Algorithm-testing exercise

The goal of this exercise is to recognize predicted run-time behaviour for
some of the sorting algorithms we have studied: Insertion-sort, Heapsort,
Quicksort. It may help increase appreciation for good algorithms.

Given are 4 types of data: (pseudo)random(r), sorted(s), reverse sorted(i),
and almost sorted(a), and 4 executables (one for each algorithm, and make-
data). You need to produce 4 datafiles of sizes n, 2n, 4n, 8n for each datatype
using makedata and run them through all 3 sorting programs, while mea-
suring execution time. Each code will print the number of comparisons per-
formed at the end of execution. You will need to put the results in a table
and recognize then behaviour predicted by the analysis.

Steps:
1. Buzld the codes

e copy the file
people.cs.uchicago.edu/ brady/CSPP570/homework /sorts.tar
to your working directory (it may be worth making a directory
specifically to be used with this application)

e run the command: tar -xf sorts.tar
e run the command: make which will build the 4 executables:
heapsort, insertsort, makedata, quicksort

2. Make data

e Choose an n (10000 < n < 50000 depending on how fast your
machine is) and type: makedata k datatype filename for each
of K = n,2n,4n,8n, and datatypes r, s, i, a. Give meaningful
names to the files.

e Usage example: makedata 100 a a_100_as.dat will produce an
almost sorted array of 100 and store it in the file a_100_as.dat

3. Run all codes on each datafile and record data in 4 tables, one for each
data type (see a model below).

e For anything that takes longer than 2 minutes don’t bother; just
mark this in the table.

e Usage and example: time quicksort a_100_as.dat will sort the
array and output the number of comparisons performed. The
time command will output the execution times in seconds. Record
the first one of the numbers (user time).

e To see the actual results of the sorting add a w as an option at
the end of the command line. Do not do this when measuring
time and with large datafiles, i/o to the screen takes a long time.
example: quicksort a_100_as.dat w.

4. Interpret data

e Verify in detail that predicted behavior takes place, i.e., if pre-
dicted behavior is : #of comparisons ~ Cn?, verify on the data
that such a C exists (find its value).

e Example: Quicksort on sorted data is expected to require Cn?
work. What we do is take C = T'(n)/n? and put the corresponding
constant below. Here’s how my table looks:

n 100 200 400 800 1600
T(n) 5346 | 20696 81396 | 322796 | 1.2856e4-06
C 0.5346 | 0.5174 | 0.508725 | 0.504368 | 0.5021875

We notice a certain convergence in the constants which shows
that the data fits with the formula T'(n) ~ Cn? and we can
certainly say T'(n) < 0.5022n? for n > 1600, but we believe T'(n) ~
0.5022n? ~ n?/2 is a good guess for quicksort on this data type.

5. Given your results from step 3, predict the behavior of each code on
two data files:

(a) (our) “random” data with n = 1,000,000(10°)

(b) (our) almost sorted data with n = 10°
Use your predictions to rank the algorithms on each type of data by
running time, then run the fastest for each case and compare your pre-

diction to the actual result, both in terms of running time and number
of comparisons.

6. How relevant is the # of comparisons to the actual runtime? (Check
for proportionality)

Turn in: the tables and the answers to 4, 5, 6

