
1 Cartesian bicategories

We now expand the scope of application of system Beta, by generalizing the
notion of (discrete) cartesian bicategory1. Here we give just a fragment of the
theory, with a more rounded account to appear elsewhere.

Antecedents of this notion date back as far as Peirce, who noticed an analogy
between the algebra of relations and linear algebra. For instance, relational
composition

RS(a, c) = ∃b∈BR(a, b) ∧ S(b, c)

is analogous to matrix composition

ABik =
∑
j∈J

AijBjk,

and relational opposite is analogous to matrix transpose. This type of analogy
was developed further by Lawvere [?], who observed that relational calculus
can be viewed as applying not just to “sets” and “relations”, but to objects
like categories and modules (what Lawvere calls bimodules; also called profunc-
tors) between them, with module tensor product playing the role of relational
composition.

A possible setting which would embrace both examples (sets and relations;
categories and modules) and many others, in other words a categorical setting
for generalized relational calculus, is the notion of cartesian bicategory proposed
by Carboni & Walters. This was spelled out precisely for the case of locally
ordered bicategories (where the relevant “relations” are partially ordered, and
instances of the ordering R ≤ S are the 2-cells of the bicategory), which covers
for instance bicategories of relations in regular categories. A key feature of their
theory is the interplay between a cartesian bicategory B and the subbicategory
Map(B) whose arrows are the left adjoints in B, called maps. In the case of sets
and relations, maps are precisely functions, whereas for categories and modules,
maps are functors (up to Morita-equivalence for categories).

While there is no question that Carboni & Walters envisioned a notion which
would stretch beyond the locally ordered case, and their definition can be read as
a template for how the generalization might go, there are technical complications
in carrying out the generalization according to their description. For one, they
define a cartesian bicategory as a certain type of symmetric monoidal bicategory,
a notion which (beyond the case of local orders) didn’t exist at the time of their
writing, and which by necessity is a complicated notion. (See [?] for the “semi-
strict” version of this notion.) Then, each object of a cartesian bicategory is to
be a cocommutative pseudocomonoid and each arrow a lax morphism of such: it
remains to spell out these notions with all their attendant coherence conditions,
and pretty soon the notion of cartesian bicategory appears forbiddingly technical
and hard to digest.

1As far as the authors are aware, the notion of cartesian bicategory in full bicategorical
generality has never before been published.
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We offer here a fairly simple definition of cartesian bicategory which should
ameliorate these technicalities. The basic idea is that a cartesian bicategory
is a bicategory B with just enough “lax structure” so that Map(B) acquires
(2-)products. Using that, we recover the structures adumbrated in the Carboni-
Walters style of definition, and show how the lax structure is essentially uniquely
determined through its interplay with Map(B).

1.1 Preliminaries

Our bicategorical terminology is standard (homomorphisms, strong or pseudo
transformations, modifications), with a few possible exceptions given below.

A lax transformation θ : F → G between homomorphisms F,G : B → C
assigns 1-cells θb : Fb → Gb to objects of B, and 2-cells θf of the form

Fb - Gb
?

θb

Fa - Ga

?

θf
⇒ GfFf

θa

to 1-cells f : a → b of B, satisfying well-known 2-naturality and coherence
conditions. Homomorphisms, lax transformations, and modifications from B to
C form a bicategory which we denote by Lax(B, C).

A lax transformation θ is strong if θf is invertible for each 1-cell f . Ho-
momorphisms, strong transformations, and modifications from B to C form a
bicategory which we denote by Hom(B, C).

1.1.1 Bicategorical adjunctions

A biadjunction F a G consists of homomorphisms F : B → C, G : C → B
together with an adjoint equivalence

C(F−,−) ' B(−, G−)

in the bicategory Hom(Bop × C,Cat). In elementary terms, a biadjunction
consists of homomorphisms F , G as above, strong transformations η : 1B → GF
and ε : FG → 1C (the unit and counit), and invertible modifications

G

G
@

@
@R

- GFG

?

ηG

Gε1G
⇒
s

F

F
@

@
@R

- FGF

?

Fη

εF1F
⇐
t
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called triangulators [?], such that the following triangulator coherence conditions
hold:

1

GF

GF

GFGF

GF

?

HHH
HHH

HHj

-

?

η

η

@

⇒
ηη

GFη

-

A
A
A
A
A
A
A
AU

GεF

ηGF

⇒sF

@@R1

1
⇒Gt

= 11·η ;

1

FG

FG

FGFG

FG

?
-

?

-

FGε ε⇒εε

ε

εFG

@@

HH
HHH

HHHHj

A
A
A
A
A
A
A
AAU

FηG
@R

1

⇒Fs

1
⇒tG

= 1ε·1.

A lax adjunction is defined the same way as a biadjunction except η : 1B →
GF and ε : FG → 1C need not be strong, only lax, and the triangulators s, t
need not be invertible. In that case, for any choice of objects b in B and c in
C, there is a local adjunction between hom-categories

(L : B(b, Gc) → C(Fb, c)) a (R : C(Fb, c) → B(b, Gc))

where L(g : b → Gc) = (Fb
Fg−→ FGc

εc−→ c) and R(f : Fb → c) = (b
ηb−→

GFb
Gf−→ Gc). The unit of L a R at g : b → Gc is the pasting

GFb - GFGc
?

GFg

b - Gc

?

ηg
⇐ ηGcηb

g

-
Gεc Gc

@
@

@R
1Gc⇐sc

and the counit at f : Fb → c is

-FGFb
FGf-

Fb
?

1Fb ⇐

Fηb

-
f

Fb
@

@
@R

εc
?

εFb
tc

c.

FGc

⇐εf

The triangular equations for L a R follow from the triangulator coherence
conditions. (Warning: it is not generally true that a lax adjunction induces an
adjoint pair in Lax(Bop ×C,Cat); cf. Lemma 1.3.1.)

1.1.2 Maps

Following Carboni & Walters, we call a left adjoint in a bicategory B a map of B.
Map(B) denotes the locally full subbicategory whose 1-cells are the maps of B.
Every homomorphism F : B → C induces a homomorphism F | : Map(B) →
Map(C) by restriction, and every lax transformation θ : F → G restricts to a
strong transformation in Hom(Map(B), C), by the following proposition.

Proposition 1.1.1 If f : b → c is a map of B, then θf is invertible.

3



Proof: Let f∗ denote a right adjoint of f . It is easily verified that (θf)−1 is
given by the pasting

Fb - Gb
?

θb

Fc - Gc

?

θf∗
⇒ Gf∗Ff∗

θcFb

Gc

@
@

@R-
Gf

1⇒

-

@
@

@R

⇒
1

Ff

where the triangles are induced by the unit and counit of f a f∗. QED

A lax transformation θ is map-valued if θb is a map for each object b of
the domain bicategory. By Proposition 1.1.1, a map-valued lax transformation
θ : F → G in Lax(B, C) restricts to a strong transformation θ| : F | → G| in
Hom(Map(B), Map(C)).

1.2 Definition of cartesian bicategory

Let B be a bicategory. In what follows, ∆ : B → B ×B denotes the diagonal
homomorphism, 1 denotes the terminal bicategory, and ! : B → 1 denotes the
unique homomorphism.

Definition 1.2.1 A cartesian structure on B consists of the following data:

• Homomorphisms ⊗ : B×B → B, I : 1 → B,

• Map-valued lax transformations δ : 1B → ⊗∆, π : ∆⊗ → 1B×B, ε :
1B → I!,

• Invertible modifications

⊗

⊗
@

@
@R

- ⊗∆⊗

?

δ⊗

⊗π1⊗
⇒
s

∆

∆
@

@
@R

- ∆⊗∆

?

∆δ

π∆1∆
⇐
t

I

I
@

@
@R

- I!I

?

εI

I · id1I
⇒
u

satisfying triangulator coherence conditions, so that biadjunctions of the form

(∆ : Map(B) → Map(B)×Map(B)) a (⊗ : Map(B)×Map(B) → Map(B))

(! : Map(B) → 1) a (I : 1 → Map(B))

are induced by restriction (using the remark after Proposition 1.1.1).

These biadjunctions say that ⊗ restricts to a 2-product on Map(B), and I
is 2-terminal in Map(B)2. Such bicategorical limits are essentially uniquely de-
termined, i.e. uniquely determined up to equivalences which in turn are unique

2We use the term ‘2-product’ to refer to a bicategorical limit, avoiding ‘biproduct’ since
this can mean an object which is simultaneously a product and coproduct. To be consistent,
we also use the terms ‘2-terminal’ and ‘2-universal’.
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up to unique isomorphism. In ?? we show that this essential uniqueness extends
to the global structures on B in Definition 1.2.1, so a bicategory B admits essen-
tially just one cartesian structure, if any. A cartesian bicategory is a bicategory
which admits a cartesian structure.
Examples:

1. Consider the bicategory Mod whose objects are small categories, whose
arrows R : A → B are functors Bop × A → Set (left A- right B-
modules), and whose 2-cells are natural transformations between such
functors. Composition is module tensor product, as suggested by the co-
end formula

(SR)(c, a) =
∫ b:B

S(c, b)×R(b, a).

Identities 1A : A → A in Mod are hom-functors A(−,−) : Aop×A → Set,
according to the Yoneda lemma. This bicategory Mod is cartesian.

For objects A, B in Mod, A⊗B is the categorical cartesian product; for
arrows, one has the formula

(R⊗S)(〈b, d〉, 〈a, c〉) = R(b, a)× S(d, c)

where R : A → B and S : C → D are modules.

The bicategory of maps in Mod is biequivalent to the 2-category of
small cauchy-complete categories and functors between them (a category
is cauchy-complete if every idempotent morphism splits; cf. [?]). For, the
category of modules from A to B is equivalent to the category of modules
from A to B̄, the cauchy- (or idempotent splitting-) completion of B, so B
and B̄ are equivalent in Mod by Yoneda; every functor f : A → B gives
rise to a left adjoint module B(−, f−) : Bop×A → Set with right adjoint
B(f−,−); every left adjoint module into B̄ arises in this way.

2. Other cartesian bicategories with special properties are Modgpd, the bi-
category of modules between small groupoids, and Modord, the bicate-
gory of modules between partially ordered sets (viewed as categories). As
categories, partially ordered groupoids are equivalent to sets, and modules
between them form a bicategory better known as Span.

3. These examples generalize in various directions. There is a cartesian bicat-
egory of modules internal to any topos. In a different direction, working
in enriched category theory, there is a cartesian bicategory of V -enriched
modules between small V -categories whenever V is a cocomplete cartesian
closed category. Notice that in this context, the notion of V -groupoid and
V -order make sense; taking V = (0 → 1), V -Modgpd is biequivalent to
Rel, the bicategory of sets and relations.
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1.3 Monoidal bicategory structure

Let B be a cartesian bicategory. The finite 2-product structure on Map(B)
gives Map(B) a symmetric monoidal bicategory structure3. We give a simple
argument that the symmetric monoidal structure on Map(B) extends to B.

1.3.1 B is symmetric monoidal

The associativity constraint on B,

α(a, b, c) : (a⊗b)⊗c → a⊗(b⊗c),

is defined by regarding a, b, c as objects in Map(B) and using the associativity
there. The associativity on Map(B) has an expression in terms of ⊗, δ, π
which are globally defined on B, so that expression defines a lax transformation
α on B. By similar reasoning, the symmetry and unit constraints on Map(B)
extend to lax transformations on B. We show in a moment that all of these lax
constraints are strong equivalences on B.

Symmetric monoidal structure on B also demands various structural modifi-
cations (such as a Yang-Baxter modification R•|•,•) satisfying certain coherence
conditions, but the components of such modifications (Ra|b,c say) are defined
by regarding their arguments a, b, c as objects in Map(B) and using the ap-
propriate modifications there. Again, each such modification on Map(B) is
definable in terms of biadjunction data ⊗, I, δ, π, ε, s, t, u which are globally
defined on B, so each is a modification on B. Various coherence conditions on
the modifications must be checked, but the conditions hold at every choice of
arguments in B by regarding the arguments as objects of Map(B) and using
the symmetric monoidal structure there, so the conditions hold on B.

We now show that the associativity, symmetry, and unit constraints are
strong equivalences on B. In Map(B), the associativity α has a left adjoint (in
fact a quasi-inverse) α− with components

α−(a, b, c) : a⊗(b⊗c) → (a⊗b)⊗c,

and (like α) α− extends to a lax transformation in Lax(B×B×B,B). The unit
and counit isomorphisms for α− a α, being expressible in terms of biadjunction
data which are globally defined on B, are modifications in Lax(B×B×B,B).
Thus α, and by similar reasoning the symmetry and unit constraints, are strong
transformations by the following lemma:

Lemma 1.3.1 If α− a α is an adjunction in Lax(C, B), then α is strong. If
α− a α is an adjoint equivalence (whence α− a α and α a α−), then α and α−

are strong.
3That finite 2-products are symmetric monoidal is taken as a given. The proof appeals to

universality arguments, analogous to the proof that ordinary categorical products are sym-
metric monoidal. We touch upon these in ??.
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Proof: Given any 1-cell r : c → d in C, let evc : Lax(C,B) → B be the
homomorphism which evaluates at c, and let evr : evc → evd be the evident
colax transformation. If α is a right adjoint in Lax(C, B), then by dualizing
Proposition 1.1.1, evr(α) = αr is invertible, hence α is strong. QED

This completes the argument that the symmetric monoidal structure on
Map(B) extends to B.

1.3.2 Strictification

Being a monoidal bicategory, B may be regarded as a one-object tricategory
[?]. By coherence for tricategories, B is triequivalent to a Gray-monoid, i.e. a
monoid in the symmetric monoidal closed category Gray identified in [?]. (The
objects of Gray are 2-categories, the morphisms are 2-functors, and hom(B,C)
for 2-categories B, C is the 2-category of 2-functors, strong transformations, and
modifications from B to C: this describes the closed structure.) Henceforth the
diagrammatic notation we use will be as if B were a Gray-monoid (despite the
fact we will call B a bicategory, not a 2-category). This notational shift requires
that B×B be replaced by the Gray tensor product B⊗GB (for which there is
a standard biequivalence B×B ' B⊗GB), and the monoidal product on B by
a 2-functor again denoted by ⊗:

⊗ : B⊗GB → B

(despite the fact we will call ⊗ a homomorphism, not a 2-functor). The diagonal
on B is replaced by the composite

B ∆→ B×B ' B⊗GB.

In particular, in a diagram such as

b - b⊗b
?

δb

a - a⊗a

?

δr
⇒ r⊗rr

δa

r⊗r is defined to be (r⊗1)(1⊗r) in B⊗GB, following the general definitional
conventions for cubical tricategories ([?], p. 39).

We make some further adjustments to bring our notation in conformity with
[?]: the object I will usually be denoted by 1, and occasionally it is convenient
to rewrite the components of π : ∆⊗ → 1B×B, i.e. the projections

(π1, π2) : (b⊗c, b⊗c) → (b, c),

in terms of ε and the Gray-monoid structure, e.g.,

(π1 : b⊗c → b) = (b⊗c
b⊗εc→ b⊗1 = b).
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