1. Let \(p, q, \) and \(r \) be propositions. Prove or disprove:

\[
p \land (q \lor r) \equiv (p \lor q) \land (p \lor r)
\]

2. Which of the following statements are true? For each false statement, provide a counterexample. The domain (universe) for all variables is the set of real numbers.

(1) \(\forall x \exists y \ (x^2 = y) \)
(2) \(\forall x \exists y \ (x = y^2) \)
(3) \(\exists x \forall y \ (xy = 0) \)
(4) \(\exists y \forall x \ (x + y = 0) \)
(5) \(\forall x \exists y \ (x + y = 1) \)

3. Let \(a, b, \) and \(c \) be integers. Prove that if \(a|b \) and \(a|c \), then \(a|(b + c) \).

4. Prove by mathematical induction the following summation formulas:

(1) \(2 + 4 + \cdots + 2n = n(n + 1) \)
(2) \(2^2 + 4^2 + \cdots + (2n)^2 = \frac{2n(n + 1)(2n + 1)}{3} \)

5. Evaluate each of the following sums:

(1) \(5 + 25 + 125 + 625 + \cdots + 5^{10} \)
(2) \(\sum_{i=1}^{100} 2i \)
(3) \(\sum_{i=2}^{8} 3 \)
(4) \(\sum_{i=0}^{8} (2^{i+1} - 2^i) \)

6. Let \(A = \{a, b, c\} \) and \(B = \{x, y\} \), and \(C = \{0, 1\} \). Compute each of the following sets.

(1) \(A \times B \times C \)
(2) \(C \times B \times A \)
7. Let \(A, B, \) and \(C \) be sets. Prove or disprove:

\[
A - (B \cap C) = (A - B) \cap (A - C)
\]

8. (1) Can you conclude that \(A = B \) if \(A, B, \) and \(C \) are sets such that
\(A \cup C = B \cup C \)? Justify your answer.

(2) Can you conclude that \(A = B \) if \(A, B, \) and \(C \) are sets such that
\(A \cap C = B \cap C \)? Justify your answer.

9. Write down all of the properties that each of the following relations \(R \)
defined on the set of positive integers satisfies from among the properties
reflexive, symmetric, antisymmetric, and transitive. Justify your answers.

(1) \((x, y) \in R \) if 2 divides \(x + y \)

(2) \((x, y) \in R \) if 3 divides \(x + y \)

10. Give an example of a relation on \(\{1, 2, 3, 4\} \) that is reflexive, not antisymmetric, and not transitive.