
Decomposed Bounded Floats for Fast Compression and�eries
Chunwei Liu, Hao Jiang, John Paparrizos, Aaron J. Elmore

University of Chicago
{chunwei,hajiang,jopa,aelmore}@cs.uchicago.edu

ABSTRACT
Modern data-intensive applications often generate large amounts
of low precision �oat data with a limited range of values. Despite
the prevalence of such data, there is a lack of an e�ective solution
to ingest, store, and analyze bounded, low-precision, numeric data.
To address this gap, we propose Bu�, a new compression technique
that uses a decomposed columnar storage and encoding methods
to provide e�ective compression, fast ingestion, and high-speed
in-situ adaptive query operators with SIMD support.

PVLDB Reference Format:
Chunwei Liu, Hao Jiang, John Paparrizos, Aaron J. Elmore. Decomposed
Bounded Floats for Fast Compression and Queries. PVLDB, 14(11): 2586 -
2598, 2021.
doi:10.14778/3476249.3476305

1 INTRODUCTION
Modern applications and systems are generating massive amounts
of low precision �oating-point data. This includes server moni-
toring, smart cities, smart farming, autonomous vehicles, and IoT
devices. For example, consider a clinical thermometer that records
values between 80.0 to 120.9, a GPS device between -180.0000 to
180.0000, or an index fund between 0.0001 to 9,999.9999. The In-
ternational Data Corporation predicts that the global amount of
data will reach 175/⌫ by 2025 [44], and sensors and automated
processes will be a signi�cant driver of this growth. To address
this growth, data systems require new methods to e�ciently store
and query this low-precision �oating-point data, especially as data
growth is outpacing the growth of storage and computation [38].

Several popular formats exist for storing numeric data with var-
ied precision. A �xed-point representation allows for a �xed number
of bits to be allocated for the data to the right of the radix (i.e., dec-
imal point) but is not commonly used due to the more popular
�oating-point representation. Floats (or �oating-point) allows for
a variable amount of precision by allocating bits before and after
the radix point (hence the �oating radix point), within a �xed total
number of bytes (32 or 64). For �oats, the IEEE �oat standard [24]
is widely supported both by modern processors and programming
languages, and is ubiquitous in today’s applications.

However, two main reasons result in �oats not being ideal for
many modern applications: (i) an overly high-precision and broader
range that wastes storage and query e�ciency; and (ii) not being
amenable for e�ective compression with e�cient in-situ �ltering
operations. For the former reasons, many databases o�er custom

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476305

Figure 1: Many datasets only span a �xed range of values
with limited precision, which is a small subset of broad�oat
number range and precision.

precision format, typically referred to as a numeric data type. For
example, consider Figure 1 that shows how precision varies for the
IEEE �oat standard and sample application requirements on GPS
and temperature datasets. The numeric approach allows for “just
enough” precision but is not well optimized for e�cient storage
and �ltering. Several methods have been explored for the latter
reason, but due to the standard format, compression opportunities
are limited for compression e�ectiveness, throughput, and in-situ
query execution. This paper proposes a new storage format that
extends the ideas of a numeric data type that supports custom
precision but is optimized for fast and e�ective encoding while
allowing to work directly over the encoded data.

Tomotivate our design, we �rst describe short-comings with pop-
ular compression techniques for bounded-precision �oating data.
Speci�cally, the recently proposed Gorilla method [40] is a delta-
like compression approach that calculates the XOR for adjacent
values and only saves the di�erence. Gorilla achieves compression
bene�ts by replacing the leading and trailing zeros with counts.
Gorilla is a state-of-the-art compression approach for �oats, but it
does not work well on low-precision datasets as low-precision does
not impact �oat’s representation similarity. In addition, Gorilla’s
encoding and decoding steps are slow because of its complex vari-
able coding mechanism. Alternative �oat compression approaches
leverage integer compression techniques by scaling the �oat point
value into integer [9]. Despite their simplicity, these approaches
rely on multiplication and division operations that are usually ex-
pensive and, importantly, cause over�owing problems when the
input value and the quantization (i.e., scaling) factor are too large.

General-purpose byte-oriented compression approaches, such
as Gzip [17], Snappy [52] and Zlib [21], can also be applied to
compress �oats. The input �oat values are serialized into binary
representation before applying byte-oriented compression. These
compression approaches are usually slow because of multiple scans
looking for commonly repeated byte sub-sequences. Furthermore,
full decompression is needed before any query evaluation. Dictio-
nary encoding [8, 32, 46] is applicable for �oat data, but it is not

https://doi.org/10.14778/3476249.3476305
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476305

ideal since the cardinality of input �oat data is usually high, result-
ing in an expensive dictionary operation overhead. Note that we
are only considering lossless formats or formats with bounded loss
(e.g., con�gurable precision). Lossy methods (e.g., spectral decom-
positions [19] and representation learning [35]) may compress the
data more aggressively but often at the cost of losing accuracy.

Decades of database systems demonstrate the bene�t of a format
that allows for a value domain that includes a con�gurable amount
of precision. We take this approach, and to address the above con-
cerns, integrate ideas from columnar systems and data compression
for our proposed method, BoUnded Fast Floats compression (Bu�).
Bu� provides fast ingestion from �oat-based inputs and a compress-
ible decomposed columnar format for fast queries. Bu� ingestion
avoids expensive conditional logic and �oating-point mathematics.
Our storage format relies on a �xed-size representation for fast data
skipping and random access, and incorporates encoding techniques,
such as bit-packing, delta-encoding, and sparse formats to provide
good compression ratios1 and fast adaptive query operators. When
de�ning an attribute that uses Bu�, the user de�nes the precision
and optionally the minimum and maximum values (e.g., 90.000-
119.999). Without the de�ned min and max values, our approach
infers these through the observed range, but at a decreased inges-
tion performance. Our experiments show the superiority of Bu�
over current state-of-the-art approaches. Compared to the state-of-
the-art, Bu� achieves up to 35⇥ speedup for low selective �ltering,
up to 50⇥ speedup for aggregations and high selective �ltering,
and 1.5⇥ speedup for ingestion with a single thread, while o�ering
comparable compression sizes to the state-of-the-art.

We start with a review of the relevant background (Section 2),
which covers numeric representations (Section 2.1) and awide range
of compression methods (Section 2.2). In Section 3, we present Bu�
compression and query execution with four contributions:

• We introduce a “just-enough” bit representation for many
real-world datasets based on the observation of their limited
precision and range (Section 3.1).

• We apply an aligned decomposed byte-oriented columnar stor-
age layout for �oats to enable fast encoding with progressive,
in-situ query execution on compressed data (Section 3.2).

• We propose sparse encoding to handle outliers during com-
pression and query execution (Section 3.3).

• We devise an adaptive �ltering to automatically choose be-
tween SIMD and scalar �ltering (Section 3.4).

We evaluate Bu�with its competitors in terms of compression ratio
and query performance in Section 4, and conclude in Section 5.

2 BACKGROUND AND RELATEDWORK
In this section, we �rst introduce several numeric data represen-
tations, including the most popular �oat format. Then, we review
several �oat compression approaches with a set of examples. Fi-
nally, we include popular query-friendly data structures that have
in�uenced our compression format.

2.1 Numeric Data Representation
Numeric data representation is the internal representation of nu-
meric values in any hardware or software of digital systems, such as

1Compression ratio is de�ned as compressed_size
uncompressed_size .

programmable computers and calculators [48]. Many data represen-
tations are developed according to di�erent system and application
requirements. The most popular implementations include �xed-
point (including numeric data type) and �oat-point.
Fixed-point uses a tuple < B86=, 8=C464A , 5 A02C8>=0; > to represent
a real number ':

' = (�1)B86= ⇤ 8=C464A .5 A02C8>=0;
Fixed-point partitions its bits into two �xed parts: signed/unsigned
integer section and fractional section. For a given bits budget # ,
the �xed-point allocate a single bit for sign, � bits for the integer
part, and � bits for the fractional part (where # = 1 + � + �). Fixed-
point always has a speci�c number of bits for the integer part and
fractional part. Figure 2 shows examples of �xed-point; as we can
see from the “Fixed” column, the radix point’s location is always
�xed, no matter how large or small the corresponding real number
is. Fixed-point arithmetic is just scaled integer arithmetic, so most
hardware implementations treat �xed-point numbers as integer
numbers with logically decimal point partition between integer and
fractional part. Fixed-point usually has a limited range (�2� ⇠ 2�)
and precision (2(��)), thus it can encounter over�ow or under-
�ow issues. A more advanced dynamic �xed-point representations
allow moving the point to achieve the trade-o� between range
and precision. However, this is more complicated as it involves
extra control bits indicating the location of the point. Fixed-point
is rarely used outside of old or low-cost embedded microproces-
sors where a �oating-point unit (FPU) is unavailable. Fixed-point is
currently supported by few computer languages as �oating-point
representations are usually simpler to use and accurate enough.
Floating-point uses a tuple < B86=, 4G?>=4=C,<0=C8BB0 > to rep-
resent a real number ':

' = (�1)B86= ⇤<0=C8BB0 ⇤ V4G?>=4=C

Instead of using a �xed number of bits for the integer part and
fractional part, Float point reserves a certain number of bits for the
exponent part and mantissa, respectively. The base V is an implicit
constant given by the number representation system, while in our
�oating-point representation, V equals to 2. The number of signi�-
cant digits does not depend on the position of the decimal point.
For a given bit budget # , the �oating-point allocates a single bit
for sign, ⇢ bits for the exponent part, and" bits for the mantissa
part (where # = 1 + ⇢ + "). The IEEE standard de�nes the for-
mat for single and double �oating-point numbers using 32 and 64
bits, respectively. The exponent is encoded using an o�set-binary
representation with the zero o�set by exponent bias:

' = (�1)B86= ⇤ 1.<0=C8BB0 ⇤ 24G?>=4=C

The IEEE standard speci�es a 32-bits �oat as having: Sign bit: 1 bit,
Exponent width: 8 bits (o�set by 127), and Signi�cand precision:
24 bits (23 explicitly stored). Figure 2 shows several examples of
32-bits �oat format; as we can see from the ‘32-bits �oat’ column,
the underlined bits correspond to the fractional bits, and the radix
point is �oating base on its represented value.
Numeric data type allocates enough bits for a given real number
depending on the precision and scale of the input. Numeric data
type can store numbers with a very large number of digits and
perform calculations exactly. To declare a column of type numeric,
we use the syntax: NUMERIC(precision, scale). The scale is the

Value Fixed<2,20> 32-bits Float Gorilla
Step 1 XOR with previous value Step 2 write control bits, length and difference bits

0.66 00.10101000111101011100 00111111001010001111010111000011 00111111000111101011100001010010
1.41 01.01101000111101011100 00111111101101000111101011100001 00000000100111001000111100100010 [b11,d8,d22] 10011100100011110010001
1.41 01.01101000111101011100 00111111101101000111101011100001 00000000000000000000000000000000 [b0]
1.50 01.10000000000000000000 00111111110000000000000000000000 00000000011101000111101011100001 [b11.d9,d22] 11101000111101011100001
2.72 10.10111000010100011111 01000000001011100001010001111011 01111111111011100001010001111011 [b11,d1,d31]1111111111011100001010001111011
3.14 11.00100011110101110001 01000000010010001111010111000011 00000000011001101110000110111000 [b10]0000000011001101110000110111000

size(bits) 132 192 176

Sprintz Mostly Dictionary Gzip
Step 1
Quantize×100

Step 2 prediction
Predicted
value

Step 3
delta

Step 4
bit-packing

Step 1 quantize Step 2 mostly16
Step 1 dictionary
encoding

encoded
Step 2
bit-packing

Step 1 LZ77; Step
2 Huffman coding

66 66 1000010 66 0x0042 0 000 3f28f5c3

141 66 75 1001011 141 0x008D 1 001 3fb47ae1

141 141 0 0000000 141 0x008D 1 001 [8,8]

150 141 9 0001001 150 0x0096 2 010 3fc00000

272 150 121 1111001 272 0x0110 3 011 402e147b

314 272 42 0101010 314 0x013A 4 100 404[40,5]

size(bits) 42 96 210 328*

Vk = Predictor(
Vk-1, Vk-2, …)

Leading zeros Meaningful bits Trailing zeros

Control bits: 10 if use previous meaningful bits range

leading zeros (decimal) # meaningful bits (decimal)

Lookup table

[a,b,c]->d
…

0.66 0
1.41 1
1.50 2
2.72 3
3.14 4

Sign bit
Exponent bits Mantissa bits

Fractional bits

Control bits: 0 if xor=0
Control bits: 11 if current meaningful bits does not fit bit
range of previous meaningful bits

Integer bits

Fractional bitsInteger bits

*For Gzip, we skip showing step 2 Huffman coding for space, and report the final encoded size.

Figure 2: Compression examples for di�erent approaches.

count of decimal digits in the fractional part, to the right of the
decimal point. The precision is the total count of signi�cant digits
in the whole number, that is, the number of digits to both sides of
the decimal point (e.g., 65.4321 has a precision of 6 and a scale of 4).

The Numeric data type is used in most database systems, e.g.,
MySQL, PostgreSQL, Redshift, and DB2, when exactness is required.
However, the �exibility and high precision come at the cost of more
control bits associated with each value. The storage cost of the
Numeric type varies depending on the system implementation.
PostgreSQL uses two bytes for each group of four decimal digits,
plus 3 ⇠ 8 bytes overhead for each value. InMySQL, Numeric values
are represented in a binary format that packs nine decimal digits
into four bytes. This makes the Numeric type ine�cient for space.
Besides, the query on Numeric data type is either by materializing
to �oat point for approximate calculation or using its own exact
arithmetic which is very expensive compared to the integer types
or the �oating-point types described earlier.

2.2 Compression for Decimal Numbers
Due to the popularity of �oat-point data, several compression
techniques exist, including methods for �oat-point data, general-
purpose methods, and migrated approaches from integer compres-
sion. We limit our discussion to lossless compression techniques.

Gorilla [40] is an in-memory time-series database developed by
Facebook. It introduces two encodings to improve delta encoding:
delta-of-delta (delta encoding on delta encoding, e.g., [101,102,103,
104] are encoded as [101,1,0,0]) for timestamps, which is usually
an increasing integer sequence, and XOR-based encoding for value
domain, which is a �oat type. In the XOR-based �oat encoding,
successive �oat values are XORed together, and only the di�erent
bits (delta) are saved. The delta is then stored using control bits
to indicate how many leading and trailing zeroes are in the XOR
value. Similar compression techniques are also used in numerical
simulation [25, 30, 31] and scienti�c computing [14, 43]. Figure 2
shows an example of Gorilla encoding with the �rst step calculating
XOR, and the second step writing the control bits, number of lead-
ing zeros, number of meaningful bits, and actual meaningful bits.

We use 32-bits to save space even though Gorilla was originally
designed for 64-bits format. Gorilla is the state-of-the-art approach
for �oat compression, which is widely used in many time series
database systems, such as In�uxDB [3] and TimescaleDB [5].

However, Gorilla compression uses variable-length encoding,
which means records are not aligned with their encoded bits. The
encoded bits have to be decoded sequentially to reach the target
records. Each value depends on its previous record; thus, for a target
value, all previous values must be decompressed. Those features
impede e�ective record skipping and random data access.

Sprintz [9] was initially designed for integer time series com-
pression. Sprintz employs a forecast model to predict each value
based on previous records via a lookup table, and then encodes the
delta between the predicted value and the actual value. Those delta
values are usually closer to zero than the actual value, making it
smaller when encoded with bit-packed encoding. It is also possible
to apply Sprintz to �oats by �rst quantizing the �oat into an integer.
As is shown in Figure 2, we �rst multiply input values by 100 and
get a series of integers. Then we predict the next value based on
the prediction model. In the third step, we calculate the delta be-
tween the prediction and actual value, and compress the delta with
bit-packing encoding in the last step. Sprintz uses �xed-length for
encoded values, which is easy to locate the target value. However,
to decode the target value, we need to fully decode prior values,
since previous values are still needed to predict the current value
and then decode the value with compressed delta. Furthermore, the
multiplication of decimal numbers is costly and potentially raises
integer over�ow issues during quantization.

Mostly encoding encodes the data column where its data type
is more extensive than most of its stored values required. Mostly
encoding is used for integer and numeric data type compression
in the Amazon Redshift data warehouse [22]. For numeric values,
Mostly encoding quanti�es �oats into an integer before applying
compression. Most of the column values are encoded to smaller
data representation with mostly encoding, while the remaining
values that cannot be compressed are stored in their original form.
Mostly encoding can be less e�ective than no compression when a

high portion of the column’s values cannot be compressed. Figure 2
shows an example of Mostly encoding. It �rst quanti�es the �oat
values and then applies MOSTLY16 (2-byte) for the given data as
it needs 9 bits for each quantized value (we use hex to save space).
This representation is less e�ective than bit-packing encoding that
stores input value using as few bits as possible.

General-purpose byte-oriented compression encodes the
input data stream at the byte level. Popular techniques, such as
Gzip [17], Snappy [52] and Zlib [21] derive from the LZ77 family
[54] that looks for repetitive sub-sequence within a sliding window
on the input byte stream and encodes the recurring sub-sequence
as a reference to its previous occurrence (�rst step in Figure 2).
For a better compression ratio, Gzip applies Hu�man encoding on
the reference data stream (second step in Figure 2). Snappy only
applies LZ77 but skips Hu�man encoding for higher throughput.
Byte-oriented compression treats the input values as a byte stream
and encodes them sequentially. The data block needs to be fully
decompressed before any original value can be accessed.

2.3 Query-friendly Storage Layout
Compression should not only keep the data size small but also
support fast query execution. Prior work speeds up query perfor-
mance by introducing a hierarchical data representation layout.
Some works [29, 33, 42, 50] are orthogonal to data compression but
are applicable to Bu� to speed up the query performance.

DAQ [42] uses a bit-sliced index representation and computes
the most signi�cant bits of the result �rst then less signi�cant ones.
With bit-sliced index representation, it performs e�cient approxi-
mation and provides e�cient algorithms for evaluating predicates
and aggregations for unsigned integers type. Column Sketch [23]
introduces a new class of indexing scheme by applying lossy com-
pression on a value-by-value basis, mapping original data to a
representation of smaller �xed width codes. Queries are evaluated
a�rmatively or negatively for the vast majority of values using the
compressed data, and check the original data for the remaining val-
ues only if needed. PIDS [27] identi�es common patterns in string
attributes from relational databases and uses the discovered pattern
to split each attribute into sub-attributes and further compress it.
The sub-attributes layout enables a predicate push-down to each
attribute. And the intermediate result from the prior column could
be projected to the following attributes e�ciently with the aid of
fast data skipping and progressive �ltering.

BitWeaving [29] provides fast scans in a main-memory database
by exploiting the parallelism available at the bit level in modern
processors. It organizes the input codes horizontally or vertically
into a processor word, allowing early pruning techniques to avoid
accesses on unnecessary data at the bit level and speed up the scan
performance. ByteSlice [20] is another main memory storage layout
that supports both highly e�cient scans and lookups. Similar to
BitWeaving, ByteSlice assumes encoded binary as input. But instead
of stripping the input code in bit units, ByteSlice decomposes the
input code at the byte level and pads the trailing bits into a byte
to achieve better read/write speed and be compatible with SIMD
instructions. MLWeaving [50] is an in-memory data storage layout
that allows e�cient materialization of quantized data at any level
of precision. Its memory layout is based on BitWeaving, where the
�rst bit in a batch of input values is saved as a word, followed by

the second bits of the same batch, and so on. Data at any level of
precision can be retrieved by following a di�erent access pattern
over the same data structure. Using lower precision input data is of
special interest, given their overall higher e�ciency.

These techniques speed up query performance by progressively
�ltering out disquali�ed records and narrowing down the records
that need to be parsed. They mainly process a query in their de�ned
unit (either sub-attributes or bits) on their columnar data layout.
This �ne-grained columnar data layout is the foundation for Bu�.

3 BUFF OVERVIEW
Many applications generate data that varies within a speci�c range
with limited precision. Based on our discussion of state-of-the-art,
none can leverage this feature to support e�cient compression
and query execution. To alleviate those de�ciencies, we propose a
novel compression method for �oats. The compression works at
two levels: eliminating the less signi�cant bits based on a given
precision (Section 3.1), and splitting �oat into the integer part and
fractional part, then compressing those bits separately with two
splitting strategies (Section 3.2). We then introduce sparse encoding
to handle outliers to avoid compression performance deterioration
(section 3.3). In the end, we describe query execution on our com-
pressed data format (section 3.4). With these techniques, we achieve
both good compression ratio and outstanding query performance.

3.1 Bounded Float
Computer systems can only operate on numeric values with �nite
precision and range. Using �oating-point values as real numbers
does not clearly identify the precision with which each value must
be represented. Too small precision yields inaccurate results, and
too big wastes computational and storage resources [18]. We target
applications that need limited precision and data that falls within a
�nite range. Therefore, our proposed compression takes full advan-
tage of the range and precision features of a given dataset.

3.1.1 Bounded Precision. Float point data-type uses most bits for
mantissa, which is not necessarily needed for many sensors or ap-
plications since many sensors usually provide limited decimal preci-
sion (e.g., the clinical thermometer has one place of precision 0.1 °F).
However, the decimal precision is not aligned with those mantissa
bits in a �oat due to the �oating radix point in the format. Float
format makes the most of itsmantissa bits to get the best approxima-
tion for the given number. With 0.1 for example, all 52mantissa bits
are used to get its approximation (0.10000000000000000555) in IEEE
double format. This mechanism is intended to support high preci-
sion for �oat format, but it impedes e�cient �oat compression in
most real-world cases. Thosemantissa trailing bits provide far more
extra precision than required, which leads to a huge bits change
with a tiny number �uctuation. For example, Gorilla achieves good
compression by �rst applying XOR to the current number with the
previous one, then removing the leading and trailing zeros. The
problem here is that mantissa bits are too sensitive to the number
changes, making it di�cult to leverage the trailing zero bene�ts.
Suppose we know the precision of the incoming numbers. In that
case, we can provide just enough precision support by eliminating
the less signi�cant mantissa bits. At the same time, we are still able
to provide a guaranteed precision �oat for downstream analytic.

Table 1: Bounded �oat still keeps decimal precision

Real number Sign Exp(8 bits)Mantissa(23 bits) Actual value

3.14
binary 010000000 10010001111010111000011 3.1400001

bounded-2 010000000 10010001100000000000000 3.13671875
≈ 3.14

Table 1 shows �oat representation of a given value 3.14. As is shown
in the binary row, the �oat format saves the closest approximation
as 3.1400001. If we only care about two decimal positions after the
decimal point, as is shown with bounded-2 row, we can remove
some trailing bits, while its value is still possible to approximate
to the original value with two places of precision. The removal of
insigni�cant bits saves a lot of bits when representing a number
with a given precision. This is one motivation for Bu�. To e�ciently
determine the number of fractional bits need for di�erent required
precision, we run brutal-force veri�cation on all possible numbers
under each precision requirement. We get the maximal factional
bits needed for its corresponding precision, as shown in Table 2,
which becomes the lookup table for bounded precision. We only
provide up to 10 digit places precision here as it is good enough
for most datasets. We can extend to higher precision, but it is less
meaningful as commonly used �oat only has 52 bits for mantissa.

Table 2: Number of bits needed for targeted precision

Precision 1 2 3 4 5 6 7 8 9 10
Bits needed 5 8 11 15 18 21 25 28 31 35

3.1.2 Bounded Range. Another observation for most application
scenarios is bounded range, The measured value is delimited by a
lower and an upper measuring bound limit that de�nes the measur-
ing span. The bounded range could result from either the measuring
range of the instrument (e.g., clinical thermometer measuring range
from 35�⇠ to 42�⇠), the physical de�nition of measurand (e.g., CPU
usage is de�ned between 0% to 100%), or based on other domain
knowledge. The bounded range is another feature that is helpful
when compressing the data since we only focus on the given range,
and we can encode the number in a more concise but accurate
manner. Bu� can work with no provided ranges, but as our experi-
ments show, it hinders ingestion performance as the compression
and allocation needs to �nd the minimal and maximal observed
value when encoding a set of values. With bounded precision and
range, we can get rid of the less useful and redundant bits initially
designed for higher precision and broader range. With those two
techniques, we can get a condensed representation of the input
data. In addition to the compression bene�ts, Bu� also adopts �oat
splitting to organize our compressed data better.

3.2 Float Splitting and Compression
The basic idea of �oat spitting is decomposing the input number
into integer and fractional parts. This division separates the given
number by radix point in a logical way and organizes each compo-
nent into a di�erent physical location. We can then apply e�cient
compression to those two parts, respectively. Bit splitting on �xed-
point numbers is intuitively easy to do as its �xed position for the
decimal point. However, the splitting is not easily applicable to
�oat data directly, since �oat numbers are not aligned by the radix

1 0 1 1 1. 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0
Integer part fractional part

② Range offset

① Integer and fractional parts extraction

01000001101110010010000111001011Binary for float 23.1415:

0 0 1 1. 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0

Range: (20, 30)

sign: + exp:4

Implicit bit

15 bits needed for 4 digit precision

Figure 3: Extracting range bounded integer part and preci-
sion bounded fractional part for �oat number

point. We extract both parts of a given �oat number with bit opera-
tions. First, we extract the exponent with a bit-mask to locate the
decimal point. With the exponent value, we then bit-shift the �oat
number and extract all left-side bits (including one implicit bit) as
the integer part, and right-side bits as the fractional part. Figure 3
shows how this process works for a �oat value 23.1415 with scale
4 represented in 32-bit IEEE format. The exponent (marked with
green font) is decoded as 4, which means the integer part has 5
bits (with a single leading 1 given implicitly by IEEE standard). We
then 1� extract 4 leading bits from the mantissa(marked with red)
and add a leading 1 to get the integer part. Based on Table 2, we
extract 15 following bits as fractional part for required precision
4. 2� With the range information either given by user or detected
by our encoder, we o�set the integer part by the minimal value to
further condense the range space. This splitting is fast and e�cient
with only bit-wise operations and no if branches. It can be further
improved if the user-provided data range has the same exponent
value (e.g. all values fall within the same power of 2), in which case
those �oat numbers have a �xed decimal point location, and �oat
splitting could be conducted easier with direct bit-masking.

The �oat splitting divides the given �oat numbers into two com-
ponents and then compresses each component separately. We dis-
cuss its potential bene�ts on progressive �ltering and data skipping
later in Section 3.4.1. Here our analysis focuses on its compression
e�ciency in terms of compression ratio and reads/writes through-
put. The encoded bit length of the integer part is determined by the
range of input numbers, while the encoded bit length for the frac-
tional part is determined by the actual precision required. We can
compress both parts e�ectively with delta and bit-packing encoding
for the integer part and bounded precision for the fractional part.
The �xed-length encoding simpli�es the encoding and decoding
process and makes it possible for data skipping to be applied on
the encoded bits directly, which improves performance.

1000.110111110100011

0011.001001000011100

1001.110001010100011

...

0101.001000110100011

0011.001001010100011

0011.110001110100011

Byte
-oriented
Splitting

10001101

00110010

10011100

...

01010010

00110010

00111100

11110100

01000011

01010100

...

00110100

01010100

01110100

011

100

011

...

011

011

011

0

1

2

...

n-2

n-1

n

Row-ID Extracted bits Compressed layout

x x1 x2 x3

Figure 4: Byte-oriented columnar layout

However, �oat splitting introduces some overhead for the com-
pression process. Byte-oriented reads/writes are more e�cient than

bit-oriented operations because of low-level data type boundary-
crossing issues where the CPU needs to unpack and o�set the
bits to align them on byte boundaries. Assume we have< bits to
read/write, this could be �nished by

⌅<
8
⇧
times byte read/write,

and at most one more bit read/write for remaining< �
⌅<
8
⇧
bits.

Whereas �oat splitting divides< bits into G bits and ~ bits (where
G + ~ =<), and this leads to

⌅ G
8
⇧
+
⌅ ~
8
⇧
times byte read/write, and

at most twice bit read/write for remaining G �
⌅ G
8
⇧
bits and ~ �

⌅ ~
8
⇧

bits. Additionally, the integer part usually takes less than one byte
for many datasets because of the narrow value range for many
measurands. To avoid slowness of bits read/write, we can always
pad int bits with several following fractional bits to extend it into a
byte. This keeps the �ne-grained �oat splitting, but good read/write
performance as well. If the goal is to save< bits anyway, we should
split the bits in a more e�cient way. This is the motivation of our
advanced splitting version: byte-oriented �oat splitting.

Byte-oriented �oat splitting compression works similarly to the
�oat splitting discussed previously. We �rst extract integer bits and
just enough fractional bits that meet the precision requirement,
then o�set the intermediate value by minimal value before writing
those bits in the byte unit separately. Each byte unit is treated as
a sub-column and stored together. We store the remaining trailing
bits of each record as the last sub-column, as is shown in Figure 4.
We save the range and precision information as metadata along
with compressed data to guarantee the decompression capability.
With byte-oriented �oat splitting, compression and decompression
are improved because of the fast byte reads/writes. We can also
support custom variable precision materialization and achieve more
e�cient query execution because of a byte-oriented splitting layout.

3.3 Handling Outliers
In addition to variable precision materialization support brought
by byte-oriented splitting, we can also handle outliers e�ciently.

16 16 16 ... 16 0 16 16 16 16 16 121Entries in sub-column

Sparse encoded 0 0 ... 1

0 0 0 ... 0 1 0 0 0 0 0 1Bit-vector for outliers

16 Lb 2 0 121

Compressed

Byte size of compressed bit-vectorFrequent value Number of outliers

Run-length encoded

Figure 5: Sparse encoding condenses sub-column.

Outliers in the input data sequence are the data points that
di�er signi�cantly from others. Outliers enlarge the value range
signi�cantly and further in�ates the code space, which requires
more bits to encode the input data sequence. For example, 99% of
the input value can be represented by 1 byte, while 1% needs 4
bytes. Encoding all numbers in the same length in�ates the code
space to 4 bytes because of the 1% outliers. The code space in�ating,
if not handled well, will deteriorate the compression e�ectiveness
and query e�ciency. Outliers can be too large or too small that are
far away from the common range. While in either case, the outliers
usually only in�ate the higher bits either with padding zeros or
padding ones. When there are both large and small outliers, the
padding bits can be any bit sequence between all zeros and all ones.
This requires us to detect outliers and distinguish the most frequent

value in the higher encoded byte. We �rst head sample the dataset
and then apply Boyer–Moore majority voting algorithm [11] in
each compressed byte unit to �nd the majority item (occurring
more than 50%). If the majority item has a frequency greater than
90%, we get most frequent value and re-organize the corresponding
byte column to achieve better compression by sparse encoding as
shown in Figure 5: we keep the frequent value at the beginning and
use a compressed bit-vector to indicate the outlier records, followed
by outlier values in the current byte column. The outlier handling
enables better compression performance and faster query execution
with the aid of bit vectors. Higher byte columns can be skipped for
most queries that target on some normal values only.

Sparse encoding requires a number of bits to be allocated per
frequent value, to indicate if a value uses a frequent value or is an
outlier. Compared with pure byte representation, sparse encoding
further reduces the compressed data size if only there is a frequent
item with a frequency greater than 1/8, assuming 1 bit overhead
per record in the bit-vector. However, the outlier scheme comes
with costs that special logic is required to handle outliers during
compression and query execution. So we apply factor analysis on
the frequency of frequent item through micro-benchmark with
controlled outlier ratio. According to our experiments, sparse en-
coding achieves a signi�cant query boost compared with pure byte
representation when the frequency of frequent item is greater than
90%, which is the current default threshold in Bu�.

3.4 Query Execution
In addition to the compression bene�ts, byte-oriented �oat split-
ting improves the query execution on the target �oat columns in
the following aspects: byte-oriented data arrangement enables fast
reading/writing and value parsing. Fixed-length coding helps e�ec-
tive data skipping to save CPU resources. The sub-column layout
enables predicate push-down and progressive query execution. For
e�cient query execution directly on the encoded sub-columns, we
apply query rewriting to decompose original query operators into
a combination of independent query operators on sub-columns.
Those translated query operators could be executed independently
and combined to obtain the �nal results. If we evaluate each query
operator on the sub-column one at a time, it is possible to skip some
records that are determined to be quali�ed or disquali�ed already
by previous sub-column query operators. Therefore, only a small
amount of records need to be parsed and further checked.
3.4.1 Progressive Filtering. With byte-oriented �oat splitting com-
pression, we can progressively evaluate the translated �lter on each
sub-column sequentially, and obtain the �nal results when all �lters
are �nished. For a given predicate G OP ⇠ where G is the attribute
stored using Bu�, $% is the operator, and ⇠ is the operand of this
predicate. Instead of decoding each record and matching the predi-
cate, we rewrite the �ltering predicate on the target column into a
combination of �ltering predicates on its compressed sub-columns.
Assume there are : sub-columns G1, G2, G3, ..., G: , we can get trans-
lated operands on those sub-columns as ⇠1, ⇠2, ⇠3, ..., ⇠: and then
apply �ltering on each sub-column to obtain the �nal results [27].

To save computation in the �ltering, we can avoid evaluating
some records based on our current observations. During the pro-
gressive �ltering process, all the intermediate results on each sub-
column are shipped by a bit-vector, similar to late materialization

[49]. Two bit-vectors '⇢(*!)(and)$_⇠�⇢⇠ are maintained to
indicate the quali�ed rows and suspecting rows, respectively. The
following �lter only needs to further parse and check the suspecting
rows in)$_⇠�⇢⇠ bit-vector, then add quali�ed row numbers
into '⇢(*!)(and suspensive row into)$_⇠�⇢⇠ for the �lter
of the following sub-column. When the �ltering level goes deeper,
there will be fewer records that need to be checked. We can even
early prune the �lter execution in some special cases if there is no
item in the)$_⇠�⇢⇠ bit-vector. Even for the cases where early
pruning is not happening, progressive �ltering can avoid a lot of
value parsing and check, especially valuable for the trailing bits
sub-column where value parsing is more expensive. Progressive �l-
tering is eligible for most �ltering query executions. We describe its
detailed implementation for EQUAL and GREATER predicate here.
Other predicates such as GREATER_EQUAL or LESS_EQUAL can
be achieved by logically combine existing predicates, NOT_EQUAL
can be achieved by negating the EQUAL results.

Equality �ltering predicate G = ⇠ can be decomposed as G1 =
⇠1 ^ G2 = ⇠2 ^ G3 = ⇠3 ^ ... ^ G: = ⇠: by query rewriting, which
intuitively indicates the equality predicate could hold if and only if
equality holds on all sub-columns. This can be formulated as:

G = ⇠ () ^:8=1 (G8 = ⇠8)
The predicate push-down enables e�cient progressive �ltering on
the sub-columns where we can execute the most selective predicate
to maximize the �ltering bene�ts - to �lter out disquali�ed records
as much as possible in the early phase. For �ltering on the �rst sub-
column, quali�ed rows are added into)$_⇠�⇢⇠ bit-vector for
�ltering on the following sub-columns. Data skipping is used in the
following evaluation, and only rows in)$_⇠�⇢⇠ are parsed and
further evaluated. Disquali�ed rows are removed from)$_⇠�⇢⇠
bit-vector. In the last sub-column, all quali�ed rows are added into
'⇢(*!)(bit-vector as a �nal result for the �ltering predicate G =⇠ .

With the previous example in Section 3.2, if given an equality
�ltering predicate G = 23.1415, we can extract the bits of bounded
range and precision 0011.001001000011100 with the aid of range
and precision in the metadata. Then we can rewrite the predicate
as G1 = 00110010 ^ G2 = 01000011 ^ G3 = 100. On the encoded �le
shown in Figure 4, progressive �ltering starts with evaluating all
values in the �rst sub-column G1, and row 1 and = � 1 are quali�ed
with the �rst predicate, so they are added to)$_⇠�⇢⇠ . On the
second sub-column G2, only row 1 and = � 1 need to be checked,
and row = � 1 is disquali�ed, thus removed from)$_⇠�⇢⇠ . On
the third column G3, only row 1 is evaluated and quali�ed, thus row
1 is added into '⇢(*!)(bit-vector returned as a �nal result.

Range �ltering predicate G >⇠ can be decomposed as a combi-
nation of G8 = ⇠8 and G8 > ⇠8 after query rewriting. For example,
G1 > ⇠1 is su�cient to induce G > ⇠ . While G1 = ⇠1 indicates fur-
ther evaluation is needed for G2. Then we proceed to sub-column 2
predicate evaluation. Similarly, if G2 > ⇠2, we have G >⇠ . Otherwise
if G2 = ⇠2, we proceed to sub-column 3. The evaluation is repeated
until all sub-columns are processed. It can be formulated as:

G > ⇠ () _:8=1 [^8�19=1 (G 9 = ⇠ 9) ^ (G8 > ⇠8)]
For the �rst step, all records are parsed and evaluated. Only rows
in)$_⇠�⇢⇠ bit-vector from the previous step are decoded and
evaluated in the following evaluation step. There are two categories
of records generated for each step: quali�ed rows (where G8 > ⇠8))

are added to '⇢(*!)(bit-vector and unsettled rows (where G8 =
⇠8)) are added to a new)$_⇠�⇢⇠ bit-vector. On the last sub-
column, all quali�ed rows are added to '⇢(*!)(bit-vector, which
is returned is a �nal result for the �ltering predicate G > ⇠ . During
any �ltering step, an early stop is activated when the)$_⇠�⇢⇠
bit-vector is empty and all following bits are skipped. #*!! is
returned for equality �ltering, and the intermediate '⇢(*!)(bit-
vector is returned for range �ltering in this case. We introduced
cold start �ltering cases where all records are potentially quali�ed.
However, our �ltering operators can be applied to the cases where
intermediate query results are provided in the form of bit-vector,
by using given bit-vector as)$_⇠�⇢⇠ for start sub-column.

3.4.2 Progressive Aggregation. Byte-oriented �oat splitting com-
pression also facilitates some aggregation queries with the aid of
techniques mentioned above [42]. Query execution could be im-
proved either by data skipping forMin/Max queries or by transform-
ing double operations into integer ones for Sum/Average queries.

Min/Max information is stored as metadata in the compressed
byte array for each compressed segment. Therefore, e�cient meta-
data lookup is su�cient to answer those queries. However, meta-
data lookup is not applicable for custom query scope prede�ned
by a �lter. Our compression approach also supports fast custom
scope query execution, as encoded values are independently and
neatly arranged in each sub-column level. Min/Max aggregation
queries perform similarly with the equality query discussed previ-
ously. Starting with the �rst sub-column, the query executor �nds
the greatest/smallest value and puts all corresponding rows into
)$_⇠�⇢⇠ bit-vector. The query executor then proceeds to the
next sub-column, evaluates all records corresponds to rows belong-
ing to the previous)$_⇠�⇢⇠ bit-vector, and generates a new
)$_⇠�⇢⇠ bit-vector if applicable. The min/max value is assem-
bled in the end and returned as �nal results after all sub-columns are
evaluated. A'⇢(*!)(bit-vector indicating the rowswithmin/max
value is also returned along with query results. Min/Max queries
are e�cient with Bu� because only very limited bits are evaluated
during the query execution with the aid of progressive �ltering
and data skipping. In most cases, only a single row is quali�ed and
added into)$_⇠�⇢⇠ bit-vector for the �rst sub-column. Thus,
the following sub-columns evaluation is merely skipping to the
target row and assembling the speci�c single record, which is more
e�cient than decoding all bits and comparing the decoded values.

Sum/Average aggregation queries are very e�cient with our
compression approach with no full decoding needed. The byte-
oriented splitting layout enables fast access to each byte/bits com-
ponent corresponding to di�erent precision. Rather than decoding
every record into �oat value before applying the summation opera-
tion, value is accumulated on each sub-column in the form of small
integer until the �nal summation of the intermediate sum results
from each sub-column adjusted by its corresponding exponent and
base value. The �nal summation is returned as Sum result or further
processed to get the Average result. For example, on the encoded
�le shown in Figure 4, we �rst sum records in each sub-column, and
get BD<(G1), BD<(G2) and BD<(G3) respectively. Then we scale the
summation with its corresponding basis. In this example, basis for
column G1 is 2�4, G2 is 2�12 and G3 is 2�15. Then the �nal sum result
is BD<(G) = BD<(G1) ⇤2�4+BD<(G2) ⇤2�12+BD<(G3) ⇤2�15+⌫⇥#

where B is the base value (min value) of this encoding block and
N is the number of entries. We can further divide by N to get the
average. The value is not fully decompressed to the original double
value during the query execution, and all the execution is achieved
with integer arithmetic, which improves the query performance.
3.4.3 Variable Precision Materialization and Aggregation. Reduced
precision has emerged as a promising approach to improve power
and performance trade-o�s [15]. Customized precision originates
from the fact that many applications can tolerate some loss in qual-
ity during computation, as in media processing and machine learn-
ing. The byte-oriented encoding layout also enables variable preci-
sion materialization in addition to full precision required by down-
stream analytic. For example, consider a system-agnostic query like
printf("%.2f", latitude) where AVG(temp)>90°F. We can skip reading
the trailing bytes/bits for temp column if we getAVG(temp)>90° with
several leading bytes, and only several leading bytes of latitude are
needed for two digits precision printing. For any reduced precision
value read, Bu� aligns the requested precision with the least byte
boundary covering the required precision. For example, for a given
compressed dataset with 4 bits for the integer and 18 bits for the
fractional part (supports 5 digit precision at most), Bu�materializes
2 bytes (d(4 + 11)/8e) to support 3-digit precision query.

Bu� also provides deterministic approximate aggregation query
processing on data with reduced precision as suggested by DAQ
[42]. Recall previous example in Section 3.2, on the encoded �le
shown in Figure 4, we can get deterministic approximate aggrega-
tion result by only reading the partial data. Similar to progressive
aggregation execution in Section 3.4.2, we can get an sum approxi-
mation by reading the �rst sub-column as BD<(G) = BD<(G1)⇤2�4+
⌫ ⇥ # with a deterministic lower bound = BD<(G1) ⇤ 2�4 + ⌫ ⇥ #
where all trailing bits are zeros, and a upper bound = BD<(G1) ⇤
2�4 + (⌫ + 2�4) ⇥ # where trailing bits are ones. Similarly for avg
query, we get a deterministic bound by reading �rst sub-column as
[BD<(G1) ⇤ 2�4/# + ⌫, BD<(G1) ⇤ 2�4/# + (⌫ + 2�4)]. As we read
and process more data, we can provide a more accurate result.
3.4.4 Data Skipping. Data skipping is another technique used to
enhance query performance. After scanning a sub-column, we know
some records in the remaining columns do not satisfy the predicate,
and we can skip them. The byte-oriented encoding layout enables
e�cient data skipping in the following aspects: byte-oriented layout
guarantees e�cient data reading and skippingwithout handling any
cross-boundary issue. The �xed coding length for each component
enables e�cient skipping with simple bits length calculations. The
trailing bits in the last component are mostly skipped based on the
previous evaluation. In some cases, we can early prune the query
execution and totally skip checking the following bytes and trailing
bits if no records need to be further checked. Besides, data skipping
enables fast records access for custom row-level scope queries, such
as queries on a given time interval for time series data. Data can
still be skipped e�ciently without parsing the irrelevant entries.
3.4.5 Adaptive filtering. Di�erent from prior works that use SIMD
to accelerate query execution [20, 26, 41, 53], Bu� uses a workload-
adaptive execution strategy. When SIMD is available, Bu� will
use SIMD as much as possible. However, SIMD is not always the
best when compared with the scalar progressive �ltering. SIMD is
usually good on low selective �ltering, where a large percentage

of records are evaluated. While progressive �ltering is extremely
e�cient on high selective �ltering tasks. For each sub-column,
Bu� will choose either the �ltering strategy based on density ratio
A = #20=3830C4B/#A42>A3B . By default, SIMD execution is used for
the �rst sub-column unless a sparse bit-vector is provided as input.
For the following sub-columns, Bu� uses SIMD execution if the
density ratio is high and progressive �ltering otherwise.

We perform a sensitivity analysis to �nd the crossover point. Pro-
gressive �ltering takes more time as the density ratio increases and
crosses over the constant SIMD cost at a density ratio 0.06, which
is the current SIMD threshold used in Bu�’s adaptive �ltering.

4 EXPERIMENTS
Compression approaches should keep the compressed data size
smaller and support fast query execution, including fast �ltering
and aggregation queries. This section applies the compression tech-
niques mentioned above on various datasets covering common
applications with bounded �oat and reports both compression and
query performance. In addition, we also include end-to-end complex
query evaluation on Time Series Benchmark Suite (TSBS) [4].

All experimentswere performed on serverswith 2 Intel(R) Xeon(R)
CPUs E5-2670 v3 @ 2.30GHz, 128GB memory, 250GB HDD, and
Ubuntu 18.04. All our implementations and experiments are done in
Rust 1.49.0 and we use AVX2_m256i for SIMD. To use ByteSlice for
�oats we re-implement ByteSlice in Rust, also implement Gorilla
and Sprintz in Rust. For Gzip and Snappy, we use rust �ate2 and
parity-snappy libraries respectively. We apply Gzip level-9 in our
experiments. All our implemented baseline achieve their claimed
throughput (e.g., Snappy: 250MB/sGzip: 20-50MB/s, Sprintz: 200MB/s).

4.1 Datasets

(a) Taxi GPS, 6 (b) Power grid, 6 (c) CPU usage, 6 (d) Stock, 3

(e) UCR, 5 (f) Temperature,1 (g) Current, 5 (h) House, 2
Figure 6: Datasets have bounded range and precision

Our dataset covers various applications: stock data [1], taxi data
from NYC (GPS) [6], DevOps monitoring (CPU) [45], city tempera-
ture (TEMP) [28], humidity [12, 13], power grid (PMU) [47], magnet
motor (Current) [7], household electric power consumption (House)
[2] and machine learning [34]. As most datasets are shared using a
txt or csv format, we can easily extract the precision by counting
the fractional digits. As we target a compression technique that
would work with application code or a database, we evaluate an
ingestion process that sends data in the IEEE 64-bit �oat format
which is used by many applications and compression evaluations
[14–16, 31, 40, 51]. Figure 6 shows the data range, distribution and
scale (precision) for representative measurements of those datasets.
The x-axis shows data range including all outliers if any. For GPS we
use the latitude attribute. The data distribution varies on di�erent

measurements. Those datasets cover data with di�erent precision
with/without outliers. Many datasets have a very skewed distribu-
tion, where most records are clustered around a tiny area. As an
example, most data points in NYC’s GPS dataset fall into the city
area with coordinate between (40.702541, -74.007347) and (40.793961,
-73.883324). The high decimal position with scale 6 guarantees sub-
meter level precision of the data points. Similarly, all these mea-
surements have limited range and bounded precision. In addition
to those read world datasets, we also generate datasets from TSBS.
Here, we use the IoT dataset with a scale 1000, which includes 9.1
billion data points about tracking information for trucks.

4.2 Optimized Baselines
During our evaluation, we found that the idea of bounded precision
can improve Gorilla. Therefore, we provide an optimized version
of Gorilla for comparison. In addition, we include �xed-point with
bounded precision and ByteSlice variations for �oat as baselines.
4.2.1 Optimizing Gorilla. When we apply Gorilla on our datasets,
we get a poor compression performance for most datasets. For
datasets, such as CPU and Temperature, the compressed size is close
or even larger than the original size. After detailed analysis, we
notice that many data points in these datasets �uctuate over value 0
or ±2. There are two reasons why Gorilla is sub-optimal on datasets
covering those values. First, �oat numbers �uctuating around 0
�ips the sign bit (the leading bit). Also, when �oats �uctuate around
an absolute value 2, they �ip the leading bit of exponent bits as
exponent value 1 is encoded as 10000000 in a 32-bits �oat. Second,
high precision �oating numbers make the mantissa bits sensitive
to the value change, especially for those less signi�cant bits. For
these two reasons, Gorilla fails to perform e�cient trailing zero
compression and performs poorly on these datasets.

To improve the compression performance of vanilla Gorilla, we
have two di�erent directions to work on:

• Leverage the leading zeros by o�setting the input numbers
to avoid the "pitfall" value points.

• Use bounded precision �oat for the input numbers to elimi-
nate the less signi�cant bits in the mantissa part.

We veri�ed those two solutions on our datasets. We found the
former solution improves compression ratio performance slightly
but at the cost of slowing down the compression throughput sig-
ni�cantly, since we have to o�set the value before we can apply
gorilla encoding. However, the latter solution signi�cantly improves
compression performance. In the following evaluation section, we
include the latter Gorilla version (GorillaBD). Nevertheless, Go-
rillaBD only improves the compression performance and can do
nothing to speed up the query execution because of the complex
variable encoding/decodingmechanism inherited fromGorilla. This
motivates us to devise a new compression for �oats.
4.2.2 Bounded Fixed-point. As discussed in Section 2.1, �xed-point
is not precision aware, since it uses every bit to approximate the
value no matter what precision is needed. Additionally, �xed-point
is not optimized for custom ranges, since it represents a range
�2� ⇠ 2� . In order to include �xed-point into our evaluation, we im-
plement bounded �xed-point (as FIXED) as a baseline with bounded
precision applied to achieve just-enough precision and delta encod-
ing used to o�set the custom range. In FIXED, we scan the �le and
encodes the datasets with bounded �xed point representation.

CR

Cthr

Mat.

Range

Equal

Sum

Max

TSBS

0

2

4

6

8

10

BUFF

GORILLA

SPRINTZ

FIXED

GZIP

SCALED-SLICE

BUFF-SLICE

Figure 7: Compression performance overview (greater is bet-
ter, CR: compression ratio, Cthr: compression throughput).
Bu� outperforms in query and compression throughput.

4.2.3 ByteSlice variations for float. ByteSlice is designed for an
input code of a bit-packed integer, which is not directly applicable
to �oat numbers. In order to apply ByteSlice on �oats, a conversion
from the integer code is needed to meet the ByteSlice input require-
ment. We can either borrow from Bu� to extract the aligned bit
representation of �oat (BUFF-SLICE) or scaling �oat into integer
(SCALED-SLICE), and then bit-pack those code into ByteSlice. We
compare against both ByteSlice variations.

4.3 Performance Overview
The radar chart of Figure 7 shows the overall performance of all �oat
compression approaches above. We normalized the performance
results into a range between 1 and 10 on each dimension uniformly,
and then take the average of all workable datasets (Sprintz and
SCALED-SLICE fail on some dataset which are not included here).
ByteSlice variations do not provide a specialized aggregation so-
lution, so we materialize before max and sum operation. For all
metrics here, higher is better. As we can see, the state-of-the-art
Gorilla approach does not work well on those datasets. Sprintz and
FIXED perform well in terms of compression ratio and material-
ization performance on those datasets while performing poorly on
other performance dimensions. ByteSlice variations are good onma-
terialization performance but sacri�ce compression ratio because
of bit padding. Bu� performs best in terms of query and compres-
sion throughput. In addition, it handles outliers data quite well and
achieves a better compression ratio on outlier-included datasets
(e.g., GPS, Stock dataset). For some query types, such as min/max
and high selective equality �ltering, Bu� is up to 50⇥ faster than
other compression baselines. General-purpose approaches (e.g.,
Gzip and Snappy) perform poorly in these dimensions.

4.4 Compression Performance
We evaluate both the compression ratio and compression through-
put on our datasets and benchmarks. A good compression must be
fast and e�ective.

4.4.1 Compression Ratio. Figure 8 shows the compression ratio for
each compression approaches. Gorilla compression performs poorly
on most of our datasets as there are very limited repeated or similar
adjacent values. GorillaBD works better than Gorilla since many
trailing bits are formatted by bounded precision �oat, resulting in

GP
S

PM
U

CP
U

St
oc

k
UC

R
Te

m
p

Cu
rre

nt

Ho
us
e

TS
BS

*
0.0

0.2

0.4

0.6

0.8

1.0

C
om

pr
es

si
on

R
at

io
(s

m
al

le
r

is
b
et

te
r)

BUFF

GZIP

GORILLA

SNAPPY

GORILLABD

SCALED-SLICE

SPRINTZ

BUFF-SLICE

FIXED

Figure 8: Compression ratio shows the Bu� are comparable
to the best and always better than vanilla Gorilla (Sprintz
and Scaled-slice fails on PMU).

a better compression ratio. Bu� performs similarly with Sprintz
and FIXED since they leverage the bounded precision and range to
map the numbers into almost the same �nite encoding space. Value
range and value precision determine the number of bits needed for
the integer and the fractional parts. The slight compression ratio
di�erence between Sprintz and Bu� comes from the dividing of
bits, which wastes some code space when the bits are not fully used.
However, this brings a huge query bene�ts, which we will show
in Section 4.5. In addition, as mentioned in Section 3.3, Bu� can
detect outliers and enables sparse encoding to compress the leading
byte column further, resulting in a better compression ratio on GPS
and Stock dataset compared with Sprintz and FIXED. ByteSlice
variations pads the trailing bits for better query performance, so it
is less e�ective than Bu�, FIXED, and Sprintz on most datasets. The
Byte-oriented compression approaches compress data by searching
common sequences at the byte level, so Byte-oriented compression
performs e�ciently on temperature datasets because of the low
cardinality brought by low data precision but performs poorly on
datasets with less repeated values.

4.4.2 Compression throughput. In addition to the compression
ratio, we also evaluate compression throughput. We count the time,
including loading data from memory, applying compression, and
writing back to memory. Figure 9 shows compression throughput
for all �oat compression approaches. The leftmost bar corresponds
to Bu� with/without user-provided range stats. With ranges given
by a user, our method can skip the range checking step in the �oat
decomposing step and achieve higher compression throughput.
We refer to it as “Fast-Bu�” as is indicated by the star marker bar
with the light green bar as a base. Overall, Bu� outperforms all its
competitors on most datasets. Gorilla relies on -$' between two
adjacent values, then dynamically decides the number of leading
and trailing zeros, and writes the middle residue bits. Gorilla’s
complicated encoding mechanism and variable encoded length
limit its encoding throughput.

Bu� is faster than FIXED and Sprintz because of its fast byte-
oriented writing. According to pro�ling, Bu� byte-oriented writing
is 6% ⇠ 12% faster than writing bits. Sprintz for �oat also relies
on arithmetic multiplications to quantify input �oat values into
integer values, which causes over�ow issues such that Sprintz and
SCALED-SLICE fail on the PMU dataset. Overall byte-oriented

compression is slower than Bu� and Sprintz. Snappy achieves the
highest compression throughput on the CPU dataset, but Snappy
performs poorly on the CPU dataset in the previous compression
ratio experiment, where no compression is achieved at all. Accord-
ing to previous experiments, Gzip compression provides a higher
compression ratio but uses more CPU resources than Snappy, thus
lowering compression throughput. Compared with ByteSlice varia-
tions, Bu� writes fewer bits but pays more overhead on writing the
last trailing bits. Therefore, we can see very similar compression
throughput on most datasets for both approaches, but Bu� is faster
on GPS and Stock datasets where more space is saved by sparse
encoding.

GP
S

PM
U

CP
U

St
oc

k
UC

R
Te

m
p

Cu
rre

nt

Ho
us
e

0

100

200

300

400

500

C
om

pr
es

si
on

T
hr

ou
gh

pu
t(

M
B

/s
)

FAST-BUFF

FIXED

BUFF

GZIP

GORILLA

SNAPPY

GORILLABD

SCALED-SLICE

SPRINTZ

BUFF-SLICE

Figure 9: Compression throughput shows Bu� performs
best in most cases with user given range stats.

4.5 Query Performance
We also evaluate decompression and query performance. We mea-
sure execution time, including reading the data block from memory,
parsing data, and evaluating the query. For all queries evaluated, we
leverage each compression approach’s characteristics to speed up
its query as much as possible. Techniques, such as query rewriting,
early pruning, and progressive �ltering, are used for each approach
whenever feasible, as discussed in each experiment section. We use
the most frequent value (lower selectivity) in the corresponding
dataset as a predicate operand to conduct a fair comparison for all
equality �ltering and range �ltering. Progressive �ltering is less
e�cient with low selectivity predicate as fewer values are skipped
during query execution. We also run high selectivity queries to
show Bu�’s potential. SCALED-SLICE and Sprintz bars for PMU
dataset are missing as they fail on PMU dataset because of an over-
�ow issue.

4.5.1 Filtering. We include �ltering performance evaluation with
query rewriting, early pruning, progressive �ltering, data skipping
and SIMD execution enabled when possible. For Bu�, instead of
materializing all records before applying the �ltering predicate,
we rewrite the query into query predicates combination on all
sub-columns, then apply the translated query predicate on each
sub-column sequentially. We also use adaptive �ltering and data
skipping with the aid of intermediate bit-vector results. For Sprintz
and FIXED, we apply query rewriting techniques to avoid decom-
pression overhead. For ByteSlice variations, we adopt their SIMD
solution for �ltering queries.

Our �rst experiment set shows low selective equality �ltering
performance. In Figure 10, Bu� achieves outstanding performance

GP
S

PM
U

CP
U

St
oc

k
UC

R
Te

m
p

Cu
rre

nt

Ho
us
e

0

1000

2000

3000

4000

5000

6000

7000

8000

E
qu

al
(M

B
/s

)

BUFF

GZIP

GORILLA

SNAPPY

GORILLABD

SCALED-SLICE

SPRINTZ

BUFF-SLICE

FIXED

Figure 10: Low selective equality �lter

GP
S

PM
U

CP
U

St
oc

k
UC

R
Te

m
p

Cu
rre

nt

Ho
us
e

0

1000

2000

3000

4000

5000

R
an

ge
(M

B
/s

)

BUFF

GZIP

GORILLA

SNAPPY

GORILLABD

SCALED-SLICE

SPRINTZ

BUFF-SLICE

FIXED

Figure 11: Low selective range �lter

GP
S

PM
U

CP
U

St
oc

k
UC

R
Te

m
p

Cu
rre

nt

Ho
us
e

0

2000

4000

6000

8000

10000

12000

14000

E
qu

al
(M

B
/s

)

BUFF

GZIP

GORILLA

SNAPPY

GORILLABD

SCALED-SLICE

SPRINTZ

BUFF-SLICE

FIXED

Figure 12: High selective equal �lter

compared to all the other competitors. This speedup is mainly from
adaptive �ltering and data skipping. As we execute the predicate
on the �rst sub-column, only a tiny part of the input records are
quali�ed and need to be further checked in the subsequent sub-
column predicates. For most datasets, less than 5% of entries are
quali�ed and need to be further checked after �ltering on the �rst
sub-column with Bu�. However, for GPS and Stock datasets, more
than 90% entries are still quali�ed because of code space in�ated
by outliers. As we hit the frequent value in this case, we can skip
decoding the �rst sub-column by directly using a bit-vector from
sparse encoding, which speeds up the query. Sprintz and FIXED
�ltering use query rewriting to avoid record decompression as well.
Compressed bits are extracted and compared with the translated
to the target directly by using integer arithmetic. ByteSlice varia-
tions are always the second to the best approaches due to the SIMD
speedup and early stopping. Bu� has a better data and code local-
ity, as it works on the same predicate for the current sub-column.
While ByteSlice needs to load all sub-columns and jump to di�erent
sub-column with corresponding predicate evaluation in each itera-
tion. Additionally, always using SIMD can slow down ByteSlice’s
throughput as a single match , resulting in SIMD loading and eval-
uating for all adjacent records within the same SIMD word length.
In Bu�, data skipping can e�ciently jump to the target record and
avoid unnecessary data loading. Except for these aforementioned
approaches, decompression is required before predicate evaluation
on �oat numbers. General-purpose byte-oriented compression ap-
proaches are sequential algorithms and need to decompress the last
bits before the original data can be accessed. Gorilla encodes value
with di�erent bits and variable bits representation, which impedes
query translation and data skipping. These bring a high latency for
�ltering the compressed data with those methods.

Figure 11 shows the low selective greater than range �ltering ex-
periments with the same operand. As we can see, the range �ltering
performs similarly to equality �ltering but with smaller throughput
overall. The selectivity of the range query is much lower than previ-
ous equality �ltering. There are more quali�ed records in this case,
which triggers the IF branch that edits the bitmap more frequently.
Thus �ltering throughput is deteriorated compared with previous
equality �ltering experiments. Similarly, ByteSlice variations is
slower than equality �ltering because of more comparison and less
early stop. However, Bu� still performs best. Similar to equality
�ltering, all other approaches require full decompression. As we
can see from the �gure, their �ltering performance is proportional
to their materialization performance, which we will discuss later
in Section 4.5.3. Figure 12 shows high selective equality queries
that �lter out majority of records. Bu� is more e�cient on the high

selective query as more bits are skipped by progressive �ltering.
Overall, Bu� achieves 20⇥ for average query speedup compared
with the second-best �oat compression approach. Bu� has similar
trends on high selective range queries, and it achieves 16⇥ on aver-
age query speedup compared to the second-best �oat compression
method (we omit the �gure).

4.5.2 Aggregation. An aggregation query is another frequent query
for numeric data analysis. We evaluate the query performance of
min/max and sum for all compression approaches.

Figure 13 shows min/max query throughput. The query time in-
cludes bit parsing and query execution. Even though we can quickly
extract min/max value from data statistics in the metadata block
for Bu�, we force aggregation query execution on compressed data
for a fair comparison, and this is necessary for aggregation with
a �lter. In addition to this setting, we enable all the techniques
used in previous experiments. For min/max aggregation, we can
use progressive �ltering and data skipping for Bu�. For FIXED and
Sprintz, we �nd themin/max integer code directly then convert this
value into �oat numbers. For other approaches, �oat numbers are
decompressed for evaluation. The result shows that Bu� achieves
22⇥ on average query speedup than the second-best �oat compres-
sion approaches Sprintz or FIXED. The min/max value is usually
with a low frequency such that only a tiny portion of entries are
added to the bit-vector and need to be checked in the following
sub-columns. This makes Bu� extremely e�cient for min/max ag-
gregation queries since a huge amount of entries (bits) are skipped
during the evaluation step.

The sum query performs similarly to materialization as all com-
pressed data has to be decompressed, and all techniques mentioned
previously are ineligible in this scenario. Figure 14 shows the sum
query throughput on the same dataset. Bu� outperforms all its com-
petitors. For Sprintz, FIXED and Bu�, we use lazy materialization
to avoid the overhead of full decompression for each entry. The
sum intermediate result is calculated with an integer representation
for Sprintz and FIXED, then converted back to �oat numbers at
the very end. This is similar to sum operator with Bu�, where the
sum is calculated on each sub-column with its integer representa-
tion respectively and concatenated into a �nal �oat-point result
in the end. The performance di�erence between those approaches
comes from the more e�cient reading and parsing of Bu� and no
data dependency between adjacent numbers. All other approaches
perform poorly since full decompression is inevitable.

4.5.3 Full Materialization. Materialization performance varies a lot
for each compression approach. Overall, materialization overhead
is comprised of bit parsing time and assemble time. Fixed-length

GP
S

PM
U

CP
U

St
oc

k
UC

R
Te

m
p

Cu
rre

nt

Ho
us
e

0

2000

4000

6000

8000

10000

M
ax

(M
B
/s

)

BUFF

GZIP

GORILLA

SNAPPY

GORILLABD

SCALED-SLICE

SPRINTZ

BUFF-SLICE

FIXED

Figure 13: Max throughput

GP
S

PM
U

CP
U

St
oc

k
UC

R
Te

m
p

Cu
rre

nt

Ho
us
e

0

200

400

600

800

S
um

(M
B
/s

)

BUFF

GZIP

GORILLA

SNAPPY

GORILLABD

SCALED-SLICE

SPRINTZ

BUFF-SLICE

FIXED

Figure 14: Sum throughput

GP
S

PM
U

CP
U

St
oc

k
UC

R
Te

m
p

Cu
rre

nt

Ho
us
e

0

100

200

300

400

500

M
at

er
ia

liz
at

io
n(

M
B
/s

)

BUFF

GZIP

GORILLA

SNAPPY

GORILLABD

SCALED-SLICE

SPRINTZ

BUFF-SLICE

FIXED

Figure 15: Materialization throughput

encoding helps for bit parsing. As is shown in Figure 15, Sprintz
and FIXED perform better than Bu� as they read single �xed-length
data chunk during materialization, which is faster than Gorilla that
reads variable-length bits for each record, and Bu� where multi-
ple data chunks need to be fetched as requested, then parsed and
concatenated into a �oat number. However, Bu� is still comparable
with Sprintz and FIXED thanks to the e�cient reading and pars-
ing of Bu�. ByteSlice variations are faster than Bu� because of its
fast byte reading and decoding bene�ts. Since Bu� bit extraction
is more e�cient than the scaled version on decompression, BUFF-
SLICE is always faster than SCALED-SLICE. Gzip is the slowest
among all candidates since it has to decode Hu�man encoding
before restoring the recurring sub-sequences. Snappy achieves a
better performance than Gzip because it skips Hu�man encoding
for higher throughput.

full 4 3 2 1 int
Precision

0

2000

4000

6000

8000

10000

T
hr

ou
gh

pu
t(

M
B
/s

)

Mat

Sum

8

10

12

14

16

18

20

22

24

B
it
s

re
ad

Figure 16:Materialization and aggregationwith targeted pre-
cision boosts throughput by only reading the leading bytes.

4.5.4 Materialization and Aggregation with Requested Precision.
We also show the versatility of Bu� on variable precision mate-
rialization and aggregation support, which are especially useful
when users only care about limited precision in formatted output
and fast estimation of aggregation queries. Figure 16 shows the
materialization and aggregation with requested precision on the
UCR dataset. The red line-based right y-axis shows the bits needed
to support the requested precision. The query performance linearly
increases as bytes read decreases. A single expensive bit read can
signi�cantly slow down the query performance, as we can see from
the �rst set of results on full data with 3 bytes and 1 bits read.

4.6 Benchmark Evaluation
In this set of experiments, we show complex query performance
with TSBS. On TSBS, we generate “last-loc", “low-fuel" and “high-
load" queries, which respectively include projection on longitude
and latitude attributes (project), �ltering on a fuel_state attribute
containing single sub-column with Bu� encoding (range-single),
and �ltering on current load attribute (range). In addition to the

projection range range-single
0

10

20

30

R
un

ti
m

e
(m

s) 28
75

14
42 98
8

24
31 95
1

74
7

12
31 45
4

31
8

51
72

11
14

10
32

13
28 58
8

59
0

BUFF

FIXED

BUFF-SLICE

GORILLA

GZIP

GORILLABD

SNAPPY

SPRINTZ

SCALED-SLICE

Figure 17: TSBS query runtime for �oat attributes.

�oat-related operations, those end-to-end queries also include any
�lter, join, sorting on timestamp, string, or integer attributes. The
runtime for these columns is independent of �oat compression
approaches, so we take do not show them and only focus analysis
on query runtime of �oat attributes. For Gorilla, the �oat-associated
cost makes up 54% to 76% of the total runtime. However, Bu�
can diminish those costs to 1 or 2 orders of magnitude smaller
on those queries. Figure 17 highlights the query runtime on �oat
attributes, Bu� always performs the best over all other baseline
and is faster than ByteSlice variations on TSBS range �lter queries
since adaptive �ltering chooses progressive �ltering execution for
the highly selective �lter.

5 CONCLUSIONS
This paper proposes Bu�, a novel decomposed �oat compression
for low precision �oating-point data generated everywhere and
every day. Bu� uses “just-enough” precision for a given dataset, and
leverages the data distribution feature (range, frequent value) to
simplify its encoding mechanism and enhance the compression per-
formance. The compression supports e�cient in-situ adaptive query
on encoded data directly. In addition, Bu� provides fast aggregation
and materialization for di�erent precision levels. Bu�’s precision
bounded technique is also applicable to the state-of-the-art Gorilla
method and improves Gorilla’s compression performance signi�-
cantly. Our evaluation shows Bu� achieves fast compression and
query execution, while keeps comparable compression ratio to the
best approaches. Future work includes studying the performance
of Bu� for common downstream complex analytical tasks, such as
classi�cation [39], clustering [36, 37], and anomaly detection [10].

ACKNOWLEDGMENTS
We thank the reviewers for their helpful feedback. This work was
supported by the CERES center and gifts from NetApp, Google
DAPA, Cisco Systems, and Exelon Utilities. Results presented were
obtained using the Chameleon testbed supported by the NSF.

REFERENCES
[1] Huge stock market dataset. https://www.kaggle.com/borismarjanovic/price-

volume-data-for-all-us-stocks-etfs.
[2] Individual household electric power consumption data set.

https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+
consumption.

[3] In�uxdb - open source time series, metrics, and analytics database. https://www.
in�uxdata.com/.

[4] Time series benchmark suite (tsbs). https://github.com/timescale/tsbs.
[5] Time-series data simpli�ed. https://www.timescale.com.
[6] Tlc trip record data. www.nyc.gov/html/tlc/html/about/triprecorddata.shtml.
[7] Torque characteristics of a permanent magnet motor. https://www.kaggle.com/

graxlmaxl/identifying-the-physics-behind-an-electric-motor.
[8] G. Antoshenkov. Dictionary-based order-preserving string compression. The

VLDB Journal, 6(1):26–39, 1997.
[9] D. Blalock, S. Madden, and J. Guttag. Sprintz: Time series compression for the

internet of things. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 2(3):1–23, 2018.

[10] P. Boniol, J. Paparrizos, T. Palpanas, and M. J. Franklin. Sand: streaming subse-
quence anomaly detection, 2021.

[11] R. S. Boyer and J. S. Moore. Mjrty—a fast majority vote algorithm. In Automated
Reasoning, pages 105–117. Springer, 1991.

[12] J. Burgués, J. M. Jiménez-Soto, and S. Marco. Estimation of the limit of detection
in semiconductor gas sensors through linearized calibration models. Analytica
chimica acta, 1013:13–25, 2018.

[13] J. Burgués and S. Marco. Multivariate estimation of the limit of detection by
orthogonal partial least squares in temperature-modulatedmox sensors. Analytica
chimica acta, 1019:49–64, 2018.

[14] M. Burtscher and P. Ratanaworabhan. Fpc: A high-speed compressor for double-
precision �oating-point data. IEEE Transactions on Computers, 58(1):18–31, 2008.

[15] S. Cherubin and G. Agosta. Tools for reduced precision computation: A survey.
ACM Computing Surveys (CSUR), 53(2):1–35, 2020.

[16] F. De Dinechin, J. Detrey, O. Cret, and R. Tudoran. When fpgas are better at
�oating-point than microprocessors. In FPGA, volume 8, page 260, 2008.

[17] P. Deutsch et al. Gzip �le format speci�cation version 4.3. Technical report, RFC
1952, May, 1996.

[18] H. Dietz, B. Dieter, R. Fisher, and K. Chang. Floating-point computation with just
enough accuracy. In International Conference on Computational Science, pages
226–233. Springer, 2006.

[19] A. Dziedzic, J. Paparrizos, S. Krishnan, A. Elmore, and M. Franklin. Band-limited
training and inference for convolutional neural networks. In International Con-
ference on Machine Learning, pages 1745–1754. PMLR, 2019.

[20] Z. Feng, E. Lo, B. Kao, and W. Xu. Byteslice: Pushing the envelop of main
memory data processing with a new storage layout. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, pages 31–46,
2015.

[21] J.-l. Gailly and M. Adler. Zlib compression library. 2004.
[22] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak, S. Stefani, and V. Srinivasan.

Amazon redshift and the case for simpler data warehouses. In Proceedings of
the 2015 ACM SIGMOD international conference on management of data, pages
1917–1923, 2015.

[23] B. Hentschel, M. S. Kester, and S. Idreos. Column sketches: A scan accelerator
for rapid and robust predicate evaluation. In Proceedings of the 2018 International
Conference on Management of Data, pages 857–872, 2018.

[24] D. Hough. Applications of the proposed ieee 754 standard for �oating-point
arithetic. Computer, (3):70–74, 1981.

[25] M. Isenburg, P. Lindstrom, and J. Snoeyink. Lossless compression of predicted
�oating-point geometry. Computer-Aided Design, 37(8):869–877, 2005.

[26] H. Jiang and A. J. Elmore. Boosting data �ltering on columnar encoding with
simd. In Proceedings of the 14th International Workshop on Data Management on
New Hardware, pages 1–10, 2018.

[27] H. Jiang, C. Liu, Q. Jin, J. Paparrizos, and A. J. Elmore. Pids: attribute decompo-
sition for improved compression and query performance in columnar storage.
Proceedings of the VLDB Endowment, 13(6):925–938, 2020.

[28] K. Kissock. University of dayton kettering labs window energy use analysis.
2007.

[29] Y. Li and J. M. Patel. Bitweaving: fast scans for main memory data processing. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data, pages 289–300, 2013.

[30] P. Lindstrom. Fixed-rate compressed �oating-point arrays. IEEE transactions on
visualization and computer graphics, 20(12):2674–2683, 2014.

[31] P. Lindstrom and M. Isenburg. Fast and e�cient compression of �oating-point
data. IEEE transactions on visualization and computer graphics, 12(5):1245–1250,
2006.

[32] C. Liu, M. Umbenhower, H. Jiang, P. Subramaniam, J. Ma, and A. J. Elmore. Mostly
order preserving dictionaries. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pages 1214–1225. IEEE, 2019.

[33] I. Müller, A. Arteaga, T. Hoe�er, and G. Alonso. Reproducible �oating-point aggre-
gation in rdbmss. In 2018 IEEE 34th International Conference on Data Engineering
(ICDE), pages 1049–1060. IEEE, 2018.

[34] J. Paparrizos. 2018 ucr time-series archive: Backward compatibility, missing
values, and varying lengths, January 2019. https://github.com/johnpaparrizos/
UCRArchiveFixes.

[35] J. Paparrizos andM. J. Franklin. Grail: e�cient time-series representation learning.
Proceedings of the VLDB Endowment, 12(11):1762–1777, 2019.

[36] J. Paparrizos and L. Gravano. k-shape: E�cient and accurate clustering of time
series. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pages 1855–1870, 2015.

[37] J. Paparrizos and L. Gravano. Fast and accurate time-series clustering. ACM
Transactions on Database Systems (TODS), 42(2):1–49, 2017.

[38] J. Paparrizos, C. Liu, B. Barbarioli, J. Hwang, I. Edian, A. J. Elmore, M. J. Franklin,
and S. Krishnan. Vergedb: A database for iot analytics on edge devices. In CIDR,
2021.

[39] J. Paparrizos, C. Liu, A. J. Elmore, and M. J. Franklin. Debunking four long-
standing misconceptions of time-series distance measures. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data, pages
1887–1905, 2020.

[40] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza, and K. Veer-
araghavan. Gorilla: A fast, scalable, in-memory time series database. Proceedings
of the VLDB Endowment, 8(12):1816–1827, 2015.

[41] O. Polychroniou, A. Raghavan, and K. A. Ross. Rethinking simd vectorization
for in-memory databases. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1493–1508, 2015.

[42] N. Potti and J. M. Patel. Daq: a new paradigm for approximate query processing.
Proceedings of the VLDB Endowment, 8(9):898–909, 2015.

[43] P. Ratanaworabhan, J. Ke, andM. Burtscher. Fast lossless compression of scienti�c
�oating-point data. In Data Compression Conference (DCC’06), pages 133–142.
IEEE, 2006.

[44] D. R.-J. G.-J. Rydning. The digitization of the world from edge to core. Framing-
ham: International Data Corporation, 2018.

[45] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke, E. Laureano,
C. Tresness, M. Russinovich, and R. Bianchini. Serverless in the wild: Charac-
terizing and optimizing the serverless workload at a large cloud provider. arXiv
preprint arXiv:2003.03423, 2020.

[46] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhövd. E�cient
transaction processing in sap hana database: the end of a column store myth. In
Proceedings of the 2012 ACM SIGMOD International Conference on Management of
Data, pages 731–742, 2012.

[47] E. Stewart, A. Liao, and C. Roberts. Open `pmu: A real world reference distri-
bution micro-phasor measurement unit data set for research and application
development. 2016.

[48] J. Stokes. Inside the machine: an illustrated introduction to microprocessors and
computer architecture. No Starch Press, 2007.

[49] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. O’Neil, et al. C-store: a column-oriented dbms. In Making
Databases Work: the Pragmatic Wisdom of Michael Stonebraker, pages 491–518.
2018.

[50] Z. Wang, K. Kara, H. Zhang, G. Alonso, O. Mutlu, and C. Zhang. Accelerating
generalized linear models with mlweaving: A one-size-�ts-all system for any-
precision learning. Proceedings of the VLDB Endowment, 12(7):807–821, 2019.

[51] N. Whitehead and A. Fit-Florea. Precision & performance: Floating point and
ieee 754 compliance for nvidia gpus. rn (A+ B), 21(1):18749–19424, 2011.

[52] Wikipedia contributors. Snappy (compression) — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=Snappy_(compression)&oldid=
977673115, 2020. [Online; accessed 14-September-2020].

[53] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and J. Scha�ner.
Simd-scan: ultra fast in-memory table scan using on-chip vector processing units.
Proceedings of the VLDB Endowment, 2(1):385–394, 2009.

[54] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Transactions on information theory, 23(3):337–343, 1977.

https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs
https://www.influxdata.com/
https://www.influxdata.com/
https://www.timescale.com
https://www.kaggle.com/graxlmaxl/identifying-the-physics-behind-an-electric-motor
https://www.kaggle.com/graxlmaxl/identifying-the-physics-behind-an-electric-motor
https://github.com/johnpaparrizos/UCRArchiveFixes
https://github.com/johnpaparrizos/UCRArchiveFixes
https://en.wikipedia.org/w/index.php?title=Snappy_(compression)&oldid=977673115
https://en.wikipedia.org/w/index.php?title=Snappy_(compression)&oldid=977673115

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Numeric Data Representation
	2.2 Compression for Decimal Numbers
	2.3 Query-friendly Storage Layout

	3 Buff Overview
	3.1 Bounded Float
	3.2 Float Splitting and Compression
	3.3 Handling Outliers
	3.4 Query Execution

	4 Experiments
	4.1 Datasets
	4.2 Optimized Baselines
	4.3 Performance Overview
	4.4 Compression Performance
	4.5 Query Performance
	4.6 Benchmark Evaluation

	5 Conclusions
	Acknowledgments
	References

