Candidacy Exam Proposal

Borja Sotomayor
Department of Computer Science
University of Chicago
borja@cs.uchicago.edu

November 24, 2008
Revision 33

NOTE: I passed my candidacy exam on 11/25/08. At that time, my committee suggested
some changes to my proposal (which are not included in this document). Nonetheless, this
document paints a pretty accurate picture of where my dissertation research is headed.

Contents
(__Problem Statementl 2
2_Related Workl 3
2.1 VM-based approaches| 3
[2.2 Lease-based approaches| oo 6
2.3 Job-based approaches| L 7
... 9
[3_Status] 10
4__Research Planl 12
4.1 Refining the resource model| oL 13
4.2 Policies for resource leasing| e 13
4.3 Adaptive scheduling for advance reservations| L. L. 14
[Research Methodology] 15
[6 Applications| 16

borja@cs.uchicago.edu

1 Problem Statement

The need for computational resources has, over the years, become a fundamental requirement in both science
and industry. In many cases, this need is transient: a user may only require computational resources for
the duration of a well-defined task. For example, a scientist could require a large number of computers to
run a simulation for just a few hours, but might not need those computers at any specific time (as long as
they are made available in a reasonable amount of time). A college instructor may want to make a cluster of
computers available to students during the course’s lab sessions, at very specific times during the week, and
with a specific software configuration. A telecommunications company could posses an existing infrastructure
that hosts a number of websites, but may need to supplement that infrastructure with additional resources
during periods of unforeseen increased web traffic, meaning those resources have to made available right
away with very little advance notice.

These transient resource usage scenarios pose the problem of how to provision shared computational
resources efficiently. This problem has been studied for decades, resulting in approaches that tend to be
highly specialized to specific usage scenarios. For example, the problem of how to run multiple jobs on a
shared cluster has been extensively studied, resulting in job management systems systems like Torque/Maui
[21], Sun Grid Engin(ﬂ, LoadLeveleIH7 and many others, that can queue and prioritize job requests efficiently
(in these systems, efficiency is defined in terms of a variety of metrics, including waiting times and resource
utilization). Such a system would meet the requirements of the scientist wanting to run simulations during
a few hours but, on the other hand, the college instructor and the telecommunications company mentioned
above would be ill-served by a job management system and the efficiency metrics typically used in job
management. Conversely, other resource provisioning approaches are not particularly well suited for job-
oriented computations (this point will be explored in greater detail in the next section).

Thus, there is no general solution that can provision resources meeting the requirements of different usage
scenarios simultaneously, such as those mentioned above, reconciling the different measures of efficiency in
each scenario. More specifically, we can constrain our discussion to the combination of best-effort resource
requirements, where a user needs computational resources but is willing to wait for them (possibly setting a
deadline), and advance reservation resource requirements, where the resources must be available at a specific
time. In the former, efficiency is typically measured in terms of waiting times (or similar metrics such as
turnaround times or slowdowns) or throughput, while the latter is usually concerned with providing the
requested resources at exactly the agreed-upon times without interruption, and both are concerned with
maximizing the use of hardware resources and possibly monetary profit. Although both best-effort and
advance reservation provisioning have been studied separately, the combination of both is known to produce
utilization problems (discussed in the next section) and is discouraged in practice.

In my research I seek to develop a resource provisioning model and architecture that can support multiple
resource provisioning scenarios efficiently and simultaneously, with an initial focus on the best-effort and
advance-reservation cases mentioned above, and arguing in favour of a lease-based model, where leases are
implemented as virtual machines (VMs). This model must meet the following goals:

G1 Provide an abstraction focused solely on resource provisioning

Although the lease abstraction has been used in multiple fields of computer science, most notably
networking, there is no universally accepted definition of “lease”. However, leases generally always
provide an abstraction for, first and foremost, provisioning a resource (bandwidth in networks, raw
hardware resources in datacenters, etc.) operated by a lessor (or resource provider and provided to a
lessee (or resource consumer), with relatively few restrictions on how the provisioned resources can be
used. So, when proposing a lease-based model, the implied goal is that resource consumers will be able
to use a general-purpose resource provisioning abstraction (i.e., not one that is coupled to a particular
use case).

G5 Provision hardware, software, and availability

Thttp://gridengine.sunsource.net/
2http://www.ibm.com/systems/clusters/software/loadleveler.html

http://gridengine.sunsource.net/
http://www.ibm.com/systems/clusters/software/loadleveler.html

Resource provisioning can encompass three dimensions: hardware resources, the software available on
those resources, and the time during those resources must be guaranteed to be available. A complete
resource provisioning model must allow resource consumers to specify requirements across these three
dimensions, and the resource provider to efficiently satisfy those requirements. As stated earlier, my
work focuses on best-effort and advance reservations availability requirements.

G5 Reconcile requirements of different types of leases
Best-effort and advance reservation provisioning have different measures of efficiency and, in some cases,
these measures will be in conflict. For example, accepting advance reservations leases unconditionally
may delay or even preempt best-effort leases but, on the other hand, a policy of not allowing best-effort
leases to be delayed or preempted may reduce the number of advance reservations that can be accepted.
Reconciling these measures of efficiency requires developing scheduling algorithms capable of combining
both types of leases, and potentially others, and policies that can guide the scheduling decisions based
on the goals and requirements of the resource provider. Taking into account the different overheads of
virtual machines adds an additional layer of complexity to the problem of scheduling VM-based leases.

G4 Model virtual resources accurately and schedule them efficiently
The choice of virtual machines to implement leases requires modelling virtualized resources and op-
erations on those resources. In particular, using virtual machines involves different types of overhead
(most notably the overhead of transferring virtual machine images, and the overhead of suspending
and resuming virtual machines) that must be accurately modelled so they can be taken into account
when scheduling virtual machines.

Summing up, the main contribution of my dissertation will be a resource provisioning model that uses
leases as a fundamental abstraction and virtual machines as an implementation vehicle. This contribution
can be further divided into a formal specification of lease terms, a model of virtualized resources, a lease
management architecture (including scheduling algorithms and policies), and metrics of efficiency for het-
erogeneous workloads combining multiple types of leases. As a technological contribution, my dissertation
will also provide an open-source reference implementation of the lease management architecture, capable of
operating in simulation or on real hardware.

The remainder of this document is structured as follows: Section [2| presents existing work on resource
provisioning, and motivates my dissertation work by explaining how existing approaches do not meet all
four goals (G, G4, Gs,G4) mentioned above. Next, Section [3| briefly describes the current status of my
work, followed by a description in Section 4] of the remaining work that I propose to do for my dissertation.
Section [5] describes the research methodology that will be followed in the remaining work. Finally, Section [0]
concludes by describing the applications of a VM and lease-based resource provisioning model.

2 Related Work

Many solutions to the resource provisioning problem have been researched and developed over time. The
ones most related to my work fall into three broad categories: virtual machine-based approaches, lease-based
approaches, and job-based approaches. This section describes relevant work in each of these categories and
shows how no single solution solves all the issues I address in my dissertation, although some authors do
propose solutions that can be leveraged in the more general model I propose.

2.1 VM-based approaches

My work argues in favour of using virtual machines as a vehicle for implementing leases. Several groups have
explored the use of virtual machines as a resource provisioning mechanism, sometimes providing lease-like
semantics. This section starts with an overview of the benefits and disadvantages of virtual machines followed
by a discussion of existing VM-based resource provisioning work, divided into those that propose using virtual
machines to create “virtual clusters” and those that provide lease-like semantics on large datacenters.

2.1.1 Virtual machines

Virtual machines are an appealing vehicle for resource management because they can be used to provision
hardware, software, and availability (G2):

Hardware resources Virtual machines can be mapped to all or part of a physical node’s hardware re-
sources, allowing users to request fine-grained resource allocations. Additionally, virtual machines
have the added property of allowing these allocations to be strictly enforceable.

Software environment A virtual machine can encapsulate a custom software environment, allowing users
to support existing applications without modifying them. Resource providers can also allow users
to have administrative privileges within their VMs, with a reduced risk of malicious use thanks to
the security and isolation properties of VMs. Additionally, popular VM systems, such as Xen and
VMWare, primarily support the x86 architecture, facilitating virtualization of existing x86 compute
resources. Although these systems require the VMs to use the x86 architecture too, a model based on
VMs could easily support additional architectures once the VM vendors supported them.

Availability VMs can be suspended, potentially migrated, and resumed without modifying any of the appli-
cations running inside the VM. We have shown [44] that this capability allows us to efficiently combine
leases with best-effort and advance reservation availability periods (Gs). Although there are other
mechanisms to suspend/resume/migrate computation (such as checkpointing and preempting sched-
ulers, described below), VMs provide a more versatile solution because they do not require applications,
or even the OS running inside the VM, to be checkpointing-aware.

Although an attractive option, virtual machines also raise additional challenges (G4) related to the
overhead of using VMs:

Preparation overhead When using VMs to implement leases, a VM disk image must be either prepared
on-the-fly or transferred to the physical node where it is needed. Since a VM disk image can have a
size in the order of gigabytes, this preparation overhead can significantly delay the starting time of
leases. This delay may, in some cases, be unacceptable for advance reservations that must start at a
specific time.

Runtime overhead Once a VM is running, scheduling primitives such as checkpointing and resuming can
incur in significant overhead since a VM’s entire memory space must be saved to disk, and then read
from disk. Migration involves transferring this saved memory along with the VM disk image. Similar
to deployment overhead, this overhead can result in noticeable delays.

2.1.2 Virtual clusters

Several groups have explored the use of VMs to create “virtual clusters” on top of existing infrastructure.
Nishimura et al.’s [32] system for rapid deployment of virtual clusters can deploy a 190-node cluster in 40
seconds. Their system accomplishes this by representing software environments as binary packages that
are installed on the fly on generic VM images. They optimize installation by caching packages on the
nodes, thus reducing the number of transfers from a package repository. This approach limits the possible
software environments to those that are expressible as installable binary packages (which is not always
possible; e.g., consider highly specialized scientific environments where installable binary packages may not
be readily available) but does provide a faster alternative to VM image deployment if the installation time
is short enough. Yamasaki et al. [49] improved this system by developing a model for predicting the time
to completely set up a new software environment on a node, allowing their scheduler to choose nodes that
minimize the time to set up a new virtual cluster. This model takes node heterogeneity into account and
uses the parameters of each node (CPU frequency and disk read/write speeds) and empirical coefficients
to predict the time to transfer and install all required packages, and then reboot the node. However, their
model does not include an availability dimension and assumes that all resources are required immediately.

The Nimbus toolkﬂﬂ [22] has the ability to deploy “one-click” virtual clusters [9, 25] in sites with different
software and network configurations, eliminating the need to manually adapt virtual machine images each
time they are deployed in a new site (where, for example, the NFS server might have a different address, or
services on the network might expect a digital host certificate signed by the local Certificate Authority). This
is accomplished by using a standalone context broker that contextualizes disk images to work in a specific
site.

Fallenbeck et al. [5] extended the Sun Grid Engine scheduler to use the save/restore functionality of
Xen VMs, allowing large parallel jobs to start earlier by suspending VMs running serial jobs, and resuming
them after the large parallel job finished. Emeneker et al. [4] extended the Moab scheduler to support
running jobs inside VMs, and explored different caching strategies for faster VM image deployment on a
cluster. However, both studies use VMs only to support the execution of best-effort jobs and do not currently
schedule image transfers separately; moreover, the Moab work does not integrate caching information into
scheduler decisions.

Walters et al. [48] have proposed the use of a new VM-centric job scheduler, called UBIS, capable of
scheduling both traditional batch jobs and high-priority interactive jobs. This is accomplished by using the
suspend /resume capability of virtual machines to preempt running batch jobs and accommodate incoming
requests for interactive jobs. The UBIS scheduler not only facilitates support for interactive jobs, it also
accomplishes impressive improvements (up to 500%) in resource utilization and response time for batch jobs.
However, it does not support advance reservation of resources, instead focusing on supporting interactive jobs
with near-immediate resource requirements, which simply allows the UBIS scheduler to perform preemption
operations when an interactive job is requested. Supporting advance reservations in such a way that starting
times can be guaranteed would require modelling this overhead and scheduling the preemption operations
to finish before the start of a reservation.

Other groups have explored a variety of challenges involved in deploying and running a virtual cluster,
including virtual networking and load balancing between multiple physical clusters (VIOLIN/VioCluster
[38,37]), automatic configuration and creation of VMs (In-VIGO [I] and VMPlants [27]), and communication
between a virtual cluster scheduler and a local scheduler running inside a virtual cluster (Maestro-VC’s
two-level scheduling [24]). However, they do not explore workloads that combine best-effort and advance
reservation requests, nor do they schedule deployment overhead of VMs separately.

In general, all these solutions use virtual machines to great effect, addressing goal G5 and, to a certain
extent, G4. However, all of them focus on provisioning resources for batch jobs (not providing a general
provisioning abstraction, G7) and focus on a single availability scenario (mostly the execution of batch jobs
on a virtual cluster, which makes G3 moot), except for Walters et al., who consider workloads combining
both batch jobs and interactive jobs with near-immediate availability requirements. As far as G4, only
Nishimura et al. and Yamasaki et al. model and schedule the deployment overhead of virtual machines,
while other groups either assume that this overhead does not exist (e.g., by assuming that VM disk images
are predeployed) or can be ignored.

2.1.3 Datacenter-based solutions

Whereas the above solutions focus on creating virtual clusters, mostly for the purposes of job-based batch
processing, other solutions focus on providing lease-like semantics where resource providers manage a data-
center and allow resource consumers to lease parts of it using virtual machines; a virtual cluster would be just
one possible application of what the resource consumers could do with their virtual machines. In the server
hosting arena, datacenters with virtualized resources have been a popular option for several years as a way of
providing long-term resources leases where clients are given complete control over the leased resources, but
without requiring a dedicated server per client. These are a popular option for hosting web/mail/DNS/etc.
servers at a low price, but typically require leases with a minimum duration of a month. More recently,
Amazon’s ECﬂ introduced the notion of cloud computing, where virtual machines are dynamically provi-
sioned immediately with customized software environments and charging for use by the hour. Eucalyptus

3Previously known as the Virtual Workspaces Service [23]
4http://aws.amazon.com/ec2/

http://aws.amazon.com/ec2/

[33] and Nimbus both provide an open-source alternative to Amazon’s EC2, using the same web services
interface and providing similar functionality.

Since this datacenter-based approach typically involves managing a large amount of virtual and physical
servers, in the order of hundreds or thousands, efficiently managing the virtual infrastructure in the data-
center becomes a major concern. Several solutions, such as VMWare VirtualCenter, Platform Orchestrator,
Enomalism, or OpenNebula have emerged to manage virtual infrastructures, providing a centralized control
platform for the automatic deployment and monitoring of virtual machines (VMs) in datacenters. These so-
lutions excel at providing users with exactly the software environment they require, and most provide a large
number of hardware options. However, they depend on an immediate provisioning model, where virtualized
resources are allocated at the time they are requested, without the possibility of requesting resources at a
specific future time and, at most, being placed in a simple first-come-first-serve queue when no resources are
available.

Since the workloads in datacenters typically involve servers running for long periods of time (in the
order of months) with variable resource requirements, several groups have looked into the problem of how
to use fewer physical servers by consolidating multiple virtual servers into single physical machines. This is
a challenging problem that involves characterizing server workloads, predicting future resource demand [2],
and then using this information to consolidate multiple servers on a single machine in such a way that the
probability of breaching existing service-level agreements (SLAs) is minimized. This consolidation can be
done when processing the requests for new servers (static consolidation) or it can be done while the servers
are running (dynamic consolidation [2] B0]), typically by leveraging the live migration capability of virtual
machines to optimize the mapping of VMs to physical machines.

Although all these solutions use a general lease-like abstraction (G) that allows users to request both
hardware and a specific software environment (Gs), the lease terms are limited to just immediate availability;
there is no possibility of requesting resources in advance or queuing requests, meaning these solutions have
no need to address G3. Nimbus, Eucalyptus, OpenNebula, and Enomalism all use a basic resource model
that does not explicitly schedule VM overhead (G4). Since the other cited work is closed-source and not
peer-reviewed, it is hard to assess to what extent it addresses Gy.

2.2 Lease-based approaches

A purely lease-based approach to resource provisioning has been proposed by Grit et al. [14] and other
members of Jeff Chase’s research group [20] B6]. However, their work focuses mainly on leases in federated
systems managed by their ORCA and Shirako systems. In such a system, resource providers can donate part
of their resources to a broker (or multiple brokers) which can, in turn, give resource consumers “tickets”
redeemable for actual resources when presented to a resource provider. Federation of leases across multiple
sites is outside the scope of my work, which focuses on how resources are managed inside the resource
provider. In fact, in the ORCA architecture, my work would be a resource provisioning “actor”, the internal
workings of which are supposed to be independent of ORCA, although the resources are assumed to be
partitionable.

Most of their work uses virtual machines, managed by their Cluster-On-Demand system, as an example
of a partitionable resource (although they emphasize that their work is applicable to any partitionable
resource), and recent work has focused on how to enable batch job execution within their architecture
[13, 15]. However, their model assumes that any overhead involved in deploying and managing the VM
will be deducted from the lease’s availability, instead of scheduling it separately (G4). Additionally, despite
providing a well thought-out leasing abstraction (G; and Gs), their work lives in a different level from mine
(federated vs. local)

2.3 Job-based approaches

In science and academia and, to some extent, in industry, resource provisioning has been mostly tied to
running jobs and many job schedulers have been developed over the years, such as Mauﬂ [211, MoalfL
LS]FE]7 LoadLeveleIﬂ PBS Prﬂ and SGEE However, job-based systems provision resources as a side-effect
of having to run a job. So, although these systems can support both best-effort and advance reservation
provisioning, resource consumers are required to interact with those resources using the job abstraction (i.e.,
goal G1 is not met). Additionally, these systems include limited support for custom software environments
(G2), typically limiting resource consumers to whatever software environment happens to be available on
the hardware resources being provisioned. The only exception is Moab, which provides limited support for
starting up a virtual machine encapsulating the software environment required by the job. However, Moab
only allows access to a limited number of VM-based environments, which still require considerable software
contextualization on the part of the cluster administrator, and does not address the overhead of setting up
those VMs (G4)

Nonetheless, job scheduling has driven a considerable amount of research and led to important algorithms
and results relevant to best-effort scheduling, including how to schedule advance reservations alongside best-
effort workloads. Job schedulers typically depend on queues to prioritize access to resources, using backfilling
[28, BT} 6] to optimize queue ordering. When using backfilling, the scheduler can make reservations in the
future for requests that cannot be scheduled immediately, allowing subsequent requests in the queue to “skip
the queue”, as long as they finish before the future reservations. The scheduling algorithms used in my work
depend on backfilling, but extend it by leveraging the suspend/resume capability of virtual machines.

This remainder of this section describes how advance reservations are supported in job-based systems, and
how they can result in utilization problems. Although preempting schedulers partially palliate the utilization
problems of advance reservations, they do not fully address some of the goals in my dissertation. Finally, I
discuss multi-level scheduling solutions which use job-based systems purely as a resource provisioning tool
(which would meet goal G1), sidestepping the job abstraction and using other provisioning abstractions on
the resources

2.3.1 Advance reservations in job-based systems

Although job schedulers can schedule advance reservations alongside best-effort workloads and, arguably,
could be used to implement best-effort and advance reservation leases, these advance reservations fall short
in several aspects. First of all, they are constrained by the job abstraction which, as described above, does
not meet some of the goals I outlined for my dissertation. More specifically, when a user makes an advance
reservation in a job-based system, the user does not have direct access to those resource but, rather, is
allowed to submit jobs to them. For example, PBS Pro creates a new queue that will be bound to the
reserved resources, guaranteeing that jobs submitted to that queue will be executed on them (assuming
they have permission to do so). Maui and Moab, on the other hand simply allow users to specify that a
submitted job should use the reserved resources (if the submitting user has permission to do so). There are
no mechanisms to directly login to the reserved resources, other than through an interactive job, which does
not provide unfettered access to the resources (i.e., no possibility of root access), or more ad-hoc methods,
like requesting login privileges from the cluster administrator for the duration of the reservation.

Additionally, it is well-known that advance reservations lead to utilization problems [8], 40l [4T], 29],
caused by the need to vacate resources before a reservation can begin. Unlike future reservations made
by backfilling algorithms, where the start of the reservation is determined on a best-effort basis, advance
reservations introduce roadblocks in the resource schedule. Thus, traditional job schedulers are unable to
efficiently schedule workloads combining both best-effort jobs and advance reservations (G3).

Shttp://www.clusterresources.com/pages/products/maui-cluster-scheduler.php/
Shttp://www.clusterresources.com/pages/products/moab-cluster-suite/workload-manager.php
"http://www.platform.com/
8http://www.ibm.com/systems/clusters/software/loadleveler.html
9http://www.pbspro.com/

Ohttp://gridengine.sunsource.net/

http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php/
http://www.clusterresources.com/pages/products/moab-cluster-suite/workload-manager.php
http://www.platform.com/
http://www.ibm.com/systems/clusters/software/loadleveler.html
http://www.pbspro.com/
http://gridengine.sunsource.net/

However, advance reservations can be supported more efficiently by using a scheduler capable of preempt-
ing running jobs at the start of the reservation and resuming them at the end of the reservation. Preemption
can also be used to run large parallel jobs (which tend to have long queue times) earlier, and is specially
relevant in the context of urgent computing, where resources have to be provisioned on very short notice and
the likelihood of having jobs already assigned to resources is higher. While preemption can be accomplished
trivially by cancelling a running job, the least disruptive form of preemption is checkpointing, where the
preempted job’s entire state is saved to disk, allowing it to resume its work from the last checkpoint. Addi-
tionally, some schedulers also support job migration, allowing checkpointed jobs to restart on other available
resources, instead of having to wait until the preempting job or reservation has completed.

However, although many modern schedulers support at least checkpointing-based preemption, this re-
quires the job’s executable itself to be checkpointable. An application can be made checkpointable by
explicitly adding that functionality to an application (application-level and library-level checkpointing) or
transparently by using OS-level checkpointing, where the operating system (such as Cray, IRIX, and patched
versions of Linux using BLCR [16]) checkpoints a process, without rewriting the program or relinking it with
checkpointing libraries. However, this requires a checkpointing-capable OS to be available.

Thus, a job scheduler capable of checkpointing-based preemption and migration could be used to address
(3, by checkpointing jobs before the start of an advance reservation, minimizing their impact on the schedule.
However, the application- and library-level checkpointing approaches burden the user with having to modify
their applications to make them checkpointable, imposing a restriction on the software environment being
leases (G3). OS-level checkpointing, on the other hand, is a more appealing option, but still imposes certain
software restrictions on resource consumers. Systems like Cray and IRIX still require applications to be
compiled for their respective architectures, which would only allow a small fraction of existing applications
to be supported within leases, or would require existing applications to be ported to these architectures.
This is an excessive restriction for supporting leasing, given the large number of clusters and applications
that depend on the x86 architecture. Although the BLCR project does provide a checkpointing x86 Linux
kernel, this kernel still has several limitations, such as not being able to properly checkpoint network traffic,
and not being able to checkpoint MPI applications unless they are linked with BLCR~aware MPI libraries.

An alternative approach to supporting advance reservations was proposed by Nurmi et al. [34], which
introduced “virtual advance reservations for queues” (VARQ). This approach overlays advance reservations
over traditional job schedulers by predicting the time a job would spend waiting in a scheduler’s queue,
and submitting a job (representing the advance reservation) at a time such that, based on the wait time
prediction, the probability that it will be running at the start of the reservation is maximized. Since no
actual reservations can be done, VARQ jobs can run on traditional job schedulers, which will not distinguish
between the regular best-effort jobs and the VARQ jobs. Although this is an interesting approach that can
be realistically implemented in practice (since it does not require modifications to existing scheduler), it still
depends on the job abstraction (Gy).

Hovestadt et al. [I8] [I7] propose a planning-based (as opposed to queuing-based) approach to job
scheduling, where job requests are immediately planned by making a reservation (now or in the future),
instead of waiting in a queue. Thus, advance reservations are implicitly supported by a planning-based
system. Additionally, each time a new request is received, the entire schedule is reevaluated to optimize
resource usage. For example, a request for an advance reservation can be accepted without using preemption,
since the jobs that were originally assigned to those resources can be assigned to different resources (assuming
the jobs were not already running). Although this approach is promising, and is arguably better in qualitative
terms to a queuing-based approach, the authors show no quantitative results comparing their approach to a
queue-based system or to a checkpointing-capable system.

2.3.2 Hierarchical/multi-level scheduling

In a hierarchical, or multi-level, scheduling model, a scheduler allocates resources that will be managed by a
different scheduler. This approach has been widely used in the context of OS process scheduling, where one
scheduler is responsible for allocating and managing heavy processes, while a separate scheduler, inside the
process or as part of the OS, manages the threads more efficiently than the heavy process scheduler. Since

job-based systems tightly couple job execution to resource provisioning, multi-level scheduling solutions have
emerged to circumvent this coupling: a job-based system is used to provision the resources but, instead of
“running a job”, the provisioned resources are then managed by a different scheduler, which can use different
provisioning abstractions. Thus, multi-level scheduling approaches could be used to meet goal G, allowing
resource providers to lease resources without having to shift from a job-based system to a purely lease-based
resource manager.

The Condor scheduler’s “glidein” mechanism [12] was the first to apply this model on compute clusters,
using existing job schedulers to provision resources which would then be managed by an existing Condor
pool. This is accomplished by starting (or “gliding in”) Condor daemons on the provisioned resources. The
MyCluster project [47] similarly allows Condor or SGE clusters to be overlaid on top of TeraGrid resources to
provide users with “personal clusters”. The Falkon task scheduler [19] can also be deployed through a GRAM
interface on compute resources, and is specifically optimized to manage the execution of lightweight tasks,
typically in a workflow managed by the Swift [51] system. Virtual workspaces [23],[9] also follow a multi-level
scheduling approach by allowing users to create a workspace (represented as either a virtual machine or
a dynamically-created UNIX account) on a remote site through a Virtual Workspace Service (VWS), and
then allowing the user to access that workspace directly, and not through the VWS. The Workspace Pilot
furthermore allows a job scheduler to allocate resources for the VWS, which are then managed by the VWS
to create a virtual workspace on those resources[10].

By using a multi-level scheduling approach, Condor, MyCluster, Falkon, and the VWS can use their
respective provisioning abstractions, sidestepping the site’s job scheduling entirely. The first level of these
multi-level scheduling solution approximates leasing, since it focuses only on resource provisioning. However,
it is still limited to requesting the availability periods supported by job schedulers (best-effort jobs or advance
reservations), and does not allow users to access them directly. Condor still requires the user to access the
resources through Condor job submissions; similarly, MyCluster requires Condor or SGE jobs to be used, and
Falkon requires computation to be expressed as tasks. Even if we overcame this issue (e.g., in theory, a job
scheduler could be used to provision resources that could then be used to run an SSH server that allows the
user to log into the provisioned resources), there is no support for deploying custom software environments.

2.4 Summary

Existing approaches to resource provisioning can be broadly categorized into three types: those that depend
on virtual machines, those that use a lease abstraction, and those that use a job abstraction. Although many
impressive solutions and results have been achieved in each of these areas, no single solution manages to
address the four goals described at the beginning of this document. More specifically, there are two common
failings:

Only provisioning hardware, and neglecting software (G2). Solutions that do not use virtual ma-
chines typically focus on provisioning hardware and availability, limiting the choice of software to
whatever software is installed on the hardware resources. Even though this software environment
might be the result of a consensus between all the users or that hardware, and software package man-
agers can be used to switch between a number of software environments, it still precludes users from
getting fully custom software environments. Of the approaches described above, job-based systems
are particularly limited in this respect, even when using multi-level scheduling to meet goal G; and
checkpointing-aware preempting schedulers to meet goal G3 since, as indicated above, using OS-level
checkpointing further constraints the choices of software environment.

Limited application of virtual machines. Using virtual machines greatly facilitates provisioning fine-
grained hardware allocations and custom software environments (Gz), and we have shown it to be an
effective tool to combine best-effort and advance reservation availability requirements (G3). Further-
more, some approaches use lease-like semantics (G1) that do not tie resource consumers to using those
resources for a specific purpose (such as job execution). However, most of these approaches use a basic
resource model that neglects the overhead of deploying and running VMs and, even when deployment

3

overhead is modelled and taken into account for scheduling, as Nishimura et al. and Yamasaki et al.
do, they focus only on immediate availability, and do not support workloads combining best-effort and
advance reservation leases.

Status

At the time of writing this document, I have made the following progress on meeting the four goals identified
at the beginning of this document:

G1

G

G

Gy

Provide an abstraction focused solely on resource provisioning
My work is based on the lease abstraction, and I defined basic terms for best-effort and advance
reservation leases [11], [44].

Provision hardware, software, and availability

The lease terms in my model encompass hardware, software, and availability, with the current focus on
best-effort and advance reservation availability. I designed [44] and implementeﬂ a lease management
architecture called Haizea, capable of scheduling leases, either in simulation of by managing virtual
machine-based leases on real hardware [46]. Virtual machines were chosen as an implementation vehicle
since, as described in Section [2] they are capable of provisioning hardware, software, and availability.

Reconcile requirements of different types of leases
Produced simulation-based results showing that the Haizea lease manager is capable of scheduling
best-effort and advance reservation leases together more efficiently than previous approaches [45] [44].

Model virtual resources accurately and schedule them efficiently
Defined a basic model for virtualized resources, with emphasis on the overhead of managing those
resources [43] 42].

The remainder of this section provides a summarized version of the main results outlined above.

We defined a lease as “a negotiated and renegotiable agreement between a resource provider and a
resource consumer, where the former agrees to make a set of resources available to the latter, based on
a set of lease terms presented by the resource consumer” [44]. The terms must encompass the hardware
resources required by the resource consumer, such as CPUs, memory, and network bandwidth; a software
environment required on the leased resources; and an availability period during which a user requests that
the hardware and software resources be available. Since previous work and other authors already explore
lease terms for hardware resources and software environments [11], 28], my recent focus has been on the
availability dimension of a lease.

Thus, at this point, I consider the following simple availability terms for a lease:

Start time may be unspecified (a best-effort lease) or specified (an advance reservation lease). In the
latter case, the user may specify either a specific start time or a time period during which the lease
start may occur.

Maximum duration refers to the total maximum amount of time that the leased resources will be
available.

e Leases can be preemptable. A preemptable lease can be safely paused without disrupting the compu-

tation that takes place inside the lease.

Furthermore, I have so far made the simplifying assumption that all advance reservation leases are
nonpreemptable and all best-effort leases are preemptable and that, when determining whether to preempt
a lease, a resource owner takes into consideration only the lease’s preemptability (i.e., no other factors, such

Hhttp://haizea.cs.uchicago.edu/

10

http://haizea.cs.uchicago.edu/

as priorities, would result in a decision not to preempt). The next section will explain how this assumption
will be removed.

Our resource model currently considers that we manage W identical nodes each with a Virtual Machine
Monitor (VMM) allowing the execution of virtual machines. Each node has P CPUs, M megabytes (MB) of
memory, D MB of local disk storage, and a disk read/write transfer rate of H, and H,, MB/s. We assume
that all disk images required to run virtual machines are available in a repository from which they can be
transferred to nodes as needed. For simplicity, we assume that the repository and nodes have the same
characteristics and that all are connected at a bandwidth of B MB/s by a switched network. A lease is
implemented as a set of n VMs, each allocated resources described by a tuple (p, m, d,b), where p is number
of CPUs, m is memory in MB, d is disk space in MB, and b is network bandwidth in MB/s. A disk image
I with a size of s; MB must be transferred from the repository to a node before the VM can start. When
transferring a disk image to multiple nodes, we use multicasting and model the transfer time as 3. If a lease
is preempted, it is suspended by suspending its VMs, which may then be either resumed on the same node
or migrated to another node and resumed there. Suspension results in the creation of a memory state file
(the contents of the VM’s memory) on the node where the VM is running, and resumption requires reading
that image back into memory and then discarding the file. The size of the memory state file is m, and the

time to suspend and resume a VM is 4/~ and 4~ seconds, respectively. When a suspended VM is migrated

Hy
to a different node, its disk image instance and memory state file are transferred, requiring % seconds.

The Haizea lease management architecture is designed to process lease requests and schedule virtual
machines to satisfy the lease’s requirements. To do this, Haizea’s scheduler uses both classical backfilling
algorithms [31] and the suspend/resume/migrate capability of VMs, allowing best-effort leases to be pre-
empted, and potentially migrated, to make room for advance reservation requests. Additionally, Haizea
explicitly schedules the preparation and runtime overhead of VMs to guarantee that the lease terms are
met. More specifically, for advance reservation leases, disk image transfers are scheduled to arrive before the
start of the lease and, if best-effort leases are being suspended before the AR lease, the suspensions are also
scheduled to complete before the start of the AR lease. For all types of leases, the schedulers attempts to
minimize the number of disk image transfers by reusing disk images in the physical nodes when possible.

Haizea has been implemented, carefully documented, and released under an open-source Apache 2.0 Li-
Censdﬂ and is available for download at http://haizea.cs.uchicago.edu/. The latest version, Technology
Preview 1.2, can run scheduling simulations (like the ones shown in some of my papers [42] 45] [44]) and,
in combination with the OpenNebula virtual infrastructure managerifl7 can create and manage VM-based
leases on clusters using the Xen or KVM hypervisors.

Our main results so far [44] have shown that, when using workloads that combine best-effort and advance
reservation lease requests, a VM-based approach with suspend/resume/migrate can overcome the utilization
problems typically associated with the use of advance reservations. Even in the presence of the runtime
overhead resulting from using VMs, a VM-based approach results in consistently better total execution
time than a scheduler that does not support task preemption, and only slightly worse performance than a
scheduler that does support task preemption. Measuring the wait time and slowdown of best-effort leases
shows that, although the average values of these metrics increase when using VMs, this effect is due to short
leases not being preferentially selected by Haizea’s backfilling algorithm, instead allowing best-effort leases to
run as long as possible before a preempting AR lease (and being suspended right before the start of the AR).
In effect, a VM-based approach does not favor leases of a particular length over others, unlike systems that
rely more heavily on backfilling. Our results have also shown that, although supporting the deployment of
multiple software environments, in the form of multiple VM images, requires the transfer of potentially large
disk image files, this deployment overhead can be minimized through the use of image transfer scheduling
and caching strategies.

12http://www.apache.org/licenses/LICENSE-2.0.html
Bhttp://www.opennebula.org/

11

http://haizea.cs.uchicago.edu/
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.opennebula.org/

4 Research Plan

My work so far has addressed the resource provisioning problem by tackling the four goals addressed at the
beginning of this proposal, without compromising any goal in favour of another one. However, there are still
some gaps and assumptions in my work that need to be resolved:

(A)

Using a constrained resource model. So far, all my results have been simulation-based and, although
they have been useful in observing the long-term impact on certain performance metrics, they require
using a very constrained resource model, since I did not have an testbed of multiple nodes to experiment
on (thus G4 was not being fully addressed). Most notably, I currently assume that only one VM can
run on each physical node and that memory state files (resulting from suspending a virtual machine)
are saved to that node’s local filesystem. Another way of stating this assumption is that my model
currently assumes no possibility of contention for resources during a suspend or a resume operation
(since a single VM has exclusive use of a physical node). This is a very limiting assumption in practice,
given the widespread availability of global filesystems and given the increasing popularity of multicore
machines which facilitate running more than one VM on a single node.

There is no lease admission control. No lease requests are rejected, except AR leases where no resources
are available for the lease. This “accept all” policy has been acceptable for experiments so far, where
the AR workloads were designed not to saturate the simulated cluster, and were generated according to
different parameters, allowing us to measure the impact of each parameter. However, in practice, this
policy does not prevent resource consumers from always requesting advance reservations, sidestepping
the queue for best-effort requests. This can lead to an inefficient use of resources, since our results
have shown that, as the number of ARs accepted increased, so did the waiting time and slowdown of
best-effort leases, since the scheduler is faced with a more inflexible schedule. Thus, G35 is not met
unless there is some form of admission control in my model.

Scheduling algorithm is not adaptive. Although the scheduling algorithms I have implemented can react
to variations in resource usage (more specifically, the scheduler can reevaluate the schedule upon an
early termination of a lease), the scheduler does not dynamically adapt to these variations or to changes
in user behaviour. This is not an issue when simulating existing workloads, since the workload never
changes throughout the experimenﬂ However, in practice, users will behave differently depending on
how the scheduler handles their requests, and a scheduler must be able to adapt to those changes.

I assume that best-effort leases are preemptable and AR leases are not. This was made as a simplifying
assumption, but it does not fully model reality, where leases will not be just “preemptable” or “not
preemptable”; rather, preemptability should be derived from a variety of factors (the same way, for
example, that the priority of a batch job is computed based on multiple factors).

To complete my dissertation research, these issues must be resolved. I propose doing so by meeting the
following milestones:

e Refining the resource model to more accurately represent leased virtual resources.

e Researching policies for lease admission and lease preemption.

e Researching adaptive scheduling strategies for advance reservations.

The remainder of this section describes each of these tasks in more detail, specifying what work each
milestone would involve, and the results that should be expected at the end of each milestone.

14For avoidance of doubt: In my simulation experiments I do not assume foresight of the entire workload (i-e., at any point
in time, the scheduler has no knowledge of what requests will be arriving in the future).

12

=~ HAIZEA

|
Lease | Lease OpenNebula .

Requests | Admission | ==l Enactment

— o o)

Host selection and
Lease preemption
decisions

F === =
| Policy I
Decision |
Module I

T

Figure 1: The Haizea architecture is still missing a lease admission component and a policy-driven
decision module

4.1 Refining the resource model

To address (A), I will have to conduct experiments on real hardware to obtain a more accurate model of
how virtual resources behave under a variety of conditions, specially those where contention for resources is
likely to happen. I am already working on this by using Haizea and OpenNebula to deploy best-effort leases
and an advance reservation leases on a cluster, and measuring the times required to perform operations such
as suspending /resuming/migrating VMs with local and global filesystems, using leases of varying sizes, and
measuring the impact these operations have on other leases running on the cluster. This refinement of the
resource model is not a strong research contribution but, rather, a prerequisite before moving on to the other
milestones, as it allows us to show that are simulations are grounded on a model that has been verified on
physical hardware.
A draft of our results will be submitted for publication in December 2008.

4.2 Policies for resource leasing

To address (B) and (D), the Haizea architecture needs to be extended so that decisions on lease admission
and resource preemption are configurable, instead of being hardcoded. As a technical prerequisite, this
will require factoring out the admission control and resource preemption decisions out to a policy-driven
decision module (see Figure , where resource providers can specify policies to guide these decisions. For
accepting/rejecting leases, these policies will guide whether a lease request should be passed on to the lease
scheduler, or rejected outright (e.g., a policy could set quotas on how many ARs a user can request). For
resource preemption, given a set of leases that may have to be preempted to accommodate another lease,
policies would allow that set of leases to be ordered from “most preemptable” to “least preemptable” (e.g.,
a policy could determine that the shorter the duration of the lease, the more desirable it is to preempt, since
it will be easier to reschedule that a long lease). The policy module will also allow multiple policies, each
with a different weight (specified by the resource provider), to be used when making an admission control
or resource preemption decision.

Once this component has been added to Haizea, I believe the interesting research questions arise in
addressing (B), whereas addressing (D) just provides resource providers with a greater degree of control
over what leases can and cannot be preempted. As stated earlier, best-effort and advance reservation leases
have different measures of efficiency that can conflict with each other. Lease admission can have a great
impact on these measures: accepting more advance reservations will penalize best-effort leases and increases

13

the chance of two ARs being in conflict, while accepting more non-preemptible best-effort leases (where
resources are still provisioned on a best-effort basis but, once they are allocated, we want to provide the
resource consumer with a guarantee that those resources will be available) will reduce the number of advance
reservations that can be accepted. Although policies for best-effort workloads (particularly jobs, and how
to assign priorities to them) have been studied thoroughly, much less work has been done on policies that
must deal with workloads combining both best-effort and AR requests. In particular, I am interested in the
following questions:

1. How can users have an incentive to request one particular type of lease? In particular, in the presence
of AR leases, how can users still be incentivated to requests best-effort leases? More generally, what is
the behaviour of users when they are given the option of requesting advance reservations?

2. Given that these policies can suspend/resume/migrate virtual machines (operations with both a benefit
and a cost), how would these same policies perform on systems that do not operate on VMs?

To answer these questions, I propose doing the following;:

e Add a policy decision module to Haizea.

e Develop a set of user behaviour models. “Users” would have workloads they want to run, and will
behave differently based on the responses they get back from the lease admission component. This user
model will build upon existing user models (particularly those that are used when generating artificial
job workloads) and on the usage patterns observed in existing systems where advance reservations are
supported.

e Develop a set of policies for lease admission with the goal of maximizing resource utilization, while
reconciling the different goals of best-effort and advance reservation leases. At this point, the policies
will be static, and will not adapt to changes in user behaviour.

e Run experiments (see next section, Research Methodology), where different policies are matched up with
different user behaviour models. The results should show how effective the policies are at satisfying
the requirements of both best-effort and advance reservation leases in the presence of a particular type
of user (or a mix of several types of users).

4.3 Adaptive scheduling for advance reservations

Variability in resource requests and actual resource usage by resource consumers is a fact of life, and a
considerable amount of research has been done to address this variability in different systems. In job-based
systems, users tend to request resources for a much longer duration than they actually need them, and
much work has been done in accurately predicting job runtime . In VM-based data centers, users rarely
use all the resources they are allocated, which has lead to the development of several algorithms for server
consolidation [2, 0], which analyse and predict actual resource usage to “pack” several VMs into a single
processor, increasing resource utilization while meeting service-level agreements with users. In lease-based
systems, the problem of how to extend leases to accomodate changes in resource demands has also been
addressed [20]. Although these existing solutions could be leveraged in Haizea to address (C), this would
not be a research contribution.

On the other hand, adapting to variability in systems supporting both best-effort and advance reservation
workloads has (to the best of my knowledge) not been studied. In particular, the problem becomes how
to adapt to changes in user behaviour when they are given the ability to request advance reservations. So,
while the previous milestone focused on “static lease admission” (the policies did not adapt to changes in
user behaviour), this milestone would focus on “dynamic lease admission”. The main question would be:
how can we dynamically adjust a lease admission policy in a system supporting both best-effort and advance
reservations leases to meet a target function, such as maximizing utilization, minimizing waiting times, or
maximizing profit?

14

Answering this question will require extending the work from the previous milestone to add adaptability
to the lease admission policies. Results would compare the previous policies to the new adaptable policies,
showing how effective each is at meeting target functions such as those mentioned above.

5 Research Methodology

The general methodology to validate each of the proposed milestones will be to run experiments where
a workload of leases must be scheduled and the values of several metrics are measured throughout the
experiment and compared to a baseline. These experiments will be performed on real hardware and in
simulation using Haizea. This section describes the workloads, metrics, and baselines I will use.

Although there are currently several repositories of batch job workloads, most notably the Parallel Work-
loads Archive E there are few publicly available advance reservation workloads or lease-based workloads.
So far, my approach has been to take a workload of job submission requests from the Parallel Workloads
Archive, treating that workload as a set of best-effort lease requests, and inserting an additional set of advance
reservation requests. These advance reservation requests are artificially generated according to a number of
well-defined parameters [44]. When running in simulation, a large number of requests (in the order of weeks
or months) can be processed to observe the long-term effects of different modelling and scheduling decisions.
When running on real hardware, shorter workloads (in the order of hours or days) are run to verify that (1)
the simulations accurately represent reality and (2) to refine the resource model.

The metrics I intend to use measure how efficiently each type of lease is scheduled. For best-effort leases,
let t, be the arrival time, or time when the lease request is submitted, ¢5 be the start time of the lease, and
te be the time the lease ends. Based on these variables, I have so far used the following metrics:

all-best-effort: The time when the last best-effort lease is completed, or max(t.). This metric provides a
good measure of global utilization, by showing how fast a specific configuration of the scheduler can
work through all the best-effort leases, although it is inadequate to analyse the effect on individual
leases. Note that, in practice, this metric is normalized relative to some baseline value (e.g., the time
required to complete all best-effort leases assuming no advance reservation leases are added to the
workload).

Wait time of best-effort requests: The time a best-effort request must wait before it starts running, or
ts - ta

Bounded slowdown of best-effort requests [7]: If ¢, is the time the lease would take to run on a ded-
icated physical system (i.e., not in a VM), the lease’s slowdown is f=~te . If ¢, is less than 10 seconds,
the bounded slowdown is computed the same way, but assuming ¢,, to be 10 seconds [7].

In future experiments I intend to use metrics applicable to advance reservation leases, such as the number
of leases accepted and rejected (which, so far, did not make sense since all ARs are accepted by Haizea).
As mentioned in Section [I}, each type of lease can have often-conflicting measures of efficiency, which will
also necessitate designing a unified metric that shows not only how a single type of lease is performing
but also how efficiently the system is handling multiple types of lease simultaneously. Additionally, T will
also use metrics that measure the utilization of physical resources and, more specifically, what percent of
the resources throughout an experiment are idle, running a VM, suspending, resuming, transferring a disk
image, etc. This metric will be helpful in determining the cost of using the model I propose, by showing how
many resources are spent on overhead activities that would not be necessary if not using VMs.

When analysing the values of these metrics in individual experiments, the baseline will be existing resource
provisioning approaches, such as those described in Section [2] and, more specifically, those that can provide
similar functionality to the one I propose. For example, since job-based systems can provide both best-effort
and advance reservation provisioning, they provide a useful baseline when running workloads that combine
best-effort and advance reservation leases. On the other hand, a datacenter-based solution would be an

Bhttp://www.cs.huji.ac.il/labs/parallel/workload/

15

http://www.cs.huji.ac.il/labs/parallel/workload/

inadequate baseline as they do not support these workloads, but might be a good baseline when comparing
policies for immediate reservation of resources.

6 Applications

Several applications stand to benefit from a lease-based model. Applications expressible as a workflow of small
tasks have been shown to be more efficiently scheduled by a workflow engine operating over leased resources
instead of through a job scheduler [39, 50]. Applications that currently rely on advance reservations [8 52],
such as grid applications requiring co-scheduling of resources across multiple sites, and urgent computing [35]
applications could benefit from leasing mechanisms and policies that allow users to dynamically negotiate
exact and urgent availability periods. Some applications, such as the STAR experimenﬂﬂ7 require complex
software environments that are rarely available on grid sites (which must satisfy the software needs of multiple
communities), and could benefit from a lease model that allows fully customized software environments to
be dynamically instantiated on leased resources (the STAR application has been shown to benefit from this
approach [20]).

More recently, the EU RESERVOIR projec@ is developing a model and architecture for open federated
cloud computing[3], driven by the requirements of several business use cases, such as SAP systems, Software-
as-a-Service providers, and virtualized data centers. Two of the primary requirements identified by the
RESERVOIR project are “Automated and fast deployment”, which my model attempts to optimize by
explicitly scheduling deployment of VMs and reducing the overhead of these operations, and “dynamic
elasticity”, which adaptive scheduling (see Section could contribute to.

References

[1] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul, A. Matsunaga, M. Tsugawa,
J. Zhang, M. Zhao, L. Zhu, and X. Zhu. From virtualized resources to virtual computing grids: the
In-VIGO system. Future Gener. Comput. Syst., 21(6):896-909, June 2005.

[2] N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of virtual machines for managing sla vio-
lations. Integrated Network Management, 2007. IM ’07. 10th IFIP/IEEE International Symposium on
Integrated Management, pages 119-128, 2007.

[3] B.Rochwerger, D.Breitgand, E.Levy, A.Galis, K.Nagin, I.Llorente, R.Montero, Y.Wolfsthal, E.Elmroth,
J.Caceres, M.Ben-Yehuda, W.Emmereic, and F.Galan. The RESERVOIR model and architecture for
open federated cloud computing. IBM Systems Journal, Accepted for publication.

[4] W. Emeneker and D. Stanzione. Efficient Virtual Machine Caching in Dynamic Virtual Clusters. In
SRMPDS Workshop, ICAPDS 2007 Conference, December 2007.

[5] N. Fallenbeck, H.-J. Picht, M. Smith, and B. Freisleben. Xen and the art of cluster scheduling. In
VTDC °06: Proceedings of the 1st International Workshop on Virtualization Technology in Distributed
Computing, Washington, DC, USA, 2006. IEEE Computer Society.

[6] D. Feitelson, L. Rudolph, and U. Schwiegelshohn. Parallel job scheduling — a status report. 10th
Workshop on Job Scheduling Strategies for Parallel Processing, New-York, NY., 2004.

[7] D. G. Feitelson and L. Rudolph. Metrics and benchmarking for parallel job scheduling. Lecture Notes
in Computer Science, 1459:14, 1998.

Uhttp://www.star.bnl.gov
Thttp://www.reservoir—£p7.eu/

16

http://www.star.bnl.gov
http://www.reservoir-fp7.eu/

8]

[18]

[19]

[22]

[23]

I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A distributed resource manage-
ment architecture that supports advance reservations and co-allocation. In Proceedings of the Interna-
tional Workshop on Quality of Service, 1999.

I. T. Foster, T. Freeman, K. Keahey, D. Scheftner, B. Sotomayor, and X. Zhang. Virtual clusters for
grid communities. In CCGRID, pages 513-520. IEEE Computer Society, 2006.

T. Freeman and K. Keahey. Flying low: Simple leases with workspace pilot. In E. Luque, T. Margalef,
and D. Benitez, editors, Furo-Par, volume 5168 of Lecture Notes in Computer Science, pages 499-509.
Springer, 2008.

T. Freeman, K. Keahey, I. T. Foster, A. Rana, B. Sotomayor, and F. Wuerthwein. Division of labor:
Tools for growing and scaling grids. In ICSOC, 2006.

J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-G: A computation management
agent for multi-institutional grids. Cluster Computing, 5(3):237-246, 2002.

L. Grit, D. Irwin, V. Marupadi, P. Shivam, A. Yumerefendi, J. Chase, and J. Albrecht. Harnessing
virtual machine resource control for job management. In Proceedings of the First Workshop on System-
level Virtualization for High Performance Computing (HPCVirt), 2007.

L. E. Grit. Extensible resource management for networked virtual computing. PhD thesis, Durham, NC,
USA, 2007. Adviser-Jeffrey S. Chase.

L. E. Grit and J. S. Chase. Weighted fair sharing for dynamic virtual clusters. In SIGMETRICS *08:
Proceedings of the 2008 ACM SIGMETRICS international conference on Measurement and modeling of
computer systems, pages 461-462, New York, NY, USA, 2008. ACM.

P. H. Hargrove and J. C. Duell. Berkeley lab checkpoint/restart (blcr) for linux clusters. Journal of
Physics: Conference Series, 46:494-499, 2006.

F. Heine, M. Hovestadt, O. Kao, and A. Streit. On the impact of reservations from the grid on
planning-based resource management. In Proceedings of the 5th International Conference on Computa-
tional Science (ICCS 2005), volume 3516 of Lecture Notes in Computer Science (LNCS, pages 155-162.
Springer, 2005.

M. Hovestadt, O. Kao, A. Keller, and A. Streit. Scheduling in hpc resource management systems:
Queuing vs. planning. In D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, editors, JSSPP, volume
2862 of Lecture Notes in Computer Science, pages 1-20. Springer, 2003.

[.LRaicu, Y.Zhao, C.Dumitrescu, I.Foster, and M.Wilde. Falkon: a fast and light-weight task execution
framework. In IEEE/ACM International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC07), 2007.

D. Irwin, J. Chase, L. Grit, A. Yumerefendi, D. Becker, and K. G. Yocum. Sharing networked resources
with brokered leases. In USENIX Technical Conference, June 2006.

D. B. Jackson, Q. Snell, and M. J. Clement. Core algorithms of the maui scheduler. In JSSPP "01:
Revised Papers from the 7th International Workshop on Job Scheduling Strategies for Parallel Processing,
pages 87-102, London, UK, 2001. Springer-Verlag.

K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa. Science clouds: Early experiences
in cloud computing for scientific applications. In Cloud Computing and Applications 2008 (CCA08),
2008.

K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual workspaces: Achieving quality of service and
quality of life on the grid. Scientific Programming, 13(4):265-276, 2005.

17

[24]

[25]

[26]

N. Kiyanclar, G. A. Koenig, and W. Yurcik. Maestro-VC: A paravirtualized execution environment for
secure on-demand cluster computing. In CCGRID ’06: Proceedings of the Sixth IEEE International
Symposium on Cluster Computing and the Grid (CCGRID’06), page 28, Washington, DC, USA, 2006.
IEEE Computer Society.

K.Keahey and T.Freeman. Contextualization: Providing one-click virtual clusters. In eScience 2008,
2008.

K.Keahey, T.Freeman, J.Lauret, and D.Olson. Virtual workspaces for scientific applications. In SciDAC
2007 Conference, 2007.

I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J. Figueiredo. Vmplants: Providing and
managing virtual machine execution environments for grid computing. In SC ’04: Proceedings of the
2004 ACM/IEEE conference on Supercomputing, page 7, Washington, DC, USA, 2004. IEEE Computer
Society.

D. A. Lifka. The ANL/IBM SP scheduling system. In IPPS ’95: Proceedings of the Workshop on Job
Scheduling Strategies for Parallel Processing, pages 295-303, London, UK, 1995. Springer-Verlag.

M. W. Margo, K. Yoshimoto, P. Kovatch, and P. Andrews. Impact of reservations on production job
scheduling. In 13th Workshop on Job Scheduling Strategies for Parallel Processing, 2007.

S. Mehta and A. Neogi. Recon: A tool to recommend dynamic server consolidation in multi-cluster
data centers. Network Operations and Management Symposium, 2008. NOMS 2008. IEEE, April 2008.

A. W. Mu’alem and D. G. Feitelson. Utilization, predictability, workloads, and user runtime estimates
in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel Distrib. Syst., 12(6):529-543, 2001.

H. Nishimura, N. Maruyama, and S. Matsuoka. Virtual clusters on the fly - fast, scalable, and flexible
installation. In CCGRID ’07: Proceedings of the Seventh IEEE International Symposium on Cluster
Computing and the Grid, Washington, DC, USA, 2007. IEEE Computer Society.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov. The
eucalyptus open-source cloud-computing system. In Cloud Computing and Applications 2008 (CCA08),
2008.

D. C. Nurmi, R. Wolski, and J. Brevik. Varq: virtual advance reservations for queues. In HPDC
'08: Proceedings of the 17th international symposium on High performance distributed computing, pages
75-86, New York, NY, USA, 2008. ACM.

P.Beckman, S.Nadella, N.Trebon, and I.Beschastnikh. SPRUCE: A system for supporting urgent high-
performance computing. IFIP International Federation for Information Processing, Grid-Based Problem
Solving Environments, 239:295-311, 2007.

L. Ramakrishnan, D. Irwin, L. Grit, A. Yumerefendi, A. Iamnitchi, and J. Chase. Toward a doctrine
of containment: grid hosting with adaptive resource control. In SC ’06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, page 101, New York, NY, USA, 2006. ACM.

P. Ruth, P. McGachey, and D. Xu. VioCluster: Virtualization for dynamic computational domains.
Proceedings of the IEEE International Conference on Cluster Computing (Cluster’05), 2005.

P. Ruth, J. Rhee, D. Xu, R. Kennell, and S. Goasguen. Autonomic live adaptation of virtual compu-
tational environments in a multi-domain infrastructure. IEEE International Conference on Autonomic
Computing, 2006., 2006.

G. Singh, C. Kesselman, and E. Deelman. Performance impact of resource provisioning on workflows.
Technical Report 05-850, Department of Computer Science, University of South California, 2005.

18

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

W. Smith, I. Foster, and V. Taylor. Scheduling with advanced reservations. In IPDPS ’00: Proceedings
of the 14th International Symposium on Parallel and Distributed Processing, page 127, Washington, DC,
USA, 2000. IEEE Computer Society.

Q. Snell, M. J. Clement, D. B. Jackson, and C. Gregory. The performance impact of advance reservation
meta-scheduling. In IPDPS 00/JSSPP ’00: Proceedings of the Workshop on Job Scheduling Strategies
for Parallel Processing, pages 137-153, London, UK, 2000. Springer-Verlag.

B. Sotomayor. A resource management model for VM-based virtual workspaces. Master’s thesis,
University of Chicago, February 2007.

B. Sotomayor, K. Keahey, and I. Foster. Overhead matters: A model for virtual resource management.
In VTDC '06: Proceedings of the 1st International Workshop on Virtualization Technology in Distributed
Computing, page 5, Washington, DC, USA, 2006. IEEE Computer Society.

B. Sotomayor, K. Keahey, and I. Foster. Combining batch execution and leasing using virtual ma-
chines. In HPDC ’08: Proceedings of the 17th international symposium on High performance distributed
computing, pages 87-96, New York, NY, USA, 2008. ACM.

B. Sotomayor, K. Keahey, I. Foster, and T. Freeman. Enabling cost-effective resource leases with
virtual machines. In Hot Topics session in ACM/IEEE International Symposium on High Performance
Distributed Computing 2007 (HPDC 2007), 2007.

B. Sotomayor, R. S. Montero, I. M. Llorente, and 1. Foster. Capacity leasing in cloud systems using the
opennebula engine. In Cloud Computing and Applications 2008 (CCAO08), 2008.

E. Walker, J. Gardner, V. Litvin, and E. Turner. Creating personal adaptive clusters for managing sci-
entific tasks in a distributed computing environment. In Challenges of Large Applications in Distributed
FEnvironments, 2006.

J. P. Walters, B. Bantwal, and V. Chaudhary. Enabling interactive jobs in virtualized data centers. In
Cloud Computing and Applications 2008 (CCA08), 2008.

S. Yamasaki, N. Maruyama, and S. Matsuoka. Model-based resource selection for efficient virtual cluster
deployment. In VT'DC ’07: Proceedings of the 2nd International Workshop on Virtualization Technology
in Distributed Computing, 2007.

H. Zhao and R. Sakellariou. Advance reservation policies for workflows. In 12th Workshop on Job
Scheduling Strategies for Parallel Processing, 2006.

Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, V. Nefedova, I. Raicu, T. Stef-Praun, and
M. Wilde. Swift: Fast, reliable, loosely coupled parallel computation. IEEFE International Workshop on
Scientific Workflows, 2007.

Final report. teragrid co-scheduling/metascheduling requirements analysis team. http://www.
teragridforum.org/mediawiki/images/b/b4/MetaschedRatReport.pdf.

19

http://www.teragridforum.org/mediawiki/images/b/b4/MetaschedRatReport.pdf
http://www.teragridforum.org/mediawiki/images/b/b4/MetaschedRatReport.pdf

	Problem Statement
	Related Work
	VM-based approaches
	Lease-based approaches
	Job-based approaches
	Summary

	Status
	Research Plan
	Refining the resource model
	Policies for resource leasing
	Adaptive scheduling for advance reservations

	Research Methodology
	Applications

