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Abstract—Writing toString functions to display custom data
values is straightforward, but building custom interfaces to
manipulate such values is more difficult. Though tolerable in
many scenarios, this difficulty is acute in emerging value-centric
IDEs—such as those that provide programming by examples
(PBE) or bidirectional transformation (BX) modalities, in which
users manipulate output values to specify programs.

We present an approach that automatically generates custom
GUIs from ordinary toString functions. By tracing the execution
of the toString function on an input value, our technique
overlays a tiny structure editor upon the output string: UI widgets
for selecting, adding, removing, and modifying elements of the
original value are displayed atop appropriate substrings.

We implement our technique—in a tool called TSE—for a
simple functional language with custom algebraic data types
(ADTs), and evaluate the tiny structure editors produced by TSE
on a selection of existing and custom toString functions.

I. INTRODUCTION

Programmers often write toString functions to help in-
terpret and debug code involving custom data types. For
example, for a type of values describing numeric intervals,
the string "(-00,10]1" conveys the meaning “all numbers
less than or equal to 10” more succinctly than the string
"Interval(NegInf(), Before(10, True))", which might
be a default serialization provided by the language.

Custom toString functions are usually straightforward to
write, but what if the programmer needs not only to display
the value but also edit the value as well?

One idea is for the programming environment to enrich
default string representations with automatically-generated,
type-directed GUI widgets. For example, given the default
representation "Interval (NegInf(), Before(10, True))”,
the system might render a slider for “scrubbing” 10 to different
values ([1], [2]) and a widget to select NegInf () and toggle
it to After(@, False).

Ideally, however, the domain-specific representation
"(-00,10]" would be editable, not just the default
representation. Unfortunately, creating an editable domain-
specific representation of values is considerably more difficult
than writing toString functions for display.

Our Approach: Tiny Structure Editors (TSE)

We design a system, called TSE, that given a toString
function for a custom data type, automatically generates tiny
structure editors for manipulating values of that type.
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Fig. 1. Selection regions and Ul elements generated by tracing the execution
of the toString function for an interval data type.

To do so, TSE instruments the execution of the toString
function applied to a value, and then overlays UI widgets on
top of appropriate locations in the output string (Figure 1).
To determine these locations, TSE employs two key technical
ideas: (a) a modified string concatenation operation that pre-
serves information about substring locations and (b) runtime
dependency tracing (based on Transparent ML [3]) to relate
those substrings to parts of the input value.

We implement TSE for a simple functional language with
algebraic data types (ADTs), and we discuss the tiny structure
editors that TSE produces.

Potential Applications

TSE is currently a prototype, proof-of-concept tool. How-
ever, we believe our approach would benefit a number of
emerging techniques that allow programmers to specify code
via direct manipulation of program values.

Literals in a Structure Editor. In structure editors—such as the
Cornell Program Synthesizer [4]—and block-based editors—
such as Scratch [S]—tree transformations rather than raw text
edits are used to manipulate data structures (such as abstract
syntax trees). Liberated from raw text buffers, structure edi-
tors can use domain-specific representations for display. For
example, the Barista [6] editor for Java offers rich, custom,
type-specific views for mathematical and logical expressions
in code. But display is easier than editing: for editing, Barista
falls back to ordinary textual manipulation.

Programming by Examples (PBE). Given input-output exam-
ples, these systems (e.g. [7], [8]) synthesize a small program.
Sometimes many examples are required: Myth [8] requires
20 examples to synthesize binary tree insertion. Providing so
many examples in text form can be cumbersome.

Direct-Manipulation Programming. Several tools augment
text-based coding with direct manipulation of output values.

Bidirectional programming (BX) systems allow users to edit
numbers ([9], [10], [11], [12]), strings ([13], [14], [11], [12]),
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or lists ([12]) in the output of a program to thereby change
appropriate literals in the original code.

Compared to these BX systems, output-directed program-
ming (ODP) systems allow the user to make larger, structural
changes to the program ([15], [16], [2], [17], [18]), performing
refactorings or inserting chunks of new code. To date, ODP
systems carefully implement bespoke, domain-specific inter-
faces to enable selection and manipulation of the output.

Related Work

Each of the programming interactions above would benefit
from an easy way to create domain-specific interfaces for
custom data types. How do users currently input and edit
program values in such systems?

Parse Functions. Programming is largely a text-based activity;
entering values via text is thus a natural interface, but requires
a parser. Custom parsers can be integrated with a language
pre-processor like Template Haskell [19] or typed literal
macros [20]. But the difficulty of writing a parser may not be
worth the gain in expressiveness over the language’s default
value parser. Our approach provides a structure editor on a
domain-specific representation of a value, without the labor
of writing a parser. These approaches could be combined: a
structure editor could offer an optional text interface for bulk
input, although our prototype does not yet.

Handcrafted GUIs. If interaction is important, the programmer
may opt to manually craft a custom graphical user interface for
their data type. Although this effort is justifiable for common
types, e.g. colors or regular expressions [21], writing a custom
UI may not be worth the trouble for one-off data types.

String Tracing. Some previous systems ([13], [14]) trace string
operations, enabling developers to directly edit HTML output
and thereby modify appropriate literal strings in the source
PHP or Javascript. TSE also relies on tracing, but uses a more
generic mechanism [3], allowing TSE to track how substrings
relate to any value of interest, rather than just string literals.

II. OUR APPROACH

Our approach, tiny structure editors (TSE), uses a cus-
tom program evaluator to instrument the execution of a
programmer-provided toString function. TSE displays the
string output and overlays Ul widgets over appropriate sub-
strings, allowing the user to modify the original value, but
by interacting with the domain-specific representation gener-
ated by the toString function. Our TSE prototype supports
toString functions over custom algebraic data types (ADTs)
in an ordinary functional language similar to Elm.'

Algebraic Data Types (ADTs)

Somewhat analogous to inheritance in object-oriented lan-
guages, algebraic data types (ADTs) enumerate the variants
of a type and the data associated with each variant [22].

! https://elm-lang.org/. But note that, following OO and imperative
languages, we use parentheses for function calls and constructor calls in TSE.

type Begin = NegInf() | After(Num, Bool)
type End = Before(Num, Bool) | Inf()
type Interval = Interval(Begin, End)

toString : Begin -> String

toString(begin) = case begin of
NegInf() -> "(-00"
After(num, isClosed) ->

(if isClosed then "[" else "(") ++ toString(num)

toString : End -> String

toString(end) = case end of
Inf() -> "oo)"
Before(num, isClosed) ->

toString(num) ++ (if isClosed then "]" else ")")

toString : Interval -> String
toString(interval) = case interval of
Interval(begin, end) ->
toString(begin) ++ "," ++ toString(end)

valueOfInterest : Interval

valueOfInterest =
Interval(NegInf(), Before(10, True))

Fig. 2. ADT and toString definitions for a custom interval type.

Unlike an object, an ADT value is raw data, separate from the
functions that operate on it. Because ADTs succinctly describe
the variants of plain data, ADTs are beginning to appear in
mainstream languages: “enums” in Swift and Rust are ADTs,
as are “case classes” in Scala and “discriminated unions” in
Typescript.

Figure 2 shows three ADT definitions comprising a custom
interval data type. The lower bound of an interval (Begin)
has two variants representing whether the bound is negative
infinity (NegInf()) or finite (After(...)). If finite, the bound
records the finite boundary number and a boolean indicating
whether the boundary is or is not included in the interval
(is or is not closed). The type describing upper boundaries
(End) is similar. An interval (Interval) is a lower and upper
boundary together. The first word of each variant (NegInf,
After, Before, Inf, Interval) is a constructor which acts
as a function to create a value of the ADT. The last line of
Figure 2 uses these constructors to create an interval value
representing (—oo, 10]. Data inside ADT values is extracted
using “pattern matching” in case splits (i.e. switch statements)
which define the handling of alternative variants, as shown in
the toString functions in Figure 2.

Algorithm

Our automatic algorithm for generating tiny structure editors
proceeds in three steps. The tracing evaluator relates substrings
to portions of the original value, then 2D spatial regions
over the rendered string are computed, and finally actions are
assigned to the 2D regions.

1) Dependency Tracing: TSE utilizes a custom evaluator
that traces dependency provenance, following Transparent
ML (TML) [3]. The value of interest and its subvalues are
first tagged with projection paths (e.g. 2.2.e) indicating their
location within the value of interest:

Interval(NegInf() ' *} Before(102:1-*} Truet?2-e}y{2.ely{e}
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Based on the value’s type, the appropriate toString function
is invoked on the value of interest and the tracing evaluator
propagates the dependency
tags. Additionally, in TSE,
string concatenation oper-
ations (++) do not produce
a new, flattened string.
Instead, the concatenation
is deferred, resulting in nigriziie} nyn{2.2.e}
a binary tree of sub- (b)

strings when evaluation
completes (Figure 3). Be-
cause of the tracing eval-
uator, each substring and each concatenation carries a set of
projection paths, relating parts of the string to parts of the
value of interest (Figure 3b).
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Fig. 3. A concatenation tree (two views).

2) Spatial Regions: In the final

display, selection regions and UI (@
widgets will be overlaid on top
of the rendered string. To gener- (b)
ate the selection regions, the string
concatenation binary tree is trans- (©)
lated into a binary tree of nested {
2D polygons, with each polygon
encompassing the spatial region of (g,
the associated substring (Figure 4a).
Only regions associated with at least }
one path will ultimately be rele-
vant (Figure 4b). Although a tree,
the regions are nested tightly (Fig-
ure 4c), which can cause occlusion
(discussed later). For a multiline string, the regions are shrunk
to exclude whitespace, and each region may also exclude a
portion of its first and last line (Figure 4d).

Fig. 4. String concatenations
are translated into 2D regions
atop the rendered string.

3) Selections and Actions: Once 2D regions of the dis-
played string are associated with corresponding locations in
the value of interest, these 2D regions can be used to facilitate
a number of interactions. Our TSE prototype explores three:
(a) selection of subvalues; (b) base value editing of numbers
and strings; and (c) structural transformations, namely item
insertion, item removal, and constructor swapping.

Selection regions. When the user moves their cursor over
the rendered string, the deepest (equivalently, smallest) region
under their mouse is offered for selection/deselection. For the
interval example, there are four possible selection regions,
shown in Figure 1. Selection is currently inert, but the selection
regions are the basis for positioning Ul widgets. In the
future, selection might facilitate cut-copy-paste operations, as
in Vital [15], or might open a floating menu of possible code
refactorings, as in Sketch-n-Sketch [18].

Editing base values. Literal numbers or strings from the value
of interest may pass through to the output unchanged, for
example the number 10 in the interval example. TSE lets the
user manipulate these values. The user may click a number and

drag up and down to scrub [1] the number to a different value.
Both numbers and strings can be double-clicked to reveal a
standard text box to text edit the value.

Structural transformations. Because an ADT definition de-
scribes the allowable structures for a value, TSE is able to
infer possible transformations on the value of interest. For the
interval example, the Begin, End, and Bool types each have
an alternative constructor which can be toggled by clicking
the change constructor button (&) drawn to the left of the
appropriate subvalue (Figure 1). These buttons allow the user
to, e.g., change the lower bound from —oo to a finite bound
(0 by default), or to toggle the boolean thus changing a finite
boundary from closed ("1") to open (")"). Which buttons to
display are based on the selection region for the current mouse
position—the deepest (smallest) region under the cursor. Since
deepest regions may completely occlude some of their ances-
tors, TSE also displays the change constructor buttons for any
such ancestor region that has no selectable area. For example,
the End value "10]" is completely occluded by the Num "10"
and the Bool "]", so when the cursor is over the Num or Bool
TSE shows the change constructor button for End (the & over
the comma in the right two cases in Figure 1).

For recursive ADTs such as lists or trees, TSE additionally
draws buttons to insert (®) or remove (X) items from the data
structure, as shown in Figure 5 for a list. Remove buttons
are associated with item(s) to be removed. Insert buttons are
trickier to position—TSE must predict where an item not
currently in the data structure will appear. This prediction is
occasionally imprecise, as evaluated below.

Finally, in some cases, multiple buttons would be rendered
in identical locations. Such overlapping buttons are coalesced
into a single button that opens a menu offering the different
transformations.

m
type List<a> = Nil() | Cons(a, List<a>) [ 1 ’ 2 ’ % 4 ]

Fig. 5. Generated GUI for list Cons(1,Cons(2,Cons(3,Cons(4,Ni1())))).

Additional Tracing Details

In ordinary TML [3], certain constant substrings, such as the
opening "[" and closing "]" of a list, are not dependent on the
list because they are always shown. To associate these constant
delimiters with the appropriate value, TSE tags the entire result
of any toString call as dependent on its argument. For similar
scenarios that do not occur at toString boundaries, TSE also
offers a basedOn(dep, x) primitive that the toString author
may use to add dep to the dependencies of x.

On the other hand, to avoid extraneous dependencies, prefix
and suffix strings shared by all branches of a case split
are pulled outside the case split—otherwise, these constant
substrings would be marked as dependent on the the value
being split on. This normalization happens transparently before
every execution and is not displayed to the user.



%Selectable

Items

%Reasonable
Inserts

Notes

Data Structure Description Subvalues
Interval "(-00,10]" 80% (4/5)
Date "May 9, 2020" 100% (4/4)
JSON (multiline) w/arrays, objects, strings, nums 33% (14/43)
List "[1,2,3]" 86% (6/7)
List ("]" in base case) "[1,2,3]" 100% (7/7)
List (via join) "[1,2,3]" 71% (5/7)
List (via different join) "[1,2,3]" 86% (6/7)

Tree (S-exp)
Tree (indented hierarchy)

"2 () (43 G
"2\n 1\n 4\n 3\n

5"

53% (10/19)
21% (4/19)

100% (3/3)
100% (3/3)
100% (3/3)
100% (3/3)
100% (5/5)
100% (5/5)

81% (13/16)
100% (4/4)
100% (4/4)
100% (4/4)
100% (4/4)
14% (2/14)
21% (3/14)

Components represented separately.
basedOn used 3x.

5 inserts missing; poor placements.
5 inserts missing; shared placements.

Pair [23]

List [23]

ADT (recursive) [23]
Record [23]

(10, ten”y"
"[1,2,31"

"Ctor4 (Ctor3 True "asdf")"”

"Record {fieldl = ..., ...}

n

100% (3/3)
100% (7/7)
100% (4/4)
100% (9/9)

Set [24] "fromList [2,3,5,7]1"

100% (3/3) 100% (4/4)
50% (1/2) Bool region too long; same insert 2x.
Bool region too long.
100% (4/4) 0% Not 1-to-1 w/ADT definition.

Fig. 6. Case studies of hand-written and translated toString functions.

III. CASE STUDIES

TSE’s goal is to provide low- to no-cost domain-specific
value editors. We tested TSE on toString functions for
a number of datatypes, measuring several properties of the
generated editors as shown in Figure 6. Figure 6 reports the
percentage of ADT subvalues that could be directly selected
(i.e. were not occluded, missing, or sharing a selection region
with other subvalues). For data types representing containers
(e.g. lists or sets), Figure 6 reports the percentage of contained
items that can be selected. To evaluate TSE’s heuristic for
insert button positioning, Figure 6 also reports the percentage
of insert transformations placed in reasonable locations. An
insert transformation is considered unreasonably placed if
either (a) the insert should be possible but is not assigned
to any button in the UI, or (b) the insert shares a single button
with other inserts, or (c) clicking the button inserts an item at
a location other than the button’s position.

To provide evidence that TSE can operate on unmodified
toString functions, we translated several toString functions
from Haskell’s standard libraries to our Elm-like language, as
shown in the bottom half of Figure 6. These translations were
performed as literally as possible.

The case studies revealed a few issues to address in sub-
sequent versions of TSE. Most notably, zero-width regions
such as those from empty strings are ignored, which for
some variants of list toString caused the final Nil() to
be un-selectable. Additionally, selection region sharing and
occlusion are sometimes troublesome. Two subvalues sharing
the same selection region is a less of an issue—depending on
the application, selecting a shared region could offer to operate
on any of the associated items. Occlusion, however, results in
certain subvalues being un-selectable. One solution might be
to expand ancestor regions by a few pixels, resulting in regions
more like Figure 4b rather than Figure 4c. Finally, insert
buttons could be better placed for tree-like data structures,
but, as discussed next, how best to handle actions is a domain-
specific consideration.

IV. DISCUSSION

TSE generates structure editors based on the toString
function for a value, with little to no further programmer effort

required. We envision value-centric programming systems that
offer editable, domain-specific representations for custom data
types, thus affording the programmer a more natural interface
for specifying changes on the operation of their program.

At present, we implemented our TSE prototype independent
of any of these possible settings. While our independent imple-
mentation highlights TSE’s key techniques, applying TSE to
a particular application requires a number of further design
decisions, particularly surrounding the handling of actions.
For example, consider the set data structure in Figure 6.
The reference implementation [24] is based on a tree and
maintains a number of invariants such as balancing, ordering,
and non-duplication. None of these invariants are expressible
in a standard ADT definition alone, and the internal tree
structure is not exposed in the toString output ("fromList
[2,3,5,7]"). Therefore, only some of TSE’s selection re-
gions are relevant—namely, the terminal items, as reported
in Figure 6—and the structural transformations generated by
TSE are not meaningful because they do not enforce the set
invariants. TSE does not yet provide an interface for specifying
custom insert and remove functions, instead we imagine such
an interface would be part of a larger, future IDE.

Beyond action handling for data with complex invariants,
our prototype has a number of minor limitations. First, systems
that rely on string tracing ([13], [14]) provide custom im-
plementations of string manipulation functions that correctly
propagate dependencies. We currently only support string
concatenation and string length—supplementing our language
with additional string functions remains future work. Finally,
our core language and TML do not support nested pattern
matches. How dependency semantics should work for nested
patterns is an open question—although a language’s compiler
will unnest the patterns [25], different unnestings can result
in different dependency traces. While not uncommon, such
ambiguous cases did not occur in our examples.

Adapting TSE to the more common object-oriented setting
will require different tracing semantics, because “variants” are
handled by virtual method lookups rather than case splits.

Further details about TSE’s algorithm and heuristics will be
available in an accompanying technical report.
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