
backs of using virtual machines to implement those leases. In this chapter, we begin that
exploration, albeit making some assumptions that will be removed in later chapters.

As T have discussed previously (Section 2.1), virtual machines have a number of properties
that make them an attractive vehicle for implementing leases. However, although they can
be used to provision hardware, software, and availability (G2-HWSWAVAIL), we need to
explore whether they can do so efficiently (G3-RECONCILE) and overcoming the various
overheads involved in using virtual machines (G4-MODELVIRT). In this chapter, I show
that using the suspend/resume/migrate capability of VMs can provide better performance
(measured in terms of various metrics) than a scheduler that does not support preemption,
and only slightly worse performance than a scheduler that does support preemption. I
begin in Section 5.1 by describing how to schedule leases without deadlines, and without
preempting leases. Next, Section 5.2 describes how preemption is incorporated into the
scheduling, and discusses its possible benefits, and Section 5.3 describes the algorithm used
to schedule with deadlines. Finally, Section 5.4 presents an experimental evaluation of the
scheduling algorithms described in this chapter.

Throughout this chapter, I make three simplifying assumptions: (A) disk images for VMs
are predeployed in the machines where they are needed and (B) there is at most one VM
per physical machine, (C) a lease request is never rejected if there are enough resources to

satisfy that request. I address these assumption in the following chapters.
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5.1 Scheduling without deadlines or preemption

Given a lease [, each node n in nodes[l] (each requiring res[n| resources, such as CPU,
memory, etc.) will be implemented as a virtual machine. Each VM, in turn, must be
mapped to a physical node in P during a time interval. This time interval must meet the
lease terms (e.g., a VM cannot be mapped to a physical node before start[l]) and there must
be at least res[n] available in the physical node during that interval.

Determining a time interval that meets the lease terms may require testing several differ-
ent mappings. I present first the algorithm used in Haizea to attempt a mapping at a specific
time interval, and then present how different types of leases use this mapping algorithm to

find a time interval that meets the lease terms.

5.1.1 Mapping VMs to physical nodes at a specific time

To determine if it is possible to map all the VMs in a lease at a specific time interval, starting

at a time ¢t and lasting d seconds, Haizea first sorts the physical nodes in the following order:

1. First, the physical nodes with fewest leases scheduled on them at time ¢

2. Next, given two physical nodes with the same number of leases scheduled on them,

pick the one with the largest available capacity at time ¢.

3. Finally, given two physical nodes with the same available capacity at time ¢, pick the
one where that capacity remains unchanged the longest (i.e., this favours nodes where

the same capacity is available during the entire interval from ¢ to t 4 d)

The above is the default host selection policy (and the one used in all the experiments),
although this sorting is configurable using Haizea’s pluggable host selection policy (see Sec-
tion 4.3.4). Once the nodes are sorted, Haizea uses a simple greedy algorithm to try to fit

all the VMs, checking the physical nodes in the above order. Algorithm 1 shows the exact
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Algorithm 1 Greedy mapping without preemption
Input: A lease [, a time ¢, a duration d
Output: A mapping, if one can be found, nodes[l] — P (from lease nodes to physical
nodes), starting at time ¢ and ending at t + d.
map < empty dictionary
P’ « sort(P) {Sorted according to host selection policy }
cur_node < First node in nodes|!]
for all p € P (while there are still nodes in nodes[l] left to map) do
p_done < false
while not p_done do
if cur_node fits in p from ¢ to t + d then
MAPeyr_node < P
cur_node < Next node in nodesll|
else
p_done < false
end if
end while
end for
if all nodes in nodes|l] have been mapped then
return map
else
return ()

end if

algorithm; note that this algorithm already accounts for the possibility of fitting multiple
VMs in a physical host (in this case, the algorithm tries to fit as many VMs in a physical
host before moving on to the next) even though the experiments in this section assume that

there is only one VM per physical host.

5.1.2 Best-effort leases

Best-effort leases are scheduled on a FCEFS (First Come First Serve) basis, with each re-
quested best-effort lease placed at the end of a queue. When Haizea’s scheduling function
runs, the queue is inspected, starting at the head, in search of leases that can be scheduled at
the current time. When a lease is found that cannot be scheduled, Haizea stops evaluating

the queue.
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However, FCFS by itself is known to be an inefficient strategy, and Haizea augments it
with backfilling [37, 40, 15, 16], which allows certain requests to “jump the queue”, as long
as they do not delay the N leases at the head of the queue (called aggressive backfilling when
N =1, and conservative backfilling when N is the length of the queue). Preventing the head
N request from being delayed is achieved by allowing at most N best-effort lease requests
to be scheduled in the future (instead of only allowing them to be scheduled at the time the
queue is being processed), and processing the entire queue each time the scheduling function
runs.

Algorithm 2 describes how each lease request is scheduled when processing the queue.
The boolean allow_future parameter is set to true if there are fewer than N best-effort
leases scheduled in the future, and false otherwise. If a lease cannot be scheduled, it simply

remains in a Queued state and placed back into the queue in its previous position.

5.1.3 AR and immediate leases

AR leases, on the other hand, require a simpler algorithm (see Algorithm 3), since there is
only one mapping to test: between start[l] and duration[l]. When an AR lease is requested,
a mapping is attempted and, if the mapping is feasible, the lease is accepted; otherwise, it
is rejected.

Immediate leases are handled as a special case of an AR lease, where start|l] is set to the

time the lease is requested.

5.2 Preemption with VMs

When combining best—effort and advance reservation leases, we can find that the time before
an advance reservation is underutilized, as we cannot schedule any best-effort requests that
would end after the scheduled start time of the advance reservation (see Figure 5.1, top

diagram). Although backfilling partially palliates this by allowing lower-priority requests to
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Algorithm 2 Best-effort

Input: A lease [, a boolean allow_future
Output: A lease [
m <— map(l, now, duration[l]){See Algorithm 1}
if m # () then
UMIT < new reservation
start[vmrr| < now
end[vmrr| < now + duration]l]
resfvmrr] < ...
Add vmrr to reservations|l] and to slot table.
state|l] < Scheduled
else if m = () and not allow_future then
state[l] < Queued
else
changepoints <— Time in the future in which there is a change in the slot table
for all cp € changepoints do
m < map(l, cp, duration|l])
if m # () then
break
end if
end for
if m = () then
state[l] < Queued
else
vmrT — new reservation
startfvmrr| < cp
end[vmrr] < cp + duration|l]
resjvmrr] < ...
Add vmrr to reservations|l] and to slot table.
state|l] «— Scheduled
end if
end if

return [
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Algorithm 3 Advance reservation
Input: A lease [
Output: A lease [

m < map(l, start[l], duration]l])

if m = () then
state[l] < Rejected
else

vMrT <= new reservation
startfvmrr| < start|l]
end[vmrr| < start[l] + duration][l]
resfvmrr] < ...
Add vmrr to reservations|l] and to slot table.
statell] < Scheduled
end if

return [

be scheduled before the advance reservation (see Figure 5.1, middle diagram), it can still
result in some underutilization. Another alternative is to use the suspend/resume capability
of VMs to suspend best—effort leases before an advance reservation, and resume them as
soon as the advance reservation ends (see Figure 5.1, bottom diagram).

To make use of suspend/resume, the mapping algorithm (Algorithm 1) must also be able
to look for a mapping that will last for less than the requested duration, e.g., when a lease
can only be partially scheduled until the start of another lease, as shown in Figure 5.1. Addi-
tionally, the mapping algorithm must also look for mappings that involve preempting other
leases. Algorithm 4 shows the updated algorithm, which now has an additional parameter
fulldur, indicating whether the mapping must be for the full requested duration, and which
tries to find mappings by preempting other leases, which are chosen according to the lease
preemption policy (see Section 4.3.2)

The algorithms for best-effort leases (Algorithm 2) and advance reservation leases (Al-
gorithm 3) now need to schedule the suspension and resumption of virtual machines if a
preemption is taking place. During VM suspension and resumption, the entire state of the

VM (mostly its memory) must be saved to disk, and this operation must be scheduled in
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Figure 5.1: Underutilization before an advance reservation. Top: Draining nodes before an
AR. Middle: Backfilling the time before an AR. Bottom: Suspending before an AR, and
resuming after the AR.
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Algorithm 4 Greedy mapping with preemption

Input: A lease [, a time t, a duration d, a boolean fulldur

Output: (1) A mapping, if one can be found, nodes[l] — P (from lease nodes to physical nodes),
starting at time ¢ and ending at ¢+ d’, where d’ must be exactly d if fulldur = true, or a duration
d' < dif full =false. (2) The duration d’'. (3) A set preempt of preempted leases.

map < empty dictionary
P’ + sort(P) {Sorted according to host selection policy (See Section 4.3.4)}
possible_preempt < Preemptable leases scheduled between ¢ and ¢+ d {Sorted according to lease
preemption policy (See Section 4.3.2)}
preempt + ()
d +d
done < false
found_mapping <+ false
while not done do
cur_node < First node in nodes|l]
for all p € P’ (while there are still nodes in nodes[l] left to map) do
p_done < false
while not p_done do
if cur_node fits in p starting at ¢ then
if fulldur and doesn’t fit until £ 4+ d then
p_done < true
else
MAaPcur_node < P
if doesn’t fit until ¢ + d’ then
d' + maximum duration cur_node will fit in p
end if
cur_node < Next node in nodes]l]
end if
else
p_done < true
end if
end while
end for
if all nodes in nodes[l] have been mapped then
done + true
found_mapping < true
else if |possible_preempt| > 0 then
Extract first element of possible_preempt and add to preempt.
else
done + true {But not valid mapping found}
end if
end while
if found_mapping = true then
return map, d’, preempt
else
return ()

end if 65




such a way that it will not delay other leases (e.g., if we are suspending a best-effort lease to
free resources for an AR lease, the suspension must finish before the start of the AR lease).
At this point, I assume that this VM state is saved to the physical node’s local filesystem
at a rate of hg megabytes of VM memory per second (h, similarly for VM resumption).
Since I also assume that each physical node runs at most one VM, this means a lease can be
suspended by suspending all its nodes[l] VMs in parallel, since each physical node will only
have one VM to suspend, and each physical node’s local filesystem is independent from the
others. Thus, tg and t,, the time to suspend and resume an entire lease can be modelled
by %ﬁ’:[l] and %T:L[l]. Chapter 7 explores more complex models for estimating the time to

suspend and resume a lease.

5.3 Scheduling with deadlines

Haizea schedules leases with deadlines by leveraging the previous algorithms. In particular,
depending on the tightness of the deadline, the deadline scheduling algorithm (Algorithm 5)

will try to schedule the lease either using the best-effort algorithm or the advance reservation

deadlinell]—start|l]
duration|l]

algorithm. The tightness of a deadline is defined in terms of its slack, (the
less slack, the tighter the deadline). If the slack is below a certain threshold, the algorithm
first attempts to schedule the lease as an advance reservation starting at precisely start|l]
and allowing the lease to preempt other leases. If this fails (e.g., because no leases can be
preempted without making them miss their deadlines), or if the lease is above the threshold,
the algorithm tries to schedule the lease at the earliest time when resources are available
without preemption and, if this results in a starting time that prevents the lease from meeting
its deadline, it tries to alter the order of leases that have already been scheduled in a Least-
Slack-First order.

The lease preemption policy is also modified to allow a lease to be preempted only if it

can be rescheduled and still meet its deadline. Furthermore, when preemption is possible,

66



Algorithm 5 Scheduling a lease [ with a deadline

deadline[l]—start[l]
slack[l] + duration]l]

if slack[l] < SLACK_.THRESHOLD then
Attempt to schedule at exactly start[l] with preemption
if unable to schedule then
Attempt to schedule any time after start[l] without preemption
end if
else
Attempt to schedule any time after start[l] without preemption
end if
if unable to schedule then
ls < Leases scheduled after start|l]
Add [ to ls

Sort leases in ls from least to most slack. For each lease I’ € Is, the slack will be
deadline(l']—submit]l]
duration|l’]
Reschedule leases in [s without preemption

if unable to reschedule all the leases then
Restore previous schedule. Reject [
else
Accept [
end if
else
Accept [
end if

, since any rescheduled lease will have to start at least at submit|l].
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the scheduler will choose the leases with the highest slack, increasing the likelihood that they

can be rescheduled before their deadlines.

5.4 Experimental Results (scheduling without deadlines)

The scheduling algorithms and policies described in this chapter were implemented in Haizea,
which was used to simulate a month of lease requests and observe the effect of using these

algorithms. This section describes the results when scheduling without deadlines.

5.4.1 Workloads

The workloads used in these experiments are constructed by adapting the SDSC Blue Horizon
cluster job submission trace from the Parallel Workloads Archive [62]. In general terms, I
take a set of job submission requests from that trace and treat them as a set of best-effort
lease requests and then insert an additional set of advance reservation requests. Keeping
the best-effort requests fixed, I vary the advance reservation requests to obtain a set of 72
different workloads.

More specifically, I take a 30 day extract of requests in the SDSC Blue Horizon trace
starting at time 5:02:14:301 (this extract will be referred to as BLUE1 in subsequent chapters.
For each of these 5,545 requests, I extract from the trace its submission time, requested
duration, and requested number of nodes (in this 30-day extract, 66.86% of the requests
have a requested duration of one hour or less, and 64.10% of the requests require four nodes
or less,) and set the per-node resource allocation to p = 1 and m = 1024 (a single processor
and 1024 MB of memory). Since traces provide both the requested duration of the job and
its actual run time (which tends to be shorter than the amount requested by the user),

Haizea also makes a note of the actual run time so the simulator will end a lease once that

1. This is essentially the first 30 days of requests in the trace, chosen arbitrarily; the first five days of the
trace contain only twelve requests, and thus not useful for simulation purposes.
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time has passed (the scheduler still bases its decisions only on the requested duration).
To generate the workloads, I then interleave with this set of best-effort requests a set of

advance reservation requests, generated according to three parameters:

e p, the aggregate duration of all advance reservation leases in a workload, computed
as a percentage of the total CPU hours in the simulation’s run, which is the number
of nodes multiplied by the time when the last best-effort request is submitted. I use
the values p =5%, 10%, 15%, 20%, 25%, and 30%. (We do not explore larger values

because the trace’s utilization is 69.60%.)

e ), the duration of each advance reservation lease, for which I use average values of 1,

2, 3, or 4 hours. (The duration is selected randomly from a range spanning ¢ + 30m.)

e v, the number of nodes requested by each lease, for which 1T use three ranges, from
which the value is selected using a uniform distribution: small (between 1 and 24),

medium (between 25 and 48), or large (between 49 and 72).

Given values for p, 6, and v, I then determine the arrival times of the advance reservation
requests as follows. First, I determine the number of requests that will be generated, and
divide that number into 30 days to obtain an average interlease interval . Then, I choose the
individual intervals between requests at random in the range (¢ — 1 hour,7 + 1 hour). Thus,
the smaller the average lease duration, the more frequent is the arrival of requests (since there
will be more advance reservation lease requests). Similarly, the smaller the average number
of nodes, the higher the frequency. 1 further constrain advance reservation lease requests to
involve an advance notice of exactly 24 hours. As with the best-effort requests, the advance
reservation lease requests have a per-node resource allocation of p =1 and m = 1024 MB.

In these experiments, I explore every combination of the parameters p, §, and v, for a total

of 72 workloads. I refer to workloads using the notation [p%/dH/v] (e.g., [10%/2H/medium]).

69



5.4.2  Simulated Physical Resources

The simulated pool of physical resources that leases will be scheduled on is modelled after
the SDSC Blue Horizon cluster. It comprises 144 single-CPU nodes, each with 40 GB of
disk and 1 GB of memory, connected with a switched Ethernet network (1000 Mb/s, 1
conservatively assume a 100 MB/s bandwidth). For the purposes of estimating the time
required to suspend and resume a VM, I assume hg and h, to be 50 MB/s, based on results
presented by Fallenbeck et al. [12]. I conservatively assume that the sum of the boot-up and
shutdown time of a VM does not exceed 20 seconds. To account for the slowdown produced
by running inside a VM, I assume that any computation running inside a VM requires 5%
more time to run. Furthermore, I assume that the time required to send commands from the
resource manager to the nodes is negligible and that the hardware will not behave erratically,

and do not inject hardware failures into the simulated cluster.

5.4.83 Ezxperiments

Each of the workloads described above was simulated using Haizea with the following con-

figurations:

NOVM-NOSR — No VM, no suspend/resume: Leases do not run on VMs;, so there is no
VM image to transfer and no 5% runtime slowdown. In addition, leases cannot be

suspended or resumed; thus, a preempted lease is cancelled and requeued.

NOVM-SR — No VM, with suspend/resume and migration: Like NOVM-NOSR, but leases
can be suspended and resumed. This configuration represents a job scheduler capable
of checkpointing and migrating any job. I assume that, to be able to checkpoint any
application, system-level checkpointing is used, and that suspending a lease requires

saving the entire memory to disk, as would happen in the VM cases.
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VM-PREDEPLOY — With VM, single predeployed image: The leases run on VMs and all

leases use the same VM image, which is assumed to be predeployed on the nodes.

During the experiments, I observe, for each lease, the times t, (the arrival time, or time
when the lease request is submitted), ¢5 (the start time of the lease) and t. (the time the

lease ends). At the end of an experiment, I compute the following metrics:

all-best-effort: I define all-best-effort as the time from the start of the simulation to the
moment the last best-effort request is completed. I normalize this value by presenting
the relative difference between this time and the time required to run all the best-effort
requests without advance reservation leases in configuration NOVM-NOSR (this time is
2,668,432 seconds, or roughly 30.8 days). Thus, a value z indicates that an experiment
took 2668432 -z to run (with z = 1.0 meaning that the experiment took the same time

as the baseline case).

Wait time of best-effort requests: I define wait time as tg — t,, the time a best-effort

request must wait before it starts running.

Bounded slowdown of best-effort requests [17]: If ¢,, is the time the lease would take

to run on a dedicated physical system (i.e., not in a VM), the lease’s slowdown is tet_ ta

If ¢, is less than 10 seconds, the bounded slowdown is computed the same way, but

assuming t,, to be 10 seconds [17].

When computing the last two metrics, I discard the first 5% of measurements, to avoid
ramp-up effects. I retain the ramp-down period because it is where the requests that languish
in the queue (until there are no more advance reservation leases) will finish.

Figure 5.2 shows the all-best-effort results for all experiments. This metric provides
a good measure of utilization, taking into account both VM runtime slowdown and the

overhead of VM deployment. Using suspend/resume and migration (with and without VMs)
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results in a shorter run time than NOVM-NOSR in every case. In fact, using suspend /resume
and migration produces a slowdown of, at most, 6.00% relative to not injecting any advance
reservation leases at all, whereas not using suspend/resume can produce a slowdown of
up to 29.36%. Additionally, the duration of the advance reservation leases is more likely
to affect this metric in the NOVM-NOSR configuration, with shorter-duration (and thus

shorter-interval) leases producing the worst results.
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While all-best-effort gives a good measure of effective utilization (indicating how much
faster an entire workload will be run from beginning to end), it does not say much about
individual leases, which requires looking at the other two metrics. For example, an inspec-
tion of the individual waiting times reveals that the longer total run time when not using
suspend /resume (in NOVM-NOSR) is due to best-effort leases that remain in the queue and
are not run until the ramp down period, when no more best-effort leases are being submitted.
These leases remain in the queue because the advance reservation leases prevent them from
being scheduled, especially when the interval between advance reservation leases is short.
I constrain most of my discussion to the cases [10%/3H/medium], [20%/2H/medium], and
[30%/1H/medium], which are representative of the trends that I observe across all cases.

Table 5.1 shows the total run time, average wait time, and average slowdown for these
three cases. In every case, the NOVM-NOSR configuration results in longer running times,
longer average wait times, and larger average slowdowns. I attribute this result to the fact
that, without suspend /resume, the scheduler must rely heavily on backfilling to use the time
and space efficiently before a blocking lease (such as an advance reservation lease). This
behavior will favor short leases, which “skip to the front of the queue” when used as backfill.
Since the majority of best-effort leases in the BLUEL workload are shorter than one hour,
they are ideal candidates for backfilling. However, suspend/resume need not look ahead
for shorter best-effort leases when backfilling: it can simply take the next best-effort lease,
even if long, knowing that it can suspend this lease if it has not run to completion before a
blocking lease is scheduled.

I can support this observation by looking at how wait times and the slowdown vary with
requested duration and number of nodes. Figures 5.3, 5.4, and 5.5 show the regression curves
(using the Lowess smoother [8]) for these metrics and variables for [20%/2H/medium]. Fig-
ure 5.3 shows how wait time and slowdown vary with the requested lease duration and, in

particular, how short leases in the NOVM-NOSR configuration have shorter wait times and
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Table 5.1: Experiment running times, average waiting times, and average slowdowns for

[10%/4H/medium], [20%/3H/medium], and [30%/2H/medium]

Time to complete best-effort leases,
relative to time without advance reservation leases

p— [ 10% | 20% 30%
NOVM-NOSR 5.15% | 7.37% 26.71%
NOVM-SR 0.46% | 1.26% 6.09%
VM-PREDEPLOY | 0.46% | 1.40% 5.99%

Average waiting time for best-effort leases,

in thousands of seconds

p— | 10% 20% 30%
NOVM-NOSR 14.05 | 24.73 86.50
NOVM-SR 6.24 | 10.76 26.00
VM-PREDEPLOY 6.18 | 10.88 27.43

Average bounded slowdown

p— | 10% 20% 30%
NOVM-NOSR 56.55 | 90.65 318.56
NOVM-SR 28.05 | 51.40 134.46
VM-PREDEPLQY | 24.66 | 47.27 121.33

smaller slowdowns than all other configurations (which use suspend/resume). However, the
tendency is for both the wait time and slowdown to increase as the requested duration in-
creases since, as noted above, backfilling favors short requests. When using suspend /resume,
on the other hand, the trend is for the wait times to not vary with the requested duration
and for the slowdowns to exhibit a slight decreasing trend. Thus, all requests are treated
more fairly, although the overall average does increase (the shorter requests, which make
up the majority, have longer wait times because they no longer “skip the queue,” thanks to
backfilling). This is a desirable effect in many scenarios as it provides a more “democratic”
treatment for different application types.

Figure 5.4 shows how the wait time and slowdown vary with the number of requested

nodes. When looking just at the effect of node counts, adding suspend/resume has little
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effect. In fact, the same trend is present across all configurations: wait time and slowdown
do not vary when the node count is less than ten but tend to increase for larger node counts.
Figure 5.5 shows how the wait time and slowdown vary with the requested CPU time (the
product of the requested duration and the requested number of nodes), with trends similar
to those when looking just at the requested duration, except that the upward trend as the
CPU time increases is more pronounced in the NOVM-NOSR configuration. This upward
trend is also evident in the suspend/resume configurations, but only for large values of CPU
time.

The results for [10%/3H/medium] are shown in Figures 5.6, 5.7, and 5.8, and the results
for [30%/1H/medium] are shown in Figures 5.9, 5.10, and 5.11. In general, we observe
across all 72 workloads that, as p increases, wait times and slowdowns tend to increase more
sharply in the NOVM—-NOSR configurations, but tend not to vary in the configurations that

use suspend /resume.

5.5 Experimental Results (scheduling with deadlines)

To evaluate the deadline scheduling algorithm, I once again used Haizea to simulate a month
of lease requests to observe the effect of using these algorithms. These results are separate

from the ones presented in the previous section, and use different workloads and metrics.

5.5.1 Workloads

I used two workloads in these experiments, based on job traces from the Parallel Workloads
Archive? where certain attributes (such as the deadline) are added according to well-specified

distributions.

2. http://www.cs.huji.ac.il/labs /parallel /workload /
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1. SDSC Blue Horizon?, or blue: 30 days of requests starting at request #218890%. This
extract will be referred to as BLUE2 in the following chapters. The utilization of this
workload is 84.48%. When using this workload, I simulate a site modelled after the

trace’s original cluster, with P =144, C' =1, M = 1024 MB, hg = h, = 64 MB/s.

2. SDSC DataStar®: 30 days of requests starting at request #50436. This extract will be
referred to as DS in the following chapters. The utilization of this workload is 60.45%.

When using this workload, I simulate a site modelled after the trace’s original cluster,

with P = 164, C = 1, M = 1024 MB, hs = h, = 64 MB/s.

Each job request in the trace is converted to a lease requesting the same duration and
number of nodes as the original job request. Since the original requests are for best-effort
jobs that do not request a specific starting time or have a deadline, I annotate each request
with a starting time, a deadline, and a value for ry.

I generate the starting time and deadline using two parameters, § and w:

start[l] =submit[l] + 6

deadline[l] =start[l] + w + duration][l]

0 is the delay, in seconds, before the lease can start and w is the maximum waiting time
in seconds. When w = 0, the provider must schedule the lease exactly between the requested
start time and deadline, whereas when w > 0, the provider has some flexibility when deciding

what the actual start time of the lease will be, as long as the lease is completed before the

3. http://www.cs.huji.ac.il/labs/parallel /workload /1_sdsc_blue/index.html
4. Chosen randomly using Python’s random number generator
5. http://www.cs.huji.ac.il/labs/parallel /workload /1_sdsc_ds/index.html

6. Chosen randomly using Python’s random number generator.
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deadline.

5.5.2 Parameters

A single experiment run involves simulating the scheduling of one of the two workloads. In

each experiment run, I vary the following parameters:

e The distribution of values of §. Each request in the workload is assigned a separate
value between 0 and 86,400 (24 hours). I use three distributions of values:
— EARLY START: Pareto distribution skewed toward 0.
— UNIFORM START: Uniform distribution of values.
— LATE START: Pareto distribution skewed toward 86,400.
e The distribution of values of w. Each request in the workload is assigned a separate
value between 0 and 604,800 (seven days). We use three distributions of values:
— TIGHT DEADLINE: Pareto distribution skewed toward 0.
— UNIFORM DEADLINE: Uniform distribution of values.
— LOOSE DEADLINE: Pareto distribution skewed towards 604,800.

e Preemption: NO PREEMPTION, PREEMPTION WITHOUT SUSPEND/RESUME and

PREEMPTION WITH SUSPEND/RESUME

The SLACK_THRESHOLD parameter in Algorithm 5 is set to 2.0 (i.e., if deadline[l] —
start|l] is less than twice the requested duration of the lease, we attempt to schedule the

lease with preemption).

5.5.8 Metrics

In each experiment run I measure the following information:
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o Number of leases accepted, number of leases rejected by provider because the lease could
not be scheduled, and Number of leases rejected by user because the provider quoted

a price that was too high for the user.

o Resource utilization, measured as percent of physical nodes that were used throughout
the experiment run. To avoid ramp-up and ramp-down effects, the calculation omits

the initial 5% time of the experiment run, and stops when the last request is submitted.

5.5.4 Results

The results focus on the effect that deadline tightness has on resource utilization, with and
without using VM suspend /resume. Figure 5.12 shows the utilization for each workload and
each distribution of values of 4 and w. In both workloads, as deadlines get tighter, utilization
decreases as it becomes harder for the scheduler to accommodate the deadlines. Utilization
also decreases, to a lesser extent, when later starting times are requested as (1) this further
constrains the choice of resources for a lease, and (2) when a lease ends prematurely, there
will be fewer leases that can be rescheduled to use the freed-up resources (since they are
constrained to start at a later time).

Unlike the experiments where “extra work” was added in the form of advance reserva-
tion leases, the use of preemption has a relatively small effect on utilization, but a closer
look at the characteristics of the accepted leases reveals that preemption favours leases
with tighter deadlines. Table 5.2 shows the number of tight-deadlined leases (according to
two criteria) accepted in three representative configurations. In the most constrained case,
with LATE START and TIGHT DEADLINE, the use of preemption can increase the number
of accepted leases from 51.68% to 78.09% when the leases’ slack is below the scheduler’s
SLACK_THRESHOLD parameter. Although the effect of using VM suspend/resume is neg-
ligible, this result is consistent with the results show in the previous section, where VM

suspend /resume is mostly beneficial when using high-utilization workloads (particularly in
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the presence of ARs). Since the utilization of the BLUE2 and DS workloads does not reach
100%, and are further constrained by deadlines, a high-utilization situation is not reached

in these experiments.

5.6 Conclusions

This chapter has presented how leases can be scheduled and implemented using VMs, explor-
ing the benefits and drawbacks of this approach, particularly when using the suspend /resume
capability of VMs. The experimental results show that, when using workloads that combine
best-effort and advance reservation leases, a VM-based approach with suspend/resume can
overcome the utilization problems typically associated with the use of advance reservations.
These results show that, even in the presence of the runtime overhead resulting from us-
ing VMs, a VM-based approach results in consistently better total execution time than a
scheduler that does not support preemption, and only slightly worse performance than a
scheduler that does support preemption. Measurements of wait time and slowdown for the
same experiments show that, although the average values of these metrics increase when
using VMs, this effect is due to short leases not being preferentially selected as backfill. In
effect, a VM-based approach does not favour leases of a particular length over others, unlike
systems that rely more heavily on backfilling. Additionally, the results have shown that,
when scheduling leases with deadlines, the use of VM suspend /resume has a negligible effect
on utilization, but allows a larger amount of leases with tight deadlines to be accepted.
Thus, this confirms that VMs are an adequate vehicle for implementing leases, reconciling
the requirements of each type of lease (goal G3-RECONCILE). However, the results at this
point depend on a series of simplifying assumptions: VM disk images are predeployed, and
there is at most one VM running in each physical node. Although these assumptions are
not unrealistic, they don’t meet goal G4-MODELVIRT (virtual resources and, in particular,

the overheads involved in using VMs, must be modelled accurately). The next two chapters
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focus on meeting goal G4-MODELVIRT by removing these assumptions.
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CHAPTER 6
SCHEDULING DISK IMAGE TRANSFERS

In the previous chapter, I presented how leases could be implemented with virtual machines,
albeit assuming that any disk images required by the virtual machines were predeployed on
all the physical nodes. Although this assumption may be reasonable for some use cases,
such as compute clusters that have a small set of software environments that satisfy most
users, it is not a general enough solution for most users. More specifically, if we want leases
to encompass software environments, it must be possible for resource consumers to specify
the exact software environment they want (in the form of a disk image), which will require
transferring that disk image from a disk image repository to the physical nodes where the
virtual machine will be executed.

An easy solution to this problem would be to let the overhead of deploying these disk
images be borne by the resource consumer: the transfer of disk images would always take
place at the start of a lease. However, doing so would be a breach of the lease terms, since
the resources the consumer requested would not really be available until those transfers
completed. Instead, I propose that this overhead be scheduled explicitly and separately
from the VMs. In other words, the transfer of disk images would be scheduled in such a
way that the terms of the lease are still met (e.g., the disk image transfers for an AR lease
would be scheduled to complete before the start of the lease). Additionally, I claim that, by
scheduling this overhead separately, we can take steps to reduce it.

In this chapter, I begin by presenting a VM disk image transfer strategy that guarantees
that the lease terms (particularly the starting time) will not be breached (Section 6.1),
followed by an algorithm for reusing disk images on physical nodes to reduce the number of
transfers (Section 6.2), and a strategy for avoiding redundant transfers (Section 6.3. Finally,
Section 6.4 extends the results from the previous chapter by showing how they are affected

by the inclusion of disk image transfers.
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6.1 Disk image transfer strategy

In Haizea, the transfer of disk images is scheduled separately from the VMs by the prepara-
tion scheduler (see Section 4.2.2). Given a lease, the preparation scheduler will tentatively
schedule the transfers to determine the earliest time at which the disk image required by the
lease can be transferred to each physical node. This time will be taken into account by the
VM scheduler. For best-effort leases, the VM scheduler will not need to consider starting
times before the images can be transferred. For other leases, the VM scheduler can reject
a lease if the time to transfer the images does not allow the lease terms to be met (e.g., an
AR lease can be rejected if the required disk images cannot be transferred before start[l]).
Once the VMs have been scheduled, the disk image transfers are scheduled.

I assume that a site has a machine that acts as an image repository containing the disk
images that can be deployed to the physical nodes, and that the repository and nodes are
connected by a switched network with a bandwidth of B bytes/second. Furthermore, when
a disk image must be transferred to several physical nodes, I assume that the transfer is

done using multicasting. Thus, the time to deploy a lease’s disk image is Size[so‘%ware[l]]

(irrespective of the number of physical nodes it is transferred to). Finally, I also assume that
the image repository only multicasts one image at a time, so the schedule will be a sequence
of disk image multicasts. The role of the preparation scheduler is, therefore, to determine
the sequence in which these multicasts will happen.

If the disk image transfer schedule is empty, the transfer for best-effort and immediate
leases is scheduled right away, and the transfer for AR and deadline leases is scheduled in
such a way that the transfer will complete at exactly start]l].

If the schedule already contains transfers, the scheduling of a new transfer depends on

the type of lease:
e For best-effort leases, the scheduler tries to find the earliest gap in the schedule where

94



the transfer can fit (the worst case is at the end of the sequence)

e For immediate leases, the scheduler will only accept scheduling transfers at the present

time. If that is not possible, the lease is rejected.

e For AR and deadline leases, the scheduler will attempt to schedule the transfer so
it will finish at exactly start[l]. If that is not possible, all the transfers for AR and
deadline leases are sorted by earliest deadline first, where the deadline for the image
transfer is the start time of the lease. However, since the start time of an AR lease
may occur long after the lease request, the transfers are pushed as close as possible to
the start of the lease, preventing disk images from unnecessarily consuming disk space

before the lease starts.

6.2 Reusing VM images

Scheduling disk image transfers separately can guarantee that lease terms are met, but the
overhead of deploying many potentially large disk images (in the order of gigabytes) can
delay or even prevent the start of leases. Reducing this overhead could allow the resource
provider to reduce the waiting time for best—effort leases (by reducing the time spent waiting
for image transfer to complete) and to accept AR and deadline leases with earlier start times.

To accomplish this goal I propose a disk image reuse mechanism, where each physical
node has some disk space set aside for an image pool of frequently used disk images; when a
lease is requested that requires one of these disk images, the preparation scheduler can use
the disk image already deployed on the physical node, instead of scheduling a new transfer.
The scheduler can use previously deployed images thanks to the reusability of most VM disk
images; starting from a master image with an operating system and a desired software stack
(e.g., a web server, a compute cluster node, etc.) multiple copies of the disk image can be

created requiring only minor changes in each disk image (this process is commonly known as
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contextualization). Additionally, even within the same physical node, this duplication can
be done efficiently by accessing the master image using copy—on—write (COW), instead of
creating an entire copy of the disk image. This can be done using LVM (Logical Volume
Management), which most virtual machine hypervisors currently support.

Algorithm 6 outlines how the image pool in a node is used when a disk image is needed
in that node. If a disk image required by a lease is not in that node’s image pool, the disk
image is first scheduled to be transferred to that node. Once the disk image is transferred,
or if it was already in the image pool, the images are reference counted based on the leases
that depend on them. An image’s reference count is decremented each time a lease that
depends on the image ends. If the image pool is full when an image is added, the scheduler

removes the least recently used image with reference count equal to zero.

Algorithm 6 Image reuse

Input: A disk image softwarell] is required in node n € P, for a VM v starting at tgart
and ending at to,q. Each node has an image pool imgpool[n]. Each entry of imgpool|n|
is a disk image with an expiration time texpire and a list of VMs vms that will be using
that image.

if imgpool|n| does not have a copy of software[l] then
Schedule transfer of software[l] to n
if disk image does not fit in image pool then
while there is not enough space do
Remove disk image with smallest ¢oxpire and reference count equal to zero
end while
end if
Add disk image to image pool, with tecpire = tenq { This guarantees that the image will
be available for the entire duration of the VM}
else
if tstart < texpire Of s0ftwarell] in imgpool[n| then
{The image is guaranteed to be in the image pool at time tgtart }
Add v to imgpool[img|.vms
lexpire < max(texpirea tend)
else
Transfer and add to pool as described above
end if
end if
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Figure 6.1: Avoiding redundant transfers

When scheduling leases, Haizea takes into account the state of the image pools in each
node, and attempts to minimize the number of image transfers by mapping, whenever pos-

sible, VMs to nodes where the required image is already a part of the image pool.

6.3 Avoiding redundant transfers

As an additional optimization to the image reuse algorithm, image transfers are also sched-

uled in such a way that redundant transfers are avoided. Haizea avoids two types of redun-

dant transfers:

Transfers for AR leases: Given a VM starting at time {gqrt and ending at time tq,q,
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requiring image I, assigned to node n. If there is an image transfer of I scheduled to

n, with deadline less than or equal to Zstart, then we reuse that transfer.

For example, assume we have two leases, [4 and [g. A transfer for image software[l 4]
has been scheduled to arrive on node n at time start[l 4]. At some point before start[l 4],
[ g is requested, requiring the same image as l 4, starting at start[lg] (where start|lg] >
start[l 4] + duration|l4]). Haizea determines that g should be assigned to node n.
Scheduling an additional transfer would be redundant, since there is already a transfer
for that same disk image scheduled for that node. So, the existing transfer is tagged
as carrying an image to be shared by {4 and [g. Once the transfer is completed, the

image’s taxpire i the pool will be start[lg] + duration[ig].

Transfers for best—effort leases: When scheduling the disk image transfer for a best-
effort lease [, the preparation scheduler will check if any scheduled transfers will be
multicasting image software[l], so that the required transfer for [ can simply “piggy-
back” on that existing transfer. For example, VWas shown in Figure 6.1 (top), assume
that the last image transfer scheduled carries image A to node n, set to arrive at time
tstart to be used by lease |4 and that the time to transfer image A is t4. Now, a new
best—effort lease [ is requested, also requiring image A. If we scheduled a separate
image transfer for [p, it would start at tgart + ¢4, despite the availability of resources
at tstart. By allowing the transfer to piggyback on the previously scheduled transfer,

g can start earlier, as show in Figure 6.1 (bottom)

In both cases, the scheduler will take into account existing transfers when mapping
requests to nodes. Assuming availability of resources in the nodes, it is preferable to schedule
a lease to a node with a reusable image transfer than scheduling it to a node where a new

image transfer would necessarily have to be scheduled.
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6.4 Experimental results

To evaluate the effect of adding disk image transfers and disk image reuse to lease scheduling,
I extend the results presented in Section 5.4 by removing the assumption that all disk images
are predeployed. The workloads, experiment setup, and metrics are the same as described
in Section 5.4, except leases will be assigned a disk image, all with a size of 4GB, according

to one of the following two distributions:

uniform: Each lease requests is assigned one of 40 disk images at random using a uniform

distribution.

skewed: Each lease requests is assigned one of 40 disk images at random using a Pareto

distribution, where eight disk images account for 80% of lease requests.
The workloads are simulated with the following three configurations:

VM-MULT With VM, multiple images: Same as VM-PREDEPLQY, but using the uni-
form distribution of disk images and removing the assumption that images are prede-
ployed (i.e., an image transfer has to be scheduled before the VM can start). Images

are not reused on the nodes.

VM-REUSE-UNIFORM and VM-REUSE-SKEWED  With VM, multiple images with
image reuse: Same as VM-MULT, but reusing images on the nodes. Using the uniform

and skewed distribution of images, respectively.

As in the previous chapter, the above configurations assume a 1000Mbps network connec-
tion. Three additional configurations, VM-MULT-BW100, VM-REUSE-UNIFORM-BW100
and VM-REUSE-SKEWED-BW100 are defined as above, but assuming a 100Mbps network
(these were only run with the [10%/3H/medium], [20%/2H/medium], and [30%/1H/medium]

workloads).
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Figure 6.2 shows the values of the all-best-effort metric with the 1000Mps configurations.
Similarly to Figure 5.2, when VMs are allowed to suspend and resume, the change in config-
uration has a negligible effect on this metric. Once again, looking at the waiting times and
slowdown of the individual leases provides more information on the impact of disk image
transfers. Table 6.1 shows the average waiting times and slowdowns for [10%/3H/medium],
[20%/2H /medium], and [30%/1H/medium], and Figures 6.3 through 6.11 show how waiting
time and slowdown vary according to requested duration and number of nodes.

Table 6.1: Experiment running times, average waiting times, and average slowdowns for
[10%/4H/medium], [20%/3H/medium], and [30%/2H/medium]

Average waiting time for best-effort leases,
in thousands of seconds
p— | 10% | 20% 30%

VM-PREDEPLOY 6.18 | 10.88 | 27.43
VM-MULT 6.29 | 10.69 | 27.48
VM-REUSE-UNIFORM 5.76 9.81 | 24.63
VM-REUSE-SKEWED 5.67 | 10.30 | 22.96
VM-MULT-BW100 12.10 | 23.44 | 49.16
VM-REUSE-UNIFORM-BW100 | 7.05 | 12.35| 30.74
VM-REUSE-SKEWED-BW100 5.13 9.98 | 24.96

Average bounded slowdown
p— | 10% | 20% 30%

VM-PREDEPLOY 24.66 | 47.27 | 121.33
VM-MULT 30.36 | 49.06 | 144.39
VM-REUSE-UNIFORM 26.67 | 44.46 | 134.65
VM-REUSE-SKEWED 26.64 | 48.90 | 115.44
VM-MULT-BW100 74.95 | 132.78 | 292.96
VM-REUSE-UNIFORM-BW100 | 36.01 | 62.05 | 157.42
VM-REUSE-SKEWED-BW100 | 23.07 | 43.83 | 118.64

Interestingly, although adding image transfers does have an impact on all metrics, it is
relatively small in the 1000Mbps configurations. Accordingly, the benefit of reusing images

turns out to be small. However, the impact of transferring images is larger if we assume a
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lower network bandwidth; the average waiting times and slowdowns are at least double those
when not transferring images. In this case, adding image reuse (VM-REUSE-UNIFORM-
BW100 and VM-REUSE-SKEWED-BW100) reduces wait times and slowdowns, although

performance is still not as good as when using predeployed images (VM-PREDEPLQY).

6.5 Conclusions

This chapter has removed the assumption that VM disk images are predeployed on physical
nodes, and has presented algorithms that allow a lease’s requested disk image to be trans-
ferred from a disk image repository in such a way that the lease’s terms are not broken.
Additionally, I have presented strategies for optimizing these disk image transfers by reusing
frequently used images and reducing the number of redundant transfers. The results show
that, when transferring 4GB images through a 1000Mbps network, the impact of adding im-
age transfers, regardless of whether disk images are reused, turns out to be relatively small.
However, when those same images are transferred through a 100Mbps network (with each
transfer taking five minutes, instead of thirty seconds; of course, a five minute transfer time
could also happen when transferring 40GB images through a 1000Mbps network), the impact
on performance is considerable, and disk image reuse proves to be an effective technique to
palliate, although not entirely eliminate, the overhead of transferring disk images.

Thus, by modelling and scheduling the preparation overhead involved in using virtual
machines, the work presented in this chapter is a step towards meeting G4-MODELVIRT.
However, I have explored only the case where disk images are transferred from a disk image
repository. Although this is a common use case, more work can be done to explore other
deployment strategies, such as the use of P2P mechanisms. Additionally, the results highlight
how the impact of image transfers does not depend solely on the network bandwidth or on the
image size, but on the additional preparation overhead per lease. Thus, it may be interesting

to explore reuse algorithms that, instead of using a simple least-recently-used policy, have
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the specific goal of reducing the amount of preparation overhead (e.g., by targeting images

that take five minutes to transfer instead of thirty seconds).
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CHAPTER 7
MODELLING AND SCHEDULING VIRTUAL MACHINE
SUSPENSION AND RESUMPTION TIMES

The previous chapter focused on modelling preparation overhead, or the actions that must
take place before the start of a lease, such as transferring VM disk images. However, at this
point we still have a simple model for the runtime overhead of suspending and resuming VMs,
based on the assumptions that only allowing a single VM can be deployed per physical node
and requiring that memory state images (resulting from suspensions) be saved to the local
filesystem of the physical node, without allowing for the option of using a global filesystem.
This assumption made VM scheduling simpler, but did not capture the interactions that
may arise when multiple VMs are scheduled on a same physical server.

In this chapter, I explore a more comprehensive model of VM suspension /resumption that
removes the assumptions made in Chapter 5. I present this model in Section 7.1, followed by
experimental results in Section 7.2 testing the degree of accuracy of this model on physical
hardware and augmenting the simulation results from Chapter 5 by exploring the long-term

effects of modifying certain variables in the model.

7.1 Modelling VM suspension/resumption times

In chapter 5, T assumed that the time to suspend and resume a VM was tg = m/hg and
tr = m/hy, respectively (where m is the amount, in megabytes, of memory the VM has and
hs and h, are the rates, in megabytes of VM memory per second, to suspend/resume the
VM). If we remove the assumption that each physical node can only run one VM at a time,
a lease may have more than one VM in a physical node, and these formulas become invalid
since we can no longer assume that all the VMs can be suspended in parallel. Although each

physical node can suspend VMs independently of what is happening on other nodes, the
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time to suspend will now depend on the number of VMs scheduled on each physical node.
Additionally, in preliminary experiments I observed that suspending or resuming multiple
VMs simultaneously on the same physical node results in longer and more unpredictable
suspension times due to contention for I/O. Thus, suspensions and resumptions must happen
sequentially, so each has exclusive access to the filesystem. More specifically, if n; is the
number of VMs mapped to physical node ¢, then suspending all the VMs in ¢ will require
n; - hﬂs Furthermore, if we remove the assumption that the memory state file resulting from
suspension is saved to a local filesystem, and allow them to be saved to a global filesystem,
the VMs in each physical node can no longer be suspended independently of others, and the
scheduler needs to account for contention when accessing the shared filesystem.

Thus, the time to suspend an entire lease becomes the following:

max(ng,ni,....np) -2 if f = local
ty = ( 0 P) hs / (7‘1)
N - hﬂs if f = global

t, is defined similarly.

Next, each suspend/resume command sent to physical nodes will incur a communication
overhead. In preliminary experiments I observed that this overhead cannot be assumed away,
since OpenNebula sends commands to physical nodes sequentially over TCP and, thus, even
if a command only takes 1-2 seconds to be processed, suspending 64 VMs would result
in a total overhead of 64-128 seconds. Thus, if e is the enactment overhead of sending a

suspend /resume command, the formula becomes:

max(ng,ny,...,np) - 2 if f = local
ts=N-e+ ( P) T, (7.2)
N - hms if f = global

Finally, this model also takes into account sh, the time to shutdown a VM. When sus-

pending/resuming a lease A to free resources for another lease B, the end of B is, in general,
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followed by the resumption of A. Previously, this shutdown time did not figure into the
calculation of the suspend/resume time, since resumption was assumed to begin as soon as
the ending lease started shutting down. However, I observed in preliminary experiments that
allowing B’s shutdown to overlap with the resumption of A would noticeably delay the first
resumption operations, resulting in a longer ¢, than expected. Although modelling h does

not affect the formulas for t5 and ¢,, it is taken into account by the scheduler.

7.2 Experimental results

To evaluate the accuracy and effects of the model described in this chapter, I carried out two
series of experiments on physical hardware and in simulation. The first set of experiments,
carried out on physical cluster running the Xen hypervisor!, focuses on determining what
factors can affect the accuracy of the model, and showing the effect of underestimating and
overestimating the values of hg and h, in practice. The other set of experiments, carried out
by simulating 30 days of lease requests, shows the long-term effects of different parameter

values in our model.

7.2.1 FExperiment setup

The testbed used for the first set of experiments is made up by five SunFire x4150 servers,
each with two Intel Xeon QuadCore L5335 2GHz processors (i.e., 8 cores per server, p = 8)
and 8GB of RAM (m = 8192). All the nodes are connected with a switched Gigabit Ethernet
network. One node is used as a head node that hosts a shared NFS filesystem for all the
nodes, while the remaining four nodes are used to run virtual machines (i.e., 32 cores available
to run VMs). The head node also runs OpenNebula 1.0 and Haizea, which manage all the

VMs during the experiments. The testbed is configured to operate both with Xen 3.2 or

1. http://www.xen.org/
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KVM, although the current results are based on Xen 3.2. All virtual machines used in
the experiments have 2GB disk images on the shared NFS filesystem?. When suspending
or resuming a virtual machine, OpenNebula can be instructed to save the file to the NFS
filesystem or to the local filesystem of the node where the virtual machine is running.

For the first set of experiments, Haizea needs values for hg and h,. I determined these
values by suspending and resuming a single virtual machine (with m = 1024) 25 times, and
measuring the times vy and v, to suspend and resume that single VM (these times were
extracted by parsing the Xen logs). When f = local, 75 = 15.4 (¢ = 0.58) and 7, = 14.12
(0 = 0.67). When f = global, 75 = 14.00 (¢ = 1.04) and vy = 11.60 (¢ = 0.50). I

conservatively estimate hg to be , and estimate h, similarly. Thus, for f = local, hg

m
Vs+2:0pg

is 61.86 MB/s and h, is 66.27 MB/s and, for f = global, hy is 63.67 MB/s and h, is 81.27
MB/s.

7.2.2  Ezxperiment #1: Suspending and resuming leases

In this experiment, two leases are scheduled on the cluster: a best-effort lease (BE_LEASE)
initially scheduled to use all available resources, which is preempted to free up resources
for an AR lease (AR_LEASE), which involves suspending all the VMs in BE_LEASE, and
then resuming them once AR_LEASE ends. The purpose of this experiment is to measure
how accurately lease suspension and resumption times are estimated, comparing the value
predicted by the model to the actual times measured on our testbed. Although these results
only highlight how these leases are scheduled on this particular testbed, they also provide
insights into what factors can have an impact on the accuracy of the model.

Both leases are requested at the start of the experiment and require all the physical

resources on the testbed. AR_LEASE has a duration of 5 minutes, and must start 15 minutes

2. Since one of the experiments involves running 32 VMs, each of which needs a separate disk image, 2GB
was the largest image size that we could accommodate in the shared NFS filesystem.
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Figure 7.1: (1) A best-effort lease is scheduled to use all available nodes. (2) An AR lease is
requested at the time when the best-effort lease is using the testbed resources, necessitating
preempting the best-effort lease. The best-effort lease is suspended before the AR and then
resumed once the AR ends.

into the experiment. BE_LEASE has a duration of 20 minutes, and since there are no other
leases at the start of the experiment, BE_LEASE can start immediately (but will be preempted
by AR_LEASE when it starts 15 minutes into the experiment; see Figure 7.1). In this

experiment [ explore the following three parameters:

e ¢ € {1,2,4,8}: The number of VMs per physical node. Since each lease uses all

available resources, then N, the total number of VMs, will be ¢ - 4.

e f € {local,global}: Whether the memory state files are saved to a local or global

filesystem.

e m € {512,768,1024}: Amount of memory per VM.

This experiment is performed in 22 configurations (one for each combination of param-

eters, except those with ¢ = 8 and m = 1024; since the Xen Dom( domain uses 512 MB of
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memory, VMs that consume a total of 8192MB cannot be started), and each configuration

is run five times. In each run, I measure the following metrics:

e ts: The observed time used to suspend BE_LEASE. 1 obtain this time by pinging each
VM in the lease every 2 seconds and recording whether it responds or not. T analyse

the sequence of responses to determine how much time the lease took to suspend.

e as: The accuracy of suspension, or how close the observed time to suspend was to
the predicted time. Thus, I define ag as E—z A value of 1.0 indicates perfect accuracy.
Values less than 1.0 indicate the time was overestimated, meaning that the VMs in the
lease finished suspending earlier than the time predicted by the model; overestimation
has the effect of leaving resources idle between the end of the suspension and the start
of the AR. Values larger than 1.0 indicate the time was underestimated, meaning the

lease took longer to suspend than estimated; underestimation has the effect of delaying

the start of the AR.

e 0. The observed time used to suspend a single VM in BE_LEASE. I parse the Xen log

files to determine this time.

e t,,ar. Uy: Defined similarly for resumption.

Figure 7.2 shows the average values for i, {r, as, and a;, in each experiment configuration.
The averages are taken from the five runs of each configuration. The standard deviation is
not shown in the graphs but is at most 13.9% of the average (with most values below
10%). These graphs show that, as expected, the time to suspend and resume increases with
the amount of memory requested, with the rate of increase being more pronounced when
f = global. The observed times show that the model tends to overestimate the time to
suspend, with six configurations having an accuracy larger that 1.0 (overestimation) and a

maximum value of 1.39 (i.e., the lease took 39% longer to suspend than estimated). On the
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other hand, resumption times are all underestimated, with all accuracies above 1.0 and a

maximum value of 1.64.
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The explanation for these values can be found by looking at how individual VMs behave
when suspending and resuming. Figures 7.3a and 7.3b show the distribution of values for
vg and vy, respectively. Values of ¥s show little dispersion, although the graph does not
show 19 outliers (out of 1388 measurements) with times ranging between 45 seconds and 370
seconds. By inspecting the Xen logs, I found that these outliers are caused by suspensions
that, for no apparent reason, Xen blocked on. In other words, Xen correctly receives and
processes the suspension command, including pausing the VM, but does not actually save
the memory state to disk until an arbitrary amount of time has passed (although it does not
block all other operations; e.g., other suspensions are processed correctly). I do not know
why this blocking occurs and have not found any mention of it in other work.

On the other hand, the values of v, tend to become more dispersed as ¢ increases.
The direct cause for this dispersion is resource contention between overlapping resumptions.
Although the scheduler plans the resumptions in such a way that they will not overlap (either
globally or locally, depending on f), sometimes a resumption might take slightly longer than
estimated, affecting the time of the next planned resumption, delaying both in the process.

I found that the underlying cause for these delays is the following:

1. The shutdown of AR_LEASE can overlap with the first resumptions. If AR_LEASE is
still in the process of shutting down when the resumptions start, there will be contention
for resources, delaying the first resumption. In this experiment, A is a fixed value (15)
regardless of the number of nodes in a lease, and this value turned out to be insufficient
when ¢ = 8 (even assuming that a single VM can be shutdown in 1 second, with a 1

second enactment overhead, that still adds up to 64 seconds).

2. Delays in enactment commands. Occasionally, enactment commands sent from Open-
Nebula (which uses SSH to send commands) would be delayed by the SSH server itself,

sometimes up to 10 seconds.
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3. The larger c is, the greater the likelihood of a cascade effect. On top of the previous two,
for larger values of ¢, a delayed resumption is more likely to affect other resumptions,
resulting in more dispersed values overall. This effect is especially apparent when
the shutdown overlaps with the first resumption, which could delay up to 31 other

resumptions thereafter (when ¢ = 8 and f = global).

The above factors can have an impact on the time to suspend and resume leases, and can
potentially delay other leases, such as AR leases that depend on other leases being preempted

before they can start.

7.2.3 Ezxperiment #2: Long-term effects

The previous experiment explored small self-contained cases on real hardware to validate
the accuracy of the model in predicting and scheduling the overhead of preempting a lease.
However, it reveals nothing about the long-term implications of using resource leases and how
changes in the model’s parameters can compound over time, particularly those that affect
suspension/resumption times. In this final set of experiments, I run Haizea in simulation
mode to process 30 days of lease requests.

The workloads I have used are a subset of those used in the previous two chapters. More
specifically, I use the BLUE1 workload with the following injected AR leases: [10%/3H/-
medium], [20%/2H/medium], [30%/1H/medium] (hereafter T10, T20, and T30).

These three workloads were chosen because they test two extremes of ARs. Given that
BLUEL has a utilization of 69.60%,, T10 introduces a relatively small number of ARs, with
more time between each reservation, whereas T30 introduces a large number of ARs. T20
is meant as an intermediate point between the two. I limit the discussion to these three
workloads because the effect of varying p, 4, and v was already explored in the previous
chapter, and the focus of this experiment is on the effect of other parameters.

As in the previous two chapters, the simulated cluster in the experiment is modelled after
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the SDSC Blue Horizon cluster. However, whereas I previously assumed a single processor per
physical node (p = 1) and that memory state files are saved to a local filesystem (f = local),
here p will equal 1, 2, 4, or 8 (and vary the number of nodes accordingly so the total number
of processors in the cluster is 144) and will also allow memory state files to be saved to a
global filesystem. Furthermore, I assume the values for hg and h, are the same as the ones in
the Xen testbed (indicated in Section 7.2.1). Finally, I assume that VM disk images do not
need to be deployed before the start of a lease (e.g., because they are on a global filesystem
or are predeployed to the local filesystems, similar to configuration VM-PREDEPLOY in
Chapter 5).

In sum, the parameters in this experiment are the following:

workload € {No ARs, T10, T20, T30}

C €{1,2,4,8} (number of cores per physical node)

f € {local, global }

m € {1024, 2048, 3072, 4096 }

In this experiment, I explore all 128 combinations of the above four parameters. In
each run, I record the all-best-effort, waiting time, and slowdown metrics, as defined in
Section 5.4.3. However, in this experiment, the all-best-effort metric is normalized differently.
Instead of normalizing with the time to process the workload without any ARs, here it is
normalized, for each workload, relative to the time required to process the workload under
the assumption that suspension and resumption can be done instantaneously (e.g., a value of
1.1 indicates that processing the entire workload took 10% longer than if we could suspend

and resume virtual machines instantaneously).
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Figure 7.4 shows the values of all-best-effort for each combination of the experiment
parameters. Interestingly enough, when using workloads T10 and T20, the effect of all pa-
rameters on the running time of the best-effort leases is relatively small, with all-best-effort
being at most 1.01 and 1.05 respectively. However, with workload T30, where preemptions
are more likely to happen, the effect is more noticeable, particularly when using a global
filesystem, with values of all-best-effort up to 1.14. In this case, the amount of memory per
VM has a more noticeable effect on performance, especially when suspensions and resump-
tions have to be globally exclusive. This effect is even more apparent when in the average

waiting times of the leases (Figure 7.4).
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Table 7.1: Effect of network bandwidth on all-best-effort
\ Workload \ 1000Mbps \ 100Mbps \ Difference \

No ARs 1.00 1.00 +0.39%
T10 1.00 1.00 +0.61%
T20 1.00 1.04 +3.81%
T30 1.04 1.14 +8.98%

Another parameter that may have an effect on performance is the network bandwidth,
which directly affects hg and h, when f = global. Fixing C' = 1 and m = 1024, 1 reran
the simulations assuming a 100Mbps Ethernet network. Since the physical testbed does not
have a 100Mbps network with which to determine the values of hg and h,, I assume that
they will be one tenth of what they are in the 1000Mbps network (i.e., hy = 6.367 MB/s
and h, is 8.127 MB/s). Table 7.1 summarizes the results of these simulations. The effect
on all-best-effort is still small with workload T10, but more noticeable when using workloads

T20 and T30.

7.3 Conclusions

This chapter has described a model for estimating the time required to suspend and resume
a lease implemented with virtual machines, removing the assumptions made in Chapter 5.
The experimental results show that, while this model only underestimates suspension times
in a few cases (which would delay the start of an AR lease), it also tends to overestimate
suspension times, resulting in idle times between the end of the suspension and the start of
the AR, and also shows that the model tends to underestimate resumption times. However,
these inaccurate estimations where due to specific factors overlapping of shutdowns and
resumptions, delays in enactment commands, and cascade effects , highlighting how an
incomplete model can have a significant impact not just on lease resumption times but also

on the rest of the schedule. On the other hand, the simulation experiments show that varying
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some of the parameters in the model has relatively small long-term effects on performance,
as measured by the all-best-effort metric and the average waiting times, except when using
workloads with a large number of ARs, which results in a larger number of lease preemptions.

Thus, although the model and results shown here get us closer to meeting goal G4-
MODELVIRT, more work is needed to refine this model and minimize the impact of the
factors mentioned above. In particular, at the time of this writing, work is already underway
to make Haizea more adaptive to unexpected events, such as suspensions/resumptions that
take longer than expected (e.g., because of a delay in an enactment command), to avoid
contention for resources when these operations take place. Additionally, this chapter has
explored only one model, along with fixed values for hg and h,; more work is needed to
explore different estimation models and variable values of hg and h,, and showing their
effect on the probability that ARs will be delayed (instead of presenting only the degree of

accuracy of the estimations).
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CHAPTER 8
PRICING STRATEGIES FOR LEASES

Up to this point, I have assumed an accept all policy, whereby a provider never declines a
lease request if there are enough resources to satisfy that request. Such a policy provides
no incentives for users not to use AR leases rather than best-effort leases, and also provides
a resource provider with no mechanism other than lease refusal to signal that a site is
overloaded. In this chapter, I explore price-based policies for lease admission, hypothesizing
that prices can be used both to provide an incentive for the use of best-effort leases (if ARs
cost more than best effort) and to signal (via higher prices) when a resource is overloaded.
First, Section 8.1 describes how leases are priced and the interaction between resource
consumers and providers in the presence of prices. Next, Section 8.2 presents several pricing

strategies, and Section 8.3 presents an experimental evaluation of these pricing strategies.

8.1 User model

As described in Chapter 3, leases can have a price price[l|. I assume that resource providers

Monetary unit )

set this price using a rate r (measured in node-sccond

price[l] = duration]l] - nodes|l] - r

Although a provider can change r, once a price for a lease is set, future changes to r will
not affect that price.

Assume there is a set of users U that request leases. A user u € U requesting a lease [
(user(l] = u) is willing to pay at a rate no higher than ry, the user’s acceptable rate. Thus,
a user is willing to pay no more than p,, ; = duration[l] - nodes[l] - v, for the lease.

The interaction between the user and the resource provider is the following:

1. The user u sends a request for a lease [ to the resource provider.
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2. Based on the current lease schedule. ..

(a) ...if the lease can be scheduled, the provider determines the price price[l] it will
charge for the lease (pricing strategies are discussed in the next section). This

price is sent to the user.

(b) ...if the lease is not feasible, the provider rejects the lease.
3. The user evaluates price[l], and. ..

(a) ...if price[l] > p,;, the user rejects the lease.

(b) ...if price[l] < p,,, the user accepts the lease.

8.2 Pricing strategies

A resource provider implements a pricing strategy to meet its individual goal(s). For example,
some providers may set rates with the goal of maximizing revenue, while others seek to
maximize resource utilization. Here I explore four pricing strategies. The first three are used

for comparison purposes:

e CONSTANT: The provider always uses the same rate r;.

e RANDOM: For each requested lease, the provider uses a random rate, chosen from a

uniform distribution (7,0, "maz)

e MAXIMUM: The provider has access to a magical oracle that enables it to divine the
exact value of r, for every user. For each requested lease, the provider charges the
maximum rate the requesting user is willing to pay. Thus, a lease is only rejected if
the provider is unable to schedule the lease (and never because the consumer rejects

the price).
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The fourth strategy, ADAPTIVE, initializes r to an initial value r;, but then adjusts the
value of r based on user behaviour with the goal of maximizing revenue. This strategy
entails not just maximizing the number of accepted leases, but also minimizing the amount
of revenue lost to undercharging (the difference between what the provider charged and
what the user was actually willing to pay). To do this, the ADAPTIVE strategy looks at the
sequence of leases accepted and rejected by each user u to estimate the user’s acceptable
rate, and then uses these estimated values to approximate the median value of r,. The

procedure used to update r after a lease is accepted or rejected is shown in Algorithm 7.

8.3 Experimental Evaluation

To evaluate the model and algorithms presented in this chapter, I have performed simulation
experiments with Haizea using the BLUE2 and DS workloads presented in Chapter 5. As
described in that chapter, these workloads are taken from the Parallel Workloads Archive,
and are annotated with a deadline and starting time. Additionally, each request is annotated
with a value for ry,.

Besides the deadline and starting time (parameters ¢ and w as defined in Section 5.5), I

vary the following parameters in each experiment run:

e The distribution of values of r,. Each user in the workload is assigned a sepa-
rate value between $0.10 and $10.00 (i.e., between 107! and 10'), according to four

distributions of values:

— CHEAP USERS: Pareto distribution skewed toward $0.10.
— CONSTANT USERS: Always $1.00 (i.e., 109)

UNIFORM USERS: Uniform distribution of values.

RicH USERS: Pareto distribution skewed toward $10.00.
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Algorithm 7 Update r after a lease [ has been accepted or rejected by a user. Parameters
UP_MULTIPLIER and DOWN_MULTIPLIER control the factors by which the estimated
rate for a user has to be updated when the user accepts or rejects a lease. Parameter N
controls how r is chosen from the estimated rates of the users (if N=0.5, the median value
is used).

u < user|l]
if we haven’t encountered u yet then
acceptpgn[u] < @ {Highest rate at which user accepted a lease}
reject,lu] < @ {Lowest rate at which user rejected a lease}
estimatelu| < @
done|u] < False
end if
if [ was rejected by user then
if reject,,[u] = @ then
reject]o,[u] < r
else
reject)o,[u] < min(r, reject;,,,[u])
end if
else if [ was accepted by user then
if reject;,,[u] # @ and accepty; p, [u] # @ then
donelu] + True
else if acceplp;qp[u] = @ then
acceptpignlul < r
else
acceptpignlu] < max(r, acceptpgplu])
end if
end if
for all u encountered so far such that done[u] = False do
if accepty;gp[u] = @ then {User has rejected every rate so far}
estimatelu| < reject;,,[u] - DOWN_MULTIPLIER
else if reject),,,[u] = @ then {User has accepted every rate so far}
estimatelu] < acceptp;qp[u] - UP_MULTIPLIER
else {Estimate the user’s rate as the midpoint between the highest recorded rate at
which the user accepted a lease and the lowest recorded rate at which the user rejected
a lease}

. reject u|+accepty;on U
estzmate[u] “ J low[ ] . p hzgh[ ]

end if
end for
r <— N-th percentile of all estimates

132



e Pricing strategy: CONSTANT, RANDOM, MAXIMUM, or ADAPTIVE (as described in

Section 8.2)

Random numbers are generated using the Python random number generator, with known
seeds so as to make the results reproducible. T simulated the two workloads under every
combination of these parameters, and fixing the DOWN_MULTIPLIER, UP_MULTIPLIER,
and N parameters in Algorithm 7 to 0.5, 1.5, and 0.5, respectively (i.e., prices are adapted
downwards by half, upwards by half, and we choose the median of the estimated rates). In

all cases, Haizea is allowed to preempt VMs with suspend/resume.

8.3.1 Metrics

In each experiment run I measure the following information:

e Revenue, the sum of the price of all the leases sold during the experiment. In each run,
this value is normalized relative to the total possible revenue, or revenue the provider
would get if it were somehow able to satisfy every single demand in the workload and

charge the maximum price that the user is willing to pay.

e Missed revenue (underpricing). The missed revenue for a lease is the difference between
the maximum price for a lease (assuming we had charged each user up to his acceptable
rate) and the actual price. The total missed revenue is the sum of the missed revenue

of all leases.

e Missed revenue (price rejected by user): The sum of the price of all the leases that were
rejected by the user, priced at the user’s acceptable rate (not at the rate at which they

were offered to the user).

o Missed revenue (lease could not be scheduled): The sum of the price of all the leases,
priced at the user’s acceptable rate, rejected by the provider.
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Figure 8.1: Effect of pricing strategy, distribution of 7y, and distribution of w on revenue

(BLUE2 workload).

8.3.2 Results

Figures 8.1 and 8.2 show the effect of the pricing strategies and the distribution of values of
ry, on the revenue metrics. To focus on the effect of pricing strategies, I limit the discussion to
the results with the least restrictive EARLY START distribution of 4. In both the BLUE2 and
DS workloads, the ADAPTIVE strategy performs better than CONSTANT and RANDOM when
dealing with UNIFORM USERS and RICH USERS, obtaining between 41.28% (T1GHT DEAD-
LINE, UNIFORM USERS) and 61.17% (LOOSE DEADLINE, R1CH USERS) of the total possible
revenue in the BLUE2 workloads (61.25% and 64.06%, respectively, of the revenue obtained
using the magical MAXIMUM strategy), and between 36.26% (TIGHT DEADLINE, UNIFORM

UsERS) and 65.74% (LOOSE DEADLINE, RicH USERS) in the DS workload (55.49% and
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70.92% of the MAxiIMUM revenue). With CONSTANT USERS, the ADAPTIVE strategy is
closer to MAXIMUM, since the lack of variability in the user rates allows the ADAPTIVE algo-
rithm to arrive at a rate that maximizes revenue for all requests, although some leases are
rejected by users at the start of the workload as the algorithm converges on this constant
rate (which includes raising the rate to see if users will accept it).

However, in the CHEAP USERS cases, more revenue is lost to underpricing than is actually
earned. Although this effect could be caused by the adaptive algorithm estimating a rate
lower than what most users are willing to pay, an inspection of what happens when the entire
workload is priced at a constant rate between 0.1 and 10.0 in 0.01 increments (Figures 8.3
and 8.4) reveals the actual cause. In the CHEAP USERS case or, in general, when most
user rates are skewed toward a small value, the rate at which we gain additional revenue
from leases we are accepting (by not underpricing them) is not enough to compensate the
increasing number of leases rejected by users. Thus, the equilibrium point is reached at a
smaller total revenue than the other cases. These graphs also highlight that aiming for the
median of the values of 7, may not necessarily be a good strategy, as shown in the RicH
USERS case, where higher revenue is possible by setting a rate smaller than that arrived at
by the adaptive algorithm.

Finally, Figure 8.5 shows the relation between revenue and utilization for each pricing
strategy. These results emphasize that high utilization does not necessarily imply high
revenue. If we ignore CONSTANT USERS, given that it is arguably unrealistic to expect
the entire user population to choose the same rate, the adaptive pricing strategy shows the
least variability in terms of utilization; regardless of user population, and values of ¢ and
w, utilization remains between 35.17% and 47.54% (in the BLUE2 workload) and between
17.25% and 33.83% (in the DS workload). Thus, in these workloads, the adaptive pricing
strategy is able to obtain higher revenue than the other strategies, while still leaving more

than half of the resources available for other uses.
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Figure 8.3: Effect on revenue when pricing the DS workload at a constant rate, in the best-
case scenario that every single lease can be satisfied (making the value of ¢ and w irrelevant).
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bution of r,. Each point within a category represents a run with PREEMPTION WITH
SUSPEND/RESUME and each of the possible combinations of values of ¢ and w.

8.4 Conclusions

This chapter has presented a model for pricing leases and an adaptive pricing strategy
by which resource providers determine lease prices via analysis of user behaviour. The
experimental evaluation shows that, in most cases, this strategy uses fewer resources to
obtain more revenue than other baseline pricing strategies. Thus, there may be value to
adaptive resource pricing.

However, in this current model, resource providers adapt to resource consumer behaviour,
but resource consumers do not respond to resource provider behaviour. Adaptation by
consumers to resource provider pricing strategies seems likely to occur in practice, and has
the potential to alter the results shown here. I hope to explore these issues in future work,
perhaps via direct experimentation with real users.

Another future step will be dealing with unsold capacity. As highlighted in this work,
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supporting QoS and prices can limit the number of leases a provider is willing to accept,
resulting in unused capacity. However, the experiments rely only on existing workloads and,
although the model includes the rate that users are willing to pay for their leases, it does
not model how other users might consume leftover capacity. A recent relevant development
in this line is Amazon KC2’s spot pricing, which permits unused capacity in EC2 to be
purchased at a lower rate but, accordingly, provides fewer QoS guarantees. However, unlike
Amazon, I am interested in exploring a model that can combine both high QoS leases, such
as ARs or leases with deadlines, and lower (but not too low) QoS leases that are used as
‘economic backfilling’ for unused capacity and which leverage VM suspend /resume/migrate
to survive preemptions (unlike EC2 spot instances, which are killed when the spot rate rises
above the consumer’s rate).

I will also explore additional pricing strategies, including some that consider the requested
QoS level when setting prices —by, for example, charging a higher rate for leases with tighter
deadlines. A possible strategy would be by applying a surcharge for preempting other leases.
Even if a preempted lease still meets its deadline, the preemption involves a period of time
spent suspending and resuming the lease and during which the physical resources are es-
sentially idling (as they are occupied with overhead tasks, not actual computation). Since
a tighter deadline increases the likelihood that other leases will have to be preempted to
accommodate it, this surcharge is an indirect way of charging for higher QoS.

Finally, T currently make the assumption that, once a lease is accepted, the agreement
to satisfy the terms of the lease cannot be broken. In other words, the scheduler will not
take any action that violates any lease terms. In the future, I will relax this assumption by
incorporating penalties into the model, allowing the scheduler to breach a lease in exchange
for paying a penalty to the user, enabling the provider to offer the user several possible
prices, each with a different penalty: higher penalties would be charged at a higher price but

would make it less likely that the provider would breach the lease terms.
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CHAPTER 9
CONCLUSIONS

At the outset of this dissertation, I presented four goals that a resource provisioning model

and architecture supporting multiple resource provisioning scenarios should meet:
G1-REsProv Provide an abstraction focused solely on resource provisioning
G2-HwSwAVAIL Provision hardware, software, and availability
G3-RECONCILE Reconcile requirements of different types of leases
G4-MoDELVIRT Model virtual resources accurately and schedule them efficiently

In this dissertation, I have presented work that meets, to some degree, all these goals.
Goal G1-RESPROV is met by the choice of a leasing abstraction that is not tied to a spe-
cific provisioning use case but, instead, provides a general-purpose abstraction for resource
provisioning. Goal G2-HWSWAVAIL is met by the choice of virtual machines as an imple-
mentation vehicle, since they can be used to provision software, hardware, and availability.
However, as pointed out in the Preface, this was the “easy” part. The crux of this disserta-
tion was to show that the use of virtual machines and leases can support multiple resource
provisioning scenarios simultaneously and efficiently.

As far as meeting goal G3-RECONCILE, I have shown that the use of leases and virtual
machines, while leveraging their suspend/resume capability, can overcome the utilization
problems typically encountered when combining best-effort leases and advance reservation
leases. The results presented in this dissertation show that, even when assuming that work-
loads will run 5% slower on VMs, a VM-based approach still results in consistently better
performance, in terms of the time required to run the entire workload, than using a resource
scheduler that does not support preemption. Compared to a scheduler that does support

preemption, the performance is only slightly worse, but allows resource providers to offer
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more flexible lease terms, particularly concerning the software environments they can pro-
vide to resource consumers, given that non-VM-based schedulers with preemption require
either making applications checkpointing-aware or using a checkpointing-capable OS.

However, although the use of VMs proves to be an effective vehicle for meeting goal
G3-RECONCILE, they introduce new overheads, such as transferring potentially large disk
images and, when using suspend/resume, saving and restoring a VMs entire memory state
to and from disk. This dissertation has shown that these overheads cannot be ignored,
and must be accurately modelled and scheduled (G4-MODELVIRT). Ignoring the overhead
of transferring disk images can result in longer waiting times than can be unacceptable
in the case of advance reservations. I have shown that treating this overhead as a separate
scheduling problem can guarantee that disk images arrive on time, and that disk image reuse
strategies can palliate, although not entirely eliminate, this overhead. On the other hand,
ignoring the overhead of suspension and resumption can delay the start of leases that depend
on those operations being completed by a certain time (e.g., when preempting resources for
an advance reservation). I have presented a model for predicting these suspension and
resumption times under a variety of conditions (multiple VMs per physical node, local and
global filesystems, etc.), allowing the scheduler to allocate enough time for these operations,
although my model still results in inaccurate estimations in certain cases.

Finally, meeting goal G3-RECONCILE also requires providing some form of lease admis-
sion control. Otherwise, users would have no incentive to request anything other than leases
with the highest QoS guarantees (such as advance reservation leases or deadline leases). The
results in Chapter 5 highlighted how the injection of AR lease requests only had a significant
impact on performance once the site became overutilized. Of course, in these experiments
the number of injected AR leases was controlled by me; in a real-world scenario, the re-
source provider will need some way of deciding what leases to reject and thus avoid the site

from becoming overutilized. I proposed a price-based approach, where the resource provider
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prices leases, which can then be accepted or rejected by users. So far, I have only explored
strategies for maximizing revenue, showing that, in most cases, an adaptive pricing strategy
uses fewer resources to obtain more revenue than other baseline pricing strategies.

So, have I met the four goals I set for this dissertation? There still remains much work
to be done, and I cannot claim to have addressed these goals definitively. However, this
dissertation has shown that a VM-based approach to supporting multiple types of leases has
merit, and I have provided substantial advances towards a resource provisioning solution

that meets these four goals.

9.1 Future work

As I continue the research presented in this dissertation, my future efforts will focus on three

lines of work, described below.

9.1.1 Improving the model

In my work so far, I have presented a resource model that can be used by a scheduler (such
as Haizea) to schedule certain operations more accurately, like disk image transfers and
suspend /resume operations. However, there are several ways in which this model can be
refined.

First of all, as highlighted in Chapter 7, sometimes the model will incorrectly predict the
time to perform an operation because of unforeseeable factors, like an enactment command
that takes an inordinately long time to be processed. One part of addressing this issue is to
make Haizea more tolerant to failures. As currently implemented, if an operation takes longer
than expected, Haizea just marches along merrily, as if nothing had happened. Instead, it
should detect the failure, and modify the schedule if necessary. As of this writing, work is
already underway to add this functionality to Haizea.

However, the model itself should account for the uncertainty in predicting the time to
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complete an operation. Even if Haizea can detect and react to operations that take longer
to complete, a delay in suspending a VM or in transferring a disk image can still result in
an AR being unable to start on time. This can be palliated by allocating some buffer time
to account for possible delays, with the tradeoff that, when operations complete on time,
resources will be left idling during that buffer time. Thus, I am interested in researching how
the probability of not breaching lease agreements varies with the aggressiveness of the model
(i.e., how much buffer time is allocated) and ways in which the number of lease breaches can
be minimized.

Next, my model currently assumes that software environments are only deployed as disk
images transferred from a single image repository. Although this is a reasonable assumption,
I am interested in exploring a more general model of “lease preparation”, including systems
that prepare disk images on-the-fly and distribution of disk images via P2P mechanisms
(such as BitTorrent) that do not depend on a single image repository. Additionally, the
disk transfer preparation model has been implemented and tested in simulation, but is not
currently integrated with OpenNebula (when Haizea runs in OpenNebula mode, images
must be predeployed on the physical nodes, or accessible via a global filesystem). 1 will
pursue this integration so that, similar to our experiences testing the suspension/resumption
mechanisms with OpenNebula, T can further refine the disk image transfer mode based on
observations on real hardware.

Finally, although I have run Haizea with OpenNebula on modest sites (of up to 64 cores),
[ am interested in researching if the model, and Haizea itself, can scale to larger sites (in
the order of thousands of nodes), and what challenges arise when supporting many different

types of leases at those scales.
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9.1.2  Further exploration of price-based policies

Towards the end of my dissertation work, I started to explore the use of price-based policies
to determine if a lease should be accepted or not. My first approach, however, is rather
limited, as it looks at this problem mostly from the perspective of how a resource provider
can maximize revenue. However, some resource providers may be interested in maximiz-
ing utilization, while generating enough revenue to amortize their resources. The adaptive
pricing policy presented in this dissertation determines the price based on the amount of re-
sources requested (at a rate determined based on users’ past behaviour), but not on whether
the lease has a tight deadline or would involve preempting other resources (factors that, as
shown in previous chapters, can impact utilization).

Thus, I intend to explore more pricing policies, particularly those where the price is
determined based on the level of quality of service requested by the user. I am particularly
interested in incorporating a negotiation phase to the lifecycle of leases, where a user requests
a lease, and the resource provider provides a price for that lease, but also provides alternative
prices with different levels of service. If leases can be breached, with a penalty paid to the
user when this happens, the resource provider can also provide different prices based on the
amount of the penalty: leases with a higher penalties would be charged at a higher price but
would make it less likely that the provider would breach the lease terms.

Whereas my future work on refining the resource model can result in specific improve-
ments on how leases are scheduled in Haizea, and the quality of service that users receive,
the work on price-based policies is more speculative. It will be hard to reach conclusive
results about the effectiveness of these policies until they can be tested with real users, but 1
believe that future results, even just in simulation, can provide valuable insights to resource

providers on how to price leases.
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9.1.3 Haizea “in the wild”

I also plan to continue work on Haizea and to push for its further adoption in production
environments. Although this involves more engineering work than research work, I believe
it will ultimately uncover interesting research questions that only arise once we leave the
comfortable shell of assumptions and controlled environments, and have to deal with real
users in the wild. Some of the issues I intend to address in Haizea have already been
mentioned above: making Haizea more tolerant to failures and integrating the disk image
transfer scheduling functionality with OpenNebula. Another issue affecting adoption in
production environments that [ am particularly interested in is the lack of leasing semantics
in remote cloud interfaces, such as EC2 and OCCI, which are geared towards immediate
provisioning of VMs. I am interested in exploring how these interfaces, but specially OCCI
as an open standard, could be extended to support more use cases, such as requesting
advance reservations on a cloud. This, in turn, may result in interesting problems related
to meta-scheduling and co-allocations across clouds, similar to those that have already been

explored in computational grids.
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APPENDIX A
REPRODUCIBILITY OF RESULTS

This appendix describes how to reproduce the simulation results presented in this disserta-
tion. First, Section A.1 describes how to set up the environment to run the experiments,
and describes some naming and directory structure conventions followed in this appendix.
Next, Section A.2 how to obtain the version of Haizea used in the experiments. Sections A.3
explains to generate the workloads used in the experiments. Section A.4 explains how to
generate the configuration files for the experiments. Section A.5 describes how to run the
experiments and generate the raw data. Section A.6 describes the format of the raw data
produced by the experiments, and provides a link to the raw data I obtained in our own run
of the experiments, and Section A.7 explains how to generate the dissertation’s graphs and
tables from the raw data. Finally, Section A.8 explains how to reproduce the non-simulated
results in the dissertation.

To reproduce the results and graphs by rerunning all the simulations, all the instructions
must be followed sequentially from beginning to end. To analyse and visualize my copy of

the data without having to rerun all the simulations, skip to Section A.6.

A.1 Prerequisites

The experiments require a Linux environment with the following software installed:

Python (at least 2.5)

mxDateTime 3.1.0 (http://www.egenix.com/products/python/mxBase/mxDateTime/),

part of the eGenix.com mx Base Distribution.

Mako Templates for Python 0.2.2 (http://www.makotemplates.org/).

R 2.8.x (http://www.r-project.org/).
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Although it is possible to run all the simulations on a single machine, I recommend
running them on a compute cluster; as a reference point, I used a 200-core Condor pool
to run the experiments, and the time to complete all the simulations in this dissertation
takes roughly five days. The instructions provided here are valid both for running in a single
node (which should still allow a small sample of results to be produced) or in a compute
cluster (in which case I recommend the following instructions be done on a shared filesystem:;
instructions on how to generate a Condor submission file for the simulations are provided
below).

First, you will need to download some supplementary scripts I used to run the ex-
periments. Create an empty directory, which we will refer to as $EXP_DIR. Download
http://people.cs.uchicago.edu/~borja/dissertation /dissertation-exp.tgz and un-tar it in that

directory. This will create the following directory structure:

e bin: Scripts.

e configs: Generated configuration files. Initially empty.

e data: Data files generated by experiments. Initially empty.

e data processed: Data files generated by experiments. Initially empty.
e etc: Master configuration files.

e graphs: Graphs. Initially empty.

e scripts: Generated scripts. Initially empty.

e traces: Workload files. Initially empty.

Unless otherwise indicated, all instructions in this document are relative to $EXP_DIR. I

will use the following notation to denote commands that must be run in the shell:
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mkdir dissertation

cd dissertation

export EXP_DIR=‘pwd‘

wget http://people.cs.uchicago.edu/"borja/dissertation/dissertation-exp.tgz

tar xvzf dissertation-exp.tgz

A.2 Haizea

I ran the simulations using an experimental branch of Haizea. To download the exact version

used to produce the results in this dissertation, run the following:

svn co https://phoenixforge.cs.uchicago.edu/svn/haizea/branches/1.1@839 haizea

And set the following environment variables

export PATH=$EXP_DIR/haizea/bin:$PATH

export PYTHONPATH=$EXP_DIR/haizea/src:$PYTHONPATH

A.3 Workloads

The workloads are based on job traces available on the Parallel Workloads Archive. You will

need to download the SDSC Blue and DataStar traces:

cd traces

wget http://www.cs.huji.ac.il/labs/parallel/workload/1_sdsc_blue/\
SDSC-BLUE-2000-3.1-cln.swf.gz

gunzip SDSC-BLUE-2000-3.1-cln.swf.gz

wget http://www.cs.huji.ac.il/labs/parallel/workload/1_sdsc_ds/SDSC-DS-2004-1.swf.gz
gunzip SDSC-DS-2004-1.swf.gz

cd ..

Next, we need to create the BLUE1 and BLUE2 workloads by taking two 30 day segments

of job submissions from the Blue trace and converting them to LWF files:

./bin/common/gen_trace_blue.sh 5:02:14:30 30 BLUE1

./bin/common/gen_trace_blue.sh 811:23:22:33 30 BLUE2
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This script is a wrapper that instructs the haizea-swf2lwf command to:

e Select only the jobs from queues 1, 2, 3, 4. These are the cluster’s main queues. Jobs

submitted to these queues have access to up to 144 nodes.

e Scale the number of processors by 8. Each Blue node has eight processors and, as
specified in the Parallel Workloads Archive, “The original log specifies the number of
nodes each job requested and received. In the conversion this was multiplied by 8 to
get the number of processors.” Thus, we divide the number of processors by 8 to obtain

the number of nodes.

We do the same for the DS trace:

./bin/common/gen_trace_ds.sh 49:16:42:21 30 DS

In this case, we instruct haizea-swf2lwf to do the following:

e Select only the jobs from queues 1, 2 (the cluster’s main queues). Jobs submitted to

these queues have access to up to 164 8-processor nodes.

e Scale the number of processors by 8. The nodes in the queues we used have eight
processors and, as specified in the Parallel Workloads Archive, “The original log spec-
ifies the number of nodes each job requested and received. In the conversion this was
multiplied by 8 or by 32 to get the number of processors, depending on which type of
nodes was used.” Since we are only using queues with 8-processor nodes, we divide

the number of processors by 8 to obtain the number of nodes.

The generated LWF files will be in the traces directory:

traces/BLUE1.1lwf
traces/BLUE2.1lwf

traces/DS.1lwf
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A.3.1 AR injections

The experiments in Chapters 5 and 6 inject an artificially-generated workload of advance
reservation leases into the BLUE1 workload. These are generated using the haizea-1lwf-

-generate command. We first create the configuration files needed by this command:

./bin/common/gen_inj_confs.py BLUE-INJ
30:00:00:00
05,10,15,20,25,30
60
1h:3600,2h:7200,3h:10800,4h: 14400
1800
small:1-24,medium:25-48,large:49-72

CPU:100,Memory:1024

P G

etc/blue.site

819018246

The meaning of each parameter is the following:

BLUE-INJ: Identifier.
e 30:00:00:00: Duration of the workload (30 days).
e 05,10,15,20,25,30: Values for p, as defined in Section 5.4.1.

e 60: When generating the lease arrival interval, a random value (uniformly chosen) of

seconds, between 0 and 60 (this parameter, is added to each interval.
e 1h:3600,2h:7200,3h:10800,4h:14400: The values of 9, as defined in Section 5.4.1.

e 1800: When generating the individual durations of the leases, a value is chosen in from

a range spanning ¢ 4 1800s.
e small:1-24 ,medium:25-48,1large:49-72: The values of v, as defined in Section 5.4.1

e CPU:100,Memory:1024: Resources requested by each lease.
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e etc/blue.site: XML file describing the resources in the Blue site.

e 819018246: Random seed.

The configuration files are generated in the configs directory:

configs/BLUE-INJ__UO5_Nlarge_Dih.conf
configs/BLUE-INJ__UO5_Nlarge_D2h.conf
configs/BLUE-INJ__UO5_Nlarge_D3h.conf
configs/BLUE-INJ__UO5_Nlarge_D4h.conf
configs/BLUE-INJ__UO5_Nmedium_D1h.conf
configs/BLUE-INJ__UO5_Nmedium_D2h.conf
configs/BLUE—INJ__UOS_Nmedium_DSh.conf
configs/BLUE-INJ__UO5_Nmedium_D4h.conf
configs/BLUE-INJ__UO5_Nsmall_Dih.conf

configs/BLUE-INJ__UO5_Nsmall_D2h.conf

Each file specifies how an injected AR workload must be generated. The file name can
be used to identify how each attribute is generated: Uis p, N is v and D is 4.

Next, we generate the injected AR workloads:

./bin/common/gen_injs.sh BLUE-INJ

The LWF files will be generated in the traces/inj/ directory:

traces/inj/BLUE-INJ__UO5_Nlarge_Dih.lwf
traces/inj/BLUE-INJ__UO5_Nlarge_D2h.1lwf
traces/inj/BLUE-INJ__UO05_Nlarge_D3h.lwf
traces/inj/BLUE-INJ__UO05_Nlarge_D4h.lwf
traces/inj/BLUE-INJ__UO5_Nmedium_Dih.lwf
traces/inj/BLUE-INJ__UO05_Nmedium_D2h.1lwf
traces/inj/BLUE-INJ__UO05_Nmedium_D3h.lwf
traces/inj/BLUE-INJ__UO5_Nmedium_D4h.lwf
traces/inj/BLUE-INJ__UO5_Nsmall_Dih.lwf

traces/inj/BLUE-INJ__UO05_Nsmall_D2h.lwf
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A.3.2  Image files

The experiments in Chapter 6 require that each lease specify a disk image to use. Instead
of adding this information directly to the LWF file, 1 keep this information in separate
annotation files which specify extra attributes that should be added to a lease (such as a

disk image to use. We first generate the configuration files:

./bin/2imagetransfer/gen_img_annot_confs.py 4GB-img \

40 \
4096 \
2776613659

4GB-img: Identifier.

40: Total number of disk images.

4096: Disk image size.

2776613659: Random seed.

Next, we generate the annotation files:

./bin/2imagetransfer/gen_imgs.sh 4GB-img 50000

This script is a wrapper over haizea-lwf-annotate. The 50000 parameter specifies the
number of entries each file should contain (this is an arbitrarily large number, as no workload

has more than 50,000 leases). The annotation files are generated in the traces directory:

traces/img/4GB-img__pareto.lwfa

traces/img/4GB-img__uniform.lwfa
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A.3.3 Deadline, start time, and price annotations

The experiments in Chapters 5 and 8 require that the BLUE2 and DS workloads specify the
earliest start time of jobs, deadlines, or user rates. Since the logs from the Parallel Workloads
Archive do not include this information, it is artificially generated. As with the disk images,
this information is specified in an annotation file. To generate these annotation files, we first
have to generate the configuration files that specify how the values in each file should be
generated (e.g., the distribution of values of the deadlines, etc.)

We do this using the following script:

./bin/4pricing/gen_price_annot_confs.py BLUE2-ANNOT \
absolute 86400 \
absolute 604800 \
10 \
276100674

The meaning of each parameter is the following:

BLUE2-ANNOT: Identifier.

absolute 86400: The start time of each lease is at most a day (86,400 seconds).

absolute 604800: The deadline of each lease is at most a week (604,800 seconds).

10: The highest user rate is $10.00

276100674: Random seed.

The configuration files Annotation files are generated in the configs diractory:
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configs/BLUE2-ANNOT__Sinvpareto_Dinvpareto_Mconstant.conf
configs/BLUE2-ANNOT__Sinvpareto_Dinvpareto_Minvpareto.conf
configs/BLUE2—ANNDT__Sinvpareto_Dinvpareto_Mpareto.conf
configs/BLUE2-ANNOT__Sinvpareto_Dinvpareto_Muniform.conf
configs/BLUE2-ANNOT__Sinvpareto_Dpareto_Mconstant .conf
configs/BLUE2-ANNOT__Sinvpareto_Dpareto_Minvpareto.conf
configs/BLUE2-ANNOT__Sinvpareto_Dpareto_Mpareto.conf
configs/BLUE2-ANNOT__Sinvpareto_Dpareto_Muniform.conf
configs/BLUE2-ANNOT__Sinvpareto_Duniform_Mconstant.conf

configs/BLUEQ—ANNDT__Sinvpareto_Duniform_Minvpareto.conf

Each file specifies how an annotation file must be generated. The file name can be used

to identify how each attribute is generated:
e Start time:
— Spareto: Pareto distribution, skewed towards 0. Referred to as "Early Start” in
Chapter 8.
— Suniform: Uniform distribution. Referred to as ”Uniform Start”.
— Sinvpareto: Pareto distribution, skewed towards the maximum (in this case, 24
hours). Referred to as ”"Late Start”.

o Deadline:

— Dpareto: Pareto distribution, skewed towards 0. Referred to as " Tight Deadline”.

— Duniform: Uniform distribution. Referred to as ”Uniform Deadline”.

— Dinvpareto: Pareto distribution, skewed towards the maximum (in this case, a
week). Referred to as ”Late Deadline”.

e User rate:

— Mconstant: Users are always willing to pay at most $1.00 per hour. Referred to

as " Constant Users”.
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— Mpareto: Pareto distribution, skewed towards $0.10. Referred to as ”Cheap

Users”.
— Muniform: Uniform distribution. Referred to as ”Uniform Users”.

— Minvpareto: Pareto distribution, skewed towards the maximum ($10.00 in this

case). Referred to as "Rich Users”.

Next, we generate the annotation files themselves:

./bin/4pricing/gen_annots.sh BLUE2 BLUE2-ANNOT

This script is a wrapper over the haizea-lwf-annotate command, and should take a

few minutes to run. The annotation files will be generated in the traces/annot/ directory:

traces/annot/BLUE2-ANNOT__Sinvpareto_Dinvpareto_Mconstant.lwfa
traces/annot/BLUE2-ANNOT__Sinvpareto_Dinvpareto_Minvpareto.lwfa
traces/annot/BLUE2-ANNOT__Sinvpareto_Dinvpareto_Mpareto.lwfa
traces/annot/BLUE2-ANNOT__Sinvpareto_Dinvpareto_Muniform.lwfa
traces/annot/BLUE2-ANNOT__Sinvpareto_Dpareto_Mconstant.lwfa
traces/annot/BLUE2-ANNOT__Sinvpareto_Dpareto_Minvpareto.lwfa
traces/annot/BLUE2-ANNOT__Sinvpareto_Dpareto_Mpareto.lwfa
traces/annot/BLUE2-ANNOT__Sinvpareto_Dpareto_Muniform.lwfa
traces/annot/BLUE2-ANNOT__Sinvpareto_Duniform_Mconstant.lwfa

traces/annot/BLUE2-ANNOT__Sinvpareto_Duniform_Minvpareto.lwfa

Finally, we do the same thing for the DS workload:

./bin/4pricing/gen_price_annot_confs.py DS-ANNOT \
absolute 86400 \
absolute 604800 \
10 \
2448108845

./bin/4pricing/gen_annots.sh DS DS-ANNQOT
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A.4 Experiment configuration files

Now that we have the workloads and the annotation files for the workload, we need to

generate the Haizea configuration files for each simulation:

A.4.1 Chapters 5 (no deadlines) and 6

We generate the configuration files for these chapters using the following command:

./bin/1scheduling/gen_configfiles.sh BLUE1 BLUE-INJ

This command generates a ”multiconfiguration” file from a configuration template file
in etc/template_1scheduling.conf (see Haizea documentation for more details on ”mul-
ticonfiguration” files) and then uses the haizea-generate-configs command to generate
the individual configuration files, which are generated in the configs/1scheduling and

configs/2disktransfer directories:

configs/1scheduling/BLUE1+BLUE-INJ.conf

configs/1scheduling/NOVM-NOSR_BLUE1+BLUE-INJ__UO5_Nlarge_D1ih.conf
configs/1scheduling/NOVM-NOSR_BLUE1+BLUE-INJ__UO5_Nlarge_D2h.conf
configs/1scheduling/NOVM-NOSR_BLUE1+BLUE-INJ__UO5_Nlarge_D3h.conf

configs/1scheduling/NOVM-NOSR_BLUE1+BLUE-INJ__UO5_Nlarge_D4h.conf

configs/1scheduling/VM-PREDEPLOY_BLUE1+BLUE-INJ__U30_Nsmall_Dih.conf
configs/1scheduling/VM-PREDEPLOY_BLUE1+BLUE-INJ__U30_Nsmall_D2h.conf
configs/1scheduling/VM-PREDEPLOY_BLUE1+BLUE-INJ__U30_Nsmall_D3h.conf
configs/1scheduling/VM-PREDEPLOY_BLUE1+BLUE-INJ__U30_Nsmall_D4h.conf

configs/1scheduling/VM-PREDEPLOY_BLUE1.conf

A.4.2 Chapter 6

We generate the configuration files:
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./bin/2imagetransfer/gen_configfiles.sh BLUE1 BLUE-INJ 4GB-img

./bin/2imagetransfer/gen_configfiles-bw100.sh BLUE1 \
"BLUE-INJ__U10_Nmedium_D4h.lwf \
BLUE-INJ__U20_Nmedium_D3h.lwf \
BLUE-INJ__U30_Nmedium_D2h.lwf" \

4GB-img

Which will be placed in configs/2imagetransfer. The files are created based on tem-
plates etc/template_2imagetransfer noreuse.conf and etc/template 2imagetransfer -

reuse.conf.

configs/2imagetransfer/BLUE1+4GB-img_noreuse-bw100.conf
configs/2imagetransfer/BLUE1+4GB-img_reuse-bw100. conf
configs/2imagetransfer/BLUE1+BLUE-INJ+4GB-img_noreuse.conf
configs/2imagetransfer/BLUE1+BLUE-INJ+4GB-img_reuse.conf

configs/2imagetransfer/VM-MULT_BLUE1+4GB-img__uniform.conf

configs/2imagetransfer/VM-REUSE-BW100_BLUE1+BLUE-INJ__U10_Nmedium_D4h+4GB-img__pareto.conf
configs/2imagetransfer/VM-REUSE-BW100_BLUE1+BLUE-INJ__U10_Nmedium_D4h+4GB-img__uniform.conf
configs/2imagetransfer/VM-REUSE-BW100_BLUE1+BLUE-INJ__U20_Nmedium_D3h+4GB-img__pareto.conf
configs/2imagetransfer/VM-REUSE-BW100_BLUE1+BLUE-INJ__U20_Nmedium_D3h+4GB-img__uniform.conf
configs/2imagetransfer/VM-REUSE-BW100_BLUE1+BLUE-INJ__U30_Nmedium_D2h+4GB-img__pareto.conf

configs/2imagetransfer/VM-REUSE-BW100_BLUE1+BLUE-INJ__U30_Nmedium_D2h+4GB-img__uniform.conf

There is one configuration file for each combination of workload and configuration profile.
The multiconfiguration file specifies the NOVM-NOSR, VM-NOSR, VM-PREDEPLQY, VM-
MULT, and VM-REUSE, as defined in Sections 5.4.3 and 6.4. The VM-REUSE-UNIFORM,
VM-REUSE-SKEWED, VM-MULT-BW100, VM-REUSE-UNIFORM-BW100, and VM-REUSE-
-SKEWED-BW100 profiles are derived from certain configuration options (e.g., VM-MULT—
BW100 is the VM-MULT profile with the bandwidth option in the configuration file set to
100).

A.4.83 Chapter 7

We generate the configuration files:
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./bin/3suspendresume/gen_configfiles.sh BLUE1 \
"BLUE-INJ__U10_Nmedium_D4h.lwf \
BLUE-INJ__U20_Nmedium_D3h.lwf \

BLUE-INJ__U30_Nmedium_D2h.lwf"

Which will be placed in configs/3suspendresume. The files are created based on tem-

plate etc/template 3suspendresume.conf.

configs/3suspendresume/baseline BLUE1+BLUE-INJ__U10_Nmedium_D4h.conf
configs/3suspendresume/baseline BLUE1+BLUE-INJ__U20_Nmedium_D3h.conf
configs/3suspendresume/baseline_BLUE1+BLUE-INJ__U30_Nmedium_D2h.conf
configs/3suspendresume/baseline_BLUE1.conf

configs/3suspendresume/BLUEL. conf

configs/3suspendresume/mem4096_pernode8_exclglobal_sh10_bw1000_BLUE1.conf

configs/3suspendresume/mem4096_pernode8_excllocal_sh10_bw1000_BLUE1+BLUE-INJ__U10_Nmedium_D4h.conf
configs/3suspendresume/mem4096_pernode8_excllocal_sh10_bwi000_BLUE1+BLUE-INJ__U20_Nmedium_D3h.conf
configs/3suspendresume/mem4096_pernode8_excllocal_sh10_bwi000_BLUE1+BLUE-INJ__U30_Nmedium_D2h.conf

configs/3suspendresume/mem4096_pernode8_excllocal_sh10_bw1000_BLUEL.conf

There is one configuration file for each combination of workload and configuration profile.

The multiconfiguration file specifies the following profiles:

e baseline: The baseline used in the experiments, assuming that suspend/resume is

instantaneous.

e memm_pernodeC' _exclf shh bwb: Every combination of parameters m, C, and f as
defined in Section 7.2.3. For every combination, a shutdown time of h = 10 and a
bandwidth of b = 1000 (Mbps) is used. A few profiles were also selected to explore

other values of h and b.

A.4.4 Chapters 5 (with deadlines) and 8

We generate the configuration files:
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./bin/4pricing/gen_conf.sh BLUE2 BLUE2-ANNOT

./bin/4pricing/gen_conf.sh DS DS-ANNOT

Which will be placed in configs/4pricing. The files are created based on template

etc/template 4pricing.conf.

configs/adaptive_blue_30days+blue-annot__Sinvpareto_Dinvpareto_Mconstant.conf
configs/adaptive_blue_30days+blue—annot__Sinvpareto_Dinvpareto_Minvpareto.conf
configs/adaptive_blue_30days+blue-annot__Sinvpareto_Dinvpareto_Mpareto.conf
configs/adaptive_blue_30days+blue-annot__Sinvpareto_Dinvpareto_Muniform.conf

configs/adaptive_blue_30days+blue—annot__Sinvpareto_Dpareto_Mconstant.conf

configs/maximum_blue_30days+blue-annot__Sinvpareto_Dinvpareto_Mconstant.conf
configs/maximum_blue_30days+blue-annot__Sinvpareto_Dinvpareto_Minvpareto.conf
configs/maximum_blue_30days+blue-annot__Sinvpareto_Dinvpareto_Mpareto.conf
configs/maximum_blue_30days+blue-annot__Sinvpareto_Dinvpareto_Muniform.conf

configs/maximum_blue_30days+blue-annot__Sinvpareto_Dpareto_Mconstant.conf

There is one configuration file for each combination of workload, annotation file, and

configuration profile. The master configuration file specifies the following profiles:
e maximum-NOP: Maximum pricing strategy (as described in the paper), no preemption
e maximum-NOSR: Maximum pricing strategy, preemption without suspend/resume
e maximum: Maximum pricing strategy, preemption with suspend /resume

e constant-NOSR: Constant pricing strategy (as described in the paper), preemption

without suspend/resume
e constant: Constant pricing strategy, preemption with suspend/resume

e random-NOSR: Random pricing strategy (as described in the paper), preemption with-

out suspend /resume

e random: Random pricing strategy, preemption with suspend/resume
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e adaptive-NOSR: Adaptive pricing strategy (as described in the paper), preemption

without suspend/resume

e adaptive: Adaptive pricing strategy, preemption with suspend/resume

A.5 Running the experiments

Next, we generate the scripts that will run Haizea with these configuration files:

./bin/common/gen_scripts.sh configs/ischeduling/BLUE1+BLUE-INJ.conf \
configs/1scheduling/ \

1scheduling_ BLUE1

./bin/common/gen_scripts.sh configs/2imagetransfer/BLUE1+BLUE-INJ+4GB-img_noreuse.conf \
configs/2imagetransfer \
2imagetransfer_BLUEl-noreuse

./bin/common/gen_scripts.sh configs/2imagetransfer/BLUE1+BLUE-INJ+4GB-img_reuse.conf \
configs/2imagetransfer \
2imagetransfer_BLUEl-reuse

./bin/common/gen_scripts.sh configs/2imagetransfer/BLUE1+4GB-img_noreuse-bw100.conf \
configs/2imagetransfer \
2imagetransfer_BLUEl-noreuse-bw100

./bin/common/gen_scripts.sh configs/2imagetransfer/BLUE1+4GB-img_reuse-bwl00.conf \
configs/2imagetransfer \

2imagetransfer_BLUEl-reuse-bw100

./bin/common/gen_scripts.sh configs/3suspendresume/BLUE1L.conf \
configs/3suspendresume \

3suspendresume_BLUE1

./bin/common/gen_scripts.sh configs/4pricing/BLUE2+BLUE2-ANNOT.conf \
configs/4pricing \
4pricing_BLUE2
./bin/common/gen_scripts.sh configs/4pricing/DS+DS—ANNOT.conf \
configs/4pricing \

4pricing_DS

This will generate shell scripts that runs all the simulations sequentially:
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scripts/run_lischeduling BLUE1.sh
scripts/run_2imagetransfer_BLUEl-noreuse.sh
scripts/run_2imagetransfer_BLUEl—reuse.sh
scripts/run_2imagetransfer BLUEl-noreuse-bw100.sh
scripts/run_2imagetransfer_ BLUEl-reuse-bw100.sh
scripts/run_3suspendresume_BLUE1.sh
scripts/run_4pricing_BLUE2.sh

scripts/run_4pricing_DS.sh

Condor scripts are also generated:

scripts/condor_submit_1scheduling_BLUE1
scripts/condor_submit_2imagetransfer_ BLUEl-noreuse
scripts/condor_submit_2imagetransfer_BLUEl—reuse
scripts/condor_submit_2imagetransfer_BLUEl—noreuse—bwlOO
scripts/condor_submit_2imagetransfer_ BLUE1l-reuse-bw100
scripts/condor_submit_3suspendresume_BLUE1
scripts/condor_submit_4pricing_BLUE2

scripts/condor_submit_4pricing_DS

Note that the Condor script is generated from a very basic template and will probably
require some tweaks to work on your own Condor pool.
Each run of Haizea will generate a data file with information collected during the simu-

lation. These files are placed in three directories:
e data/lscheduling+2imagetransfer/: Should contain XXX files.
e data/3suspendresume/: Should contain XXX files.
e data/4pricing/: Should contain 648 files.

These files contain Python-pickled objects. For ease of processing, we convert them into

CSV files:

./bin/1scheduling/gen_csv.sh data/lscheduling+2imagetransfer/ BLUE1 BLUE-INJ
./bin/3suspendresume/gen_csv.sh data/3suspendresume/ BLUE1 BLUE-INJ
./bin/4pricing/gen_csv.sh data/4pricing/ BLUE2 BLUE2-ANNOT

./bin/4pricing/gen_csv.sh data/4pricing/ DS DS-ANNOT
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This script is a wrapper over the haizea-convert-data command. The CSV files will
be generated in the data processed directory. The content of this files is described in
Section A.6 below.

Finally, we need to generate the data used for Figures 8.3 and 8.4 (showing the types of
revenue obtained when a constant rate is used, assuming no leases are rejected). We use a
script that invokes Haizea’s pricing policies over an entire workload, but without doing a full

simulation (since we assume that no leases are rejected):

./bin/4pricing/rate_sweep.py traces/BLUE2.1lwf \
traces/annot/BLUE2-ANNOT__Spareto_Dinvpareto_Mpareto.lwfa \
data_processed/4pricing/blue_ratesweep_cheapusers.csv

./bin/4pricing/rate_sweep.py traces/BLUE2.1lwf \
traces/annot/BLUE2-ANNOT__Spareto_Dinvpareto_Muniform.lwfa \
data_processed/4pricing/blue_ratesweep_uniformusers.csv

./bin/4pricing/rate_sweep.py traces/BLUE2.1lwf \
traces/annot/BLUE2-ANNOT__Spareto_Dinvpareto_Minvpareto.lwfa \
data_processed/4pricing/blue_ratesweep_richusers.csv

./bin/4pricing/rate_sweep.py traces/DS.lwf \
traces/annot/DS-ANNOT__Spareto_Dinvpareto_Mpareto.lwfa \
data_processed/4pricing/ds_ratesweep_cheapusers.csv

./bin/4pricing/rate_sweep.py traces/DS.lwf \
traces/annot/DS-ANNOT__Spareto_Dinvpareto_Muniform.lwfa \
data_processed/4pricing/ds_ratesweep_uniformusers.csv

./bin/4pricing/rate_sweep.py traces/DS.lwf \
traces/annot/DS-ANNOT__Spareto_Dinvpareto_Minvpareto.lwfa \

data_processed/4pricing/ds_ratesweep_richusers.csv

This script will also print out the median user rate and the rate the adaptive policy

estimated. Make a note of these values, as they are used when generating the graphs.

A.6 Raw data

After following the above steps, you will have all the raw data used to produce the results

in this dissertation. If you cannot run the simulations yourself, you can also download the
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raw data obtained in my own run of the experiments:

wget http://people.cs.uchicago.edu/ borja/dissertation/raw_data_dissertation.tar

tar xvf raw_data_dissertation.tar

After running the simulations or downloading the raw data you should have the following

files in the data_processed directory:

data_processed/1scheduling+2imagetransfer/BLUE1+BLUE-INJ_perlease.csv.gz

data_processed/1scheduling+2imagetransfer/BLUE1+BLUE-INJ_perrun.csv

data_processed/3suspendresume/BLUE1+BLUE-INJ_perlease.csv.gz

data_processed/3suspendresume/BLUE1+BLUE-INJ_perrun.csv

data_processed/4pricing/BLUE2+BLUE2-ANNOT_perlease.csv.gz
data_processed/4pricing/BLUE2+BLUE2-ANNOT _perrun.csv
data_processed/4pricing/BLUE2+BLUE2-ANNOT utilization.csv.gz
data_processed/4pricing/DS+DS-ANNOT_perlease.csv.gz
data_processed/4pricing/DS+DS-ANNOT_perrun.csv
data_processed/4pricing/DS+DS-ANNOT_utilization.csv.gz
data_processed/4pricing/blue_ratesweep_cheapusers.csv
data_processed/4pricing/blue_ratesweep_richusers.csv

data_processed/4pricing/blue_ratesweep_uniformusers.csv

Before reading the files, or using them to generate graphs, some of these files need to be

gunzipped:

gunzip data_processed/lscheduling+2imagetransfer/BLUE1+BLUE-INJ_perlease.csv.gz
gunzip data_processed/3suspendresume/BLUE1+BLUE-INJ_perlease.csv.gz

gunzip data_processed/4pricing/BLUE2+BLUE2-ANNOT_perlease.csv.gz

gunzip data_processed/4pricing/BLUE2+BLUE2-ANNOT utilization.csv.gz

gunzip data_processed/4pricing/DS+DS—-ANNOT_perlease.csv.gz

gunzip data_processed/4pricing/DS+DS—-ANNOT_utilization.csv.gz

All the files are CSV files. The perlease files contains one row per lease per experiment
run. The perrun files contain one row per experiment run. The utilization files contain
utilization information for all the experiment runs (every time the utilization changes, an

entry is added). The fields in each file are described next.
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A.6.1 Common fields

The following fields are common to all the files:

profile: Configuration profile (NOVM-NOSR, maximum-NOP, etc.)

tracefile: Path of the workload file used.

annotationfile: Path of the annotation file used.

injectfile: Path of the injections file used.

A.6.2 1scheduling+2imagetransfer fields

The following fields appear only in files in the data_processed/1scheduling+2imagetransfer/

directory:

e utilization: Parameter p, as defined in Section 5.4.1.

e numnodes: Parameter v

e duration: Parameter o

e img distr: Distribution of disk images: uniform or pareto.

e bandwidth: Network bandwidth assumed in simulated resources

A.6.3 3suspendresume fields

The utilization, numnodes, duration fields, defined above, and the following fields appear

only in files in the data_processed/3suspendresume/ directory:

e mem: Parameter m, as defined in Section 7.2.3.

e pernode: Parameter C.
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e excl: Parameter f.

e shutdown: Parameter h.

The utilization, numnodes, duration fields, defined earlier, are also used in the files

found in the

A.6.4 4pricing fields

The following fields appear only in files in the data_processed/4pricing/ directory:

e tau: Distribution of deadlines (pareto, invpareto, uniform; as described when the

annotation files where generated)

e delta: Distribution of start times (pareto, invpareto, uniform; as described when the

annotation files where generated)

e mu: Distribution of user rates (constant, pareto, invpareto, uniform; as described when

the annotation files where generated)

A.6.5 perrun fields

The following fields appear only in perrun files. Note that some of these fields my be missing
in some files (e.g., the Revenue field only appears in files in the data_processed/4pricing/

directory).

e Total requested leases: Number of leases requested in this experiment.
e Total accepted AR: Number of AR leases accepted (and completed successfully).
e Total best-effort completed: Number of best-effort leases completed successfully.

e Total completed leases: Number of leases completed successfully.
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e Total rejected AR: Number of leases completed successfully.

e Total rejected leases (by user): Number of leases rejected because the user re-

jected the price offered by the provider.

e Total rejected leases: Number of leases rejected because they could not be sched-

uled.
e all-best-effort: Time at which the last best-effort lease was completed.

e Revenue: As defined in the paper. Note that this value, and all revenue values, are

not normalized in this file relative to the total possible revenue (as described in the

paper).
e Surcharge: This field can be ignored (we are not currently using surcharges in our
experiments).

e Missed revenue (undercharging): As defined in paper.

e Missed revenue (reject): As defined in paper. Note that the paper refers to this

metric as "Missed revenue (lease could not be scheduled)”.

e Missed revenue (reject by user): As defined in paper. Note that the paper refers

to this metric as "Missed revenue (price rejected by user)”.

e Missed revenue (total): This field can be ignored, as we are not using ”injection
files” in these experiments (see Haizea documentation for more details on what these

are)

A.6.6 perlease fields

The following fields appear only in perlease files. Note that some of these fields my be

missing in some files.
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lease_id: Lease ID. Same as the Job Number in the original SWF file from the Parallel

Workloads Archive.

Waiting time: In best effort leases, the time between the submission time and the

time the lease started.

Slowdown: In best-effort leases, bounded slowdown of the lease (time the lease took to
run from the requested start time to the actual end time, divided by the running time
of the lease). Any lease with a duration less than 10 seconds is counted as having a
duration of 10 seconds (for the purpose of computing the slowdown; this is how the
"bounded” slowdown metric differs from the regular slowdown metric). This field will

be empty if the lease was rejected.

State: Final state of the lease. Can be "Done”, ”Rejected”, or ”Rejected by user”.
Number of nodes: Number of nodes requested.

Requested duration: Requested duration in seconds.

Actual duration: Actual duration in seconds. This field will be empty if the lease

was rejected.
Start: Start delay (parameter 0 as defined in Section 5.5)

Deadline: Maximum waiting time, which is used to determine the deadline (parameter

w)

Price: Price charged for the lease. Empty if no pricing was done or if the lease was

rejected.
simul_start_delta: Same as ”"Deadline”.

simul userrate: User rate.

168



e simul deadline tau: Deadline slack, as defined in the paper.
e rate: Rate that was used by the provider to compute the price of the lease.
e rejected price: If the lease was rejected, this was the price the user rejected.

e SWF_group: For lease requests that were converted from an SWF file, this is field 13 in
the original SWF file (”Group ID”)

e SWF waittime: Field 3 in the original SWF file (”Wait Time”, the waiting time in the

original workload)

e SWF_runtime: Field 4 in the original SWF file ("Run Time”, the same as ”Actual
Duration”, except this field always has a value, whereas ” Actual Duration” will be

empty if the lease was rejected)

e SWF_execnumber: Field 14 in the original SWF file (”Executable (Application) Num-

ber”)
e SWF_avgcputime: Field 6 in the original SWF file (" Average CPU Time Used”)

e SWF_queue: Field 15 in the original SWF file (”Queue Number”)

A.6.7 wutilization fields

The following fields appear only in utilization files.

e time: Time at which this utilization measurement was taken.
e value: Utilization, as defined in the paper.

e average: Time-weighted average utilization from time 0 up to this time.
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A.6.8 ratesweep fields

These files don’t have any of the common fields listed earlier, just the following fields:

e rate: Constant rate used to price the leases.

e revenue: Revenue, as defined in the paper. Note that this value is normalized relative

to the total possible revenue.
e underpricing: Missed revenue (underpricing), as defined in the paper.

e rejected: Missed revenue (price rejected by user), as defined in the paper.

A.7 Graphs and tables

I used R to generate the graphs in the paper. To speed up the R scripts, we first convert
the CSV files to R data files (this assumes the files have been ungzipped, as described in the

previous section):
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./bin/csv2rda.R data_processed/1scheduling+2imagetransfer/BLUE1+BLUE-INJ perlease.csv \
data_processed/1scheduling+2imagetransfer/BLUE1+BLUE-INJ_perlease.rda
./bin/csv2rda.R data_processed/1scheduling+2imagetransfer/BLUE1+BLUE-INJ_perrun.csv \

data_processed/1scheduling+2imagetransfer/BLUE1+BLUE-INJ_perrun.rda

./bin/csv2rda.R data_processed/3suspendresume/BLUE1+BLUE-INJ_perlease.csv \
data_processed/3suspendresume/BLUE1+BLUE-INJ_perlease.rda
./bin/csv2rda.R data_processed/3suspendresume/BLUE1+BLUE-INJ_perrun.csv \

data_processed/3suspendresume/BLUE1+BLUE-INJ_perrun.rda

./bin/csv2rda.R data_processed/4pricing/BLUE2+BLUE2-ANNOT_perlease.csv \
data_processed/4pricing/BLUE2+BLUE2-ANNOT_perlease.rda
./bin/csv2rda.R data_processed/4pricing/BLUE2+BLUE2-ANNOT_perrun.csv \
data_processed/4pricing/BLUE2+BLUE2-ANNOT_perrun.rda
./bin/csv2rda.R data_processed/4pricing/BLUE2+BLUE2-ANNOT_utilization.csv \
data_processed/4pricing/BLUE2+BLUE2-ANNOT utilization.rda
./bin/csv2rda.R data_processed/4pricing/DS+DS-ANNOT_perlease.csv \
data_processed/4pricing/DS+DS-ANNOT_perlease.rda
./bin/csv2rda.R data_processed/4pricing/DS+DS-ANNOT_perrun.csv \
data_processed/4pricing/DS+DS-ANNOT_perrun.rda
./bin/csv2rda.R data_processed/4pricing/DS+DS-ANNOT_utilization.csv \

data_processed/4pricing/DS+DS-ANNOT_utilization.rda

Since the utilization data files are rather big, and we’re mostly interested in what the

final utilization is, we extract that information and store it in a separate (smaller) file:

./bin/common/compute_util.R data_processed/4pricing/BLUE2+BLUE2-ANNOT_utilization.rda \
data_processed/4pricing/blue_util.rda 129600 2591876 blue
./bin/common/compute_util.R data_processed/4pricing/DS+DS—-ANNOT utilization.rda \

data_processed/4pricing/ds_util.rda 129600 2590365 ds

A.7.1 Chapter 5

To generate the graph for Figure 5.2, run the following:

./bin/1scheduling/graph_all-best-effort.R \
graphs/1scheduling/all-best-effort.pdf \
data_processed/1scheduling+2imagetransfer/BLUE1+BLUE-INJ_perrun.rda \

notransfer
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To generate the graphs for Figures 5.3 through 5.11, run the following:

./bin/1scheduling/graph_wait+slowdown.R \
graphs/1scheduling \
data_processed/1scheduling+2imagetransfer/BLUE1+BLUE-INJ_perlease.rda \

notransfer

To obtain the data for Table 5.1, run the following:

./bin/1scheduling/table_all-best-effort.R \
data_processed/1scheduling+2imagetransfer/BLUE1+BLUE-INJ_perrun.rda
./bin/1scheduling/table_avg_wait.R \

data_processed/1scheduling+2imagetransfer/BLUE1+BLUE-INJ_perlease.rda

To generate the graph for Figure 5.12, run the following:

./bin/1scheduling/graph_utilization_maximum.R graphs/lscheduling/deadline_util.pdf \
data_processed/4pricing/blue_util.rda \

data_processed/4pricing/ds_util.rda

To obtain the data for Table 5.2, run the following:

./bin/1scheduling/table_deadline.R data_processed/4pricing/BLUE2+BLUE2-ANNOT_perlease.rda

./bin/1scheduling/table_deadline.R data_processed/4pricing/DS+DS-ANNOT _perlease.rda

A.7.2 Chapter 6

To generate the graph for Figure 6.2, run the following:

./bin/1scheduling/graph_all-best-effort.R \
graphs/2imagetransfer/all-best-effort.pdf \
data_processed/1scheduling+2imagetransfer/BLUE1+BLUE-INJ_perrun.rda \

transfer

To generate the graphs for Figures 6.3 through 6.11, run the following:

./bin/1scheduling/graph_wait+slowdown.R \
graphs/2imagetransfer \
data_processed/1scheduling+2imagetransfer/BLUE1+BLUE-INJ_perlease.rda \

transfer
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A.7.8 Chapter 7

To generate the graphs for Figure 7.4, run the following:

./bin/3suspendresume/graph_all-best-effort.R \
graphs/3suspendresume/all-best-effort.pdf \

data_processed/3suspendresume/BLUE1+BLUE-INJ_perrun.rda

To generate the graphs for Figure 7.5, run the following;:

./bin/3suspendresume/graph_avg.R graphs/3suspendresume/avg.pdf \

data_processed/3suspendresume/BLUE1+BLUE-INJ_perlease.rda

To obtain the data for Table 7.1, run the following:

./bin/3suspendresume/table_bw_shutdown.R \

data_processed/3suspendresume/BLUE1+BLUE-INJ_perrun.rda

A.7.4 Chapter 8

To generate the graphs for Figures 8.1 and 8.2, run the following:

./bin/4pricing/graph_revenue.R graphs/4pricing/pricing_blue.pdf \
data_processed/4pricing/BLUE2+BLUE2-ANNOT _perrun.rda
./bin/4pricing/graph_revenue.R graphs/4pricing/pricing ds.pdf \

data_processed/4pricing/DS+DS-ANNOT_perrun.rda

To generate the graphs for Figures 8.3 and 8.4, run the following:

./bin/4pricing/graph_rate_revenue.R graphs/4pricing/adaptive_cheapusers_blue.pdf \
data_processed/4pricing/blue_ratesweep_cheapusers.csv 0.71 0.85
./bin/4pricing/graph_rate_revenue.R graphs/4pricing/adaptive_uniformusers_blue.pdf \
data_processed/4pricing/blue_ratesweep_uniformusers.csv 4.75 4.94
./bin/4pricing/graph_rate_revenue.R graphs/4pricing/adaptive_richusers_blue.pdf \
data_processed/4pricing/blue_ratesweep_richusers.csv 9.68 8.99
./bin/4pricing/graph_rate_revenue.R graphs/4pricing/adaptive_cheapusers_ds.pdf \
data_processed/4pricing/ds_ratesweep_cheapusers.csv 0.70 0.75
./bin/4pricing/graph_rate_revenue.R graphs/4pricing/adaptive_uniformusers_ds.pdf \
data_processed/4pricing/ds_ratesweep_uniformusers.csv 1.90 4.84
./bin/4pricing/graph_rate_revenue.R graphs/4pricing/adaptive_richusers_ds.pdf \

data_processed/4pricing/ds_ratesweep_richusers.csv 7.75 9.19
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The numbers provided to the R script are the median rate and estimated rate obtained
when running the rate_sweep.py script earlier.

To generate the graphs for Figure 8.5, run the following:

./bin/4pricing/graph_revenue_utilization.R graphs/4pricing/revenue_utilization_blue.pdf \
data_processed/4pricing/BLUE2+BLUE2-ANNOT _perrun.rda \
data_processed/4pricing/blue_util.rda

./bin/4pricing/graph_revenue_utilization.R graphs/4pricing/revenue_utilization_ds.pdf \
data_processed/4pricing/DS+DS-ANNOT_perrun.rda \

data_processed/4pricing/ds_util.rda

These scripts will also print the minimum and maximum utilization values quoted in the
text.
The following script determines what cases produce the best and worst revenue (when

dealing with Uniform Users and Rich Users), also quoted in the text:

./bin/4pricing/misc_stats.R data_processed/4pricing/BLUE2+BLUE2-ANNOT_perrun.rda

./bin/4pricing/misc_stats.R data_processed/4pricing/DS+DS—-ANNOT_perrun.rda

A.8 Non-simulated results

Whereas the previous sections should allow you to replicate this dissertation’s simulated
results exactly, reproducing the non-simulated results presented in Chapter 7 is not straight-
forward and may result in different results, since the experiments are dependent on the hard-
ware and software configuration of the cluster where the experiments were run. Nonetheless,
I am providing the scripts I used to run these experiments, with some minor modifications
to remove references to our cluster’s directory structure, hostnames, etc. Although they may
not work out-of-the-box in other clusters, they may be of use to understand the experiments
in more detail, or to set up similar experiments. Note that these scripts also assume that
the experiments will run on five dual-processor quad-core machines, with OpenNebula 1.0
installed on one of them, and the rest running Xen 3.2. Other setups will likely involve

non-trivial modifications to the scripts.
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The required scripts can be downloaded at the following URL: http://people.cs.uchicago.
edu/~borja/dissertation/dissertation-exp-nonsim.tgz. This file also contains the raw data
used to produce the results in Chapter 7.

First, you will need to create 64 VM disk images: 32 for the AR lease and 32 for the
best-effort lease. Networking must be configured in the images themselves, with IPs in
the same /24 subnet. For example, assuming the images are created in /images/ar/ and

/images/besteffort/, the contents of these directories should look like this:

/images/ar/ar-01/disk.img
/images/ar/ar-01/swap.img
/images/ar/ar-02/disk.img

/images/ar/ar-02/swap.img

/images/ar/ar-32/disk.img
/images/ar/ar-32/swap.img
/images/besteffort/besteffort-01/disk.img
/images/besteffort/besteffort-01/swap.img
/images/besteffort/besteffort-02/disk.img

/images/besteffort/besteffort-02/swap.img

/images/besteffort/besteffort-32/disk.img

/images/besteffort/besteffort-32/swap.img

Next, we will use the provided gen_configs.py script to generate the OpenNebula tem-
plates used to request the VMs that comprise each lease, and the Haizea configuration file.
The first lines of the script contain a number of variables that you will have to modify to

match your site’s configuration. Once you have done this, run the following commands:

./gen_configs.py —m 512 -d configs -z etc/haizea-template.conf
./gen_configs.py -m 768 -d configs -z etc/haizea-template.conf

./gen_configs.py —-m 1024 -d configs -z etc/haizea-template.conf

The -m specified the amount of memory each VM will request, the -d parameter specifies

where the OpenNebula templates will be created, and the -z parameter specifies the template
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for the Haizea configuration file. The provided template should work with the same version
of Haizea used for the simulation results. The exact SVN revision used for the original
experiments is 541 (although the provided Haizea template won't actually work with that old
version; the actual file used in the experiments is provided as etc/haizea-template-orig.conf).

Next, we run the experiments themselves. First, edit file etc/hosts to contain the names
of hosts managed by OpenNebula. The user account you use to run the experiments must
have passwordless SSH access to those nodes (that same user account must exist on all the
worker nodes; ideally, the user must have a shared home directory across all the nodes).
Additionally, you must copy the provided clean _one script to the same path on all hosts.
Finally, the provided run.py script has several variables in the top of the file that you must
edit to match the configuration of your site (e.g., the location of the clean_one script)

To run the experiments, run the following command:

./run.py -f etc/run.local

The experiments will take several hours to run. If an experiment fails, an e-mail will be
sent to the address specified in the run.py scripts. If there is a failure that requires stopping
all subsequent runs (e.g., a host goes down), you can resume the experiments (without

repeating those that finished successfully) like this:

./run.py -f etc/run.local --resume

The above commands only run the experiments with suspensions and resumptions taking

place to the local filesystem. To run the experiments on a global filesystem:

./run.py -f etc/run.global

The raw data collected during the experiment will be stored in the data directory. A copy

of the data I obtained in the experiments is included in the dissertation-exp-nonsim.tgz
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file. This is the data you will use to produce the graphs included in the dissertation. Before

doing this, run the following commands to extract certain information (times to suspend,

etc.) from the data:

./summarize_results.py -d data/

The summarized data is placed in the data_processed directory.

To generate Figure 7.2, run the following:

./graph-timeaccuracy.R

To generate Figure 7.3, run the following:

./graph-individualtimes.R

Graphs are saved in graphs directory.
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