Final with solution

Analysis I

This is a closed books test. Please show all work. Please solve five out of six. Each problem is worth 20 points.

1. (a) State the closed graph theorem.
 (b) Let \(H \) be a Hilbert space with scalar product \(\langle \cdot ; \cdot \rangle \). Let \(A : H \to H \) be a linear operator satisfying:
 \[
 \langle Af; g \rangle = \langle f; Ag \rangle
 \]
 for all \(f, g \in H \). Prove (the Hellinger-Toeplitz theorem): \(A \) is continuous.

 Proof: (a) \(A : E \to F \), \(A \) linear, \(E, F \) Banach. If the graph
 \[
 G_A = \{(e, f) \mid f = Ae\} \subset E \times F
 \]
 is closed, then \(A \) is continuous.
 (b) Let \(f_n \to f \), \(Af_n \to g \). Let \(h \in H \) be arbitrary. Then
 \[
 \langle Af - g; h \rangle = \lim_{n \to \infty} \langle f_n; Ah \rangle - \langle Af_n; h \rangle = 0
 \]

2. (a) State the Radon-Nikodym theorem for Radon measures in \(\mathbb{R}^n \).
 (b) Compute \(D_\mu(\nu) \), the Lebesgue-Besicovitch density, when \(\mu = 1_B dx \) where \(B = B(0,1) \) is the unit ball in \(\mathbb{R}^n \) and \(\nu = dx \) is Lebesgue measure. (That is, \(\mu(A) = |A \cap B| \) if \(|A| \) is the Lebesgue measure of \(A \).) Compute also \(D_\nu(\mu) \). What can you say about \(D_\nu(\mu)(x) \) when \(x \in \partial B \)? What about \(D_\mu(\nu)(x) \) when \(x \in \partial B \)?

 Proof. (a) If \(\mu, \nu \) are Radon measures in \(\mathbb{R}^n \) and if \(\nu \) is absolutely continuous with respect to \(\mu \) then
 \[
 \nu(A) = \int_A D_\mu(\nu)(x) d\mu
 \]
holds for all Borel sets A with $D_\mu(\nu)(x) = \lim_{r \to 0} \frac{\nu(B(x,r))}{\mu(B(x,r))}$, if all $\mu(B(x,r)) > 0$, infinity otherwise.

(b) $D_\mu(\nu)(x) = 1$ if $x \in B$, $D_\mu(\nu)(x) = \infty$ if $x \notin B$, $D_\mu(\nu)(x) = 2$ if $x \in \partial B$. $D_\nu(\mu)(x) = 1$ if $x \in B$, $D_\nu(\mu)(x) = 0$ if $x \notin B$ and $D_\nu(\mu) = \frac{1}{2}$ if $x \in \partial B$.

3. (a) Let $f, g \in L^1(\mathbb{R}^n)$. Prove that

$$\hat{(f * g)}(\xi) = \hat{f}(\xi)\hat{g}(\xi)$$

holds for all $\xi \in \mathbb{R}^n$. (Here, of course, $f * g$ is the convolution and \hat{f}, the Fourier transform of f.)

(b) Let $j \in C_0^\infty(\mathbb{R}^n)$, $j \geq 0$, $\int_{\mathbb{R}^n} j(x)dx = 1$. Let $f \in W^{1,p}(\mathbb{R}^n)$, $1 \leq p < \infty$. Prove that

$$\partial_i(j * f) = j * \partial_i f$$

where $\partial_i = \frac{\partial}{\partial x_i}$, and that

$$\lim_{\epsilon \to 0} f_\epsilon = f$$

holds in $W^{1,p}(\mathbb{R}^n)$. Here $f_\epsilon = j_\epsilon * f$ and $j_\epsilon(x) = \epsilon^{-n} j\left(\frac{x}{\epsilon}\right)$.

Proof. (a) If $f, g \in L^1$ then $f * g \in L^1$ by Fubini and triangle inequality. Then

$$\hat{(f * g)}(\xi) = \int_{\mathbb{R}^n} e^{-ix \cdot \xi} \left[\int_{\mathbb{R}^n} f(x - y)g(y)dy \right] dx$$

We write $e^{-ix \cdot \xi} = e^{-iy \cdot \xi}e^{-(x-y) \cdot \xi}$ and use the fact Lebesgue measure is translation invariant:

$$\int_{\mathbb{R}^n} e^{-iy \cdot \xi}g(y)dy \left[\int_{\mathbb{R}^n} e^{-i(x-y) \cdot \xi} f(x - y)dx \right] = \hat{g}(\xi)\hat{f}(\xi)$$

In view of Fubini, we are done.

(b) If we prove

$$\partial_i(j * f) = j * \partial_i f$$

then the result follows from the corresponding one for L^p. It remains to prove that if $\partial_i(j * f) = j * \partial_i f$. By definition

$$\int_{\mathbb{R}^n} \partial_i(j * f)(x)\phi(x)dx = -\int_{\mathbb{R}^n} (\partial_i\phi)(x)(j * f)(x)dx$$
Using Fubini and one integration by parts we have

\[- \int_{\mathbb{R}^n} (\partial_i \phi)(x)(j \ast f)(x)dx = \int_{\mathbb{R}^n} f(y)dy \int_{\mathbb{R}^n} \phi(x) \partial_x j(x - y)dx \]

Now \(\partial_x j(x - y) = -\partial_y j(x - y)\), so using Fubini again,

\[\int_{\mathbb{R}^n} \partial_i (j \ast f)(x) \phi(x) dx = \int_{\mathbb{R}^n} \phi(x) (j \ast \partial_i f)(x) dx\]

4. (a) Recall the inequality proven in class

\[\left[\int_{\mathbb{R}^n} |f|^{\frac{n}{p-1}} dx \right]^{\frac{n-1}{n}} \leq C \int_{\mathbb{R}^n} |\nabla f| dx\]

for all \(f \in W^{1,1}(\mathbb{R}^n)\). Let \(1 \leq p < n\). Prove that there exists a constant \(C_{n,p}\) such that

\[\|f\|_{L^{p^*}(\mathbb{R}^n)} \leq C_{n,p} \|\nabla f\|_{L^p(\mathbb{R}^n)}\]

holds for all \(f \in W^{1,p}(\mathbb{R}^n)\), where \(p^* = \frac{np}{n-p}\). Hint: Take \(g = f^r\) for an appropriate number \(r\) and use a suitable Hölder inequality.

(b) Give an example of a function \(f \in W^{1,2}(\mathbb{R}^2)\) that is unbounded. (Hint: take a radial function, compactly supported, smooth away from the origin, and equal to an appropriate power of \(|\log r|\) near the origin. Determine the powers that work.)

Proof (a). Without loss of generality \(f \geq 0, f \in C^\infty(\mathbb{R}^n)\).

\[\int_{\mathbb{R}^n} f^{p^*}(x) dx = \int_{\mathbb{R}^n} g^{\frac{n}{p-1}}(x) dx\]

requires \(r = \frac{(n-1)p}{n-p}\). Now

\[|\nabla g| \leq r|\nabla f| f^{r-1}\]

and in view of the inequality in class and the Hölder inequality

\[\left[\int_{\mathbb{R}^n} f^{p^*}(x) dx \right]^{\frac{n-1}{n}} \leq C \|\nabla f\|_{L^p} \left[\int_{\mathbb{R}^n} f^{q(r-1)}(x) dx \right]^{\frac{1}{q}}\]

where \(q = \frac{p}{p-1}\). Because \(q(r-1) = p^*\) the inequality follows.
(b) If the smooth, compactly supported, radial function looks like $|\log r|^p$ near the origin, it is square integrable. Its derivative is bounded by a constant multiple of $|\log r|^{p-1}r^{-1}$ near the origin. Its square is integrable iff

$$\int_0^e |\log r|^{2(p-1)}r^{-1}dr < \infty$$

Changing variables $x = |\log r|$, we see that $p < \frac{1}{2}$ implies square-integrability of the gradient.

5. (a) State the Fourier inversion theorem in $L^1(\mathbb{R}^n)$.

(b) Let $0 < \alpha < 1$, and let $C^\alpha(\mathbb{R}^n)$ be the Banach space of Hölder continuous functions of order α. Let $T : L^1(\mathbb{R}^n) \rightarrow C^\alpha(\mathbb{R}^n)$ be defined by

$$(Tf)(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{ix\cdot\xi}(1 + |\xi|)^{-(n+1)} \hat{f}(\xi) d\xi$$

Prove that T is linear, continuous, one-to-one, but not onto. (Hints: for 1-1, prove that $Tf = 0$ implies $\hat{f} = 0$. For “not onto”, for each fixed α, the range of T is actually included in a smaller space, namely in $C^\beta(\mathbb{R}^n)$ with $1 > \beta > \alpha$. You could use the open mapping theorem as well: take a function with compact support and integral equal to zero and rescale it appropriately.)

Proof (a). If $f \in L^1(\mathbb{R}^n)$ and $\hat{f} \in L^1(\mathbb{R}^n)$ then

$$f(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} \hat{f}(\xi) d\xi$$

holds x-a.e.

(b) We write

$$Tf(x + h) - Tf(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} (e^{ih\cdot\xi} - 1) (1 + |\xi|)^{-(n+1)} \hat{f}(\xi) d\xi$$

and use $|e^{ih\cdot\xi} - 1| \leq |h|^\alpha |\xi|^{\alpha}$. We obtain

$$\|Tf\|_{C^\alpha(\mathbb{R}^n)} \leq C\|f\|_{L^1(\mathbb{R}^n)}$$

because $\|\hat{f}\|_{L^\infty(\mathbb{R}^n)} \leq \|f\|_{L^1(\mathbb{R}^n)}$. The fact that f is 1-1 follows by integrating against a family of Gaussians: if $Tf = 0$ then

$$0 = \int_{\mathbb{R}^n} Tf(x)e^{ix\cdot\eta}G(\epsilon x)dx = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{-n\epsilon}G\left(\frac{\xi - \eta}{\epsilon}\right) (1 + |\xi|)^{-(n+1)} \hat{f}(\xi) d\xi$$
and letting $\epsilon \to 0$ we obtain $\hat{f}(\eta) = 0$.

6. (a) Recall the inequality proven in class

$$
\int_{B(x,r)} |f(y) - f(z)|^p \, dy \leq Cr^{n+p-1} \int_{B(x,r)} |\nabla f(y)|^p \, |y-z|^{1-n} \, dy
$$

valid for all $1 \leq p < \infty$, $r > 0$, $z \in B(x,r)$ and $f \in C^1(\mathbb{R}^n)$.

Let $p > n$. Prove that

$$
|f(y) - f(z)| \leq C r^{1-\frac{n}{p}} \left[\int_{B(x,r)} |\nabla f(x)|^p \, dx \right]^\frac{1}{p}
$$

holds for any $f \in W^{1,p}(\mathbb{R}^n)$, $r > 0$, $y, z \in B(x,r)$.

(b) Let $p > n$. Let $\Omega \subset \mathbb{R}^n$ be an open bounded set. Prove that the map

$$i(f) = f,$$

defined for $f \in C_0^\infty(\Omega)$, extends uniquely to a continuous linear map

$$i : W_0^{1,p}(\Omega) \to C^{1-\frac{n}{p}}(\Omega)$$

where $W_0^{1,p}(\Omega)$ is the closure of $C_0^\infty(\Omega)$ in $W^{1,p}(\Omega)$.

Hint, although we did this in class: compare $f(z)$ to the average on the ball, i.e., consider

$$f(z) - \frac{1}{|B(x,r)|} \int_{B(x,r)} f(w) \, dw$$

Proof (a)

$$
\left| f(z) - \frac{1}{|B(x,r)|} \int_{B(x,r)} f(w) \, dw \right| \leq C r^{-n} \int_{B(x,r)} |f(z) - f(w)| \, dw
$$

Using the inequality proved in class with $p = 1$:

$$r^{-n} \int_{B(x,r)} |f(z) - f(w)| \, dw \leq C \int_{B(x,r)} |\nabla f(w)||z-w|^{1-n} \, dw$$

Now by Hölder

$$
\int_{B(x,r)} |\nabla f(w)||z-w|^{1-n} \, dw
\leq C \left[\int_{B(x,r)} |\nabla f(w)|^p \, dw \right]^\frac{1}{p} \left[\int_{B(x,r)} |w-z|^{(1-n)q} \right]^\frac{1}{q}
$$
We have
\[
\left[\int_{B(x,r)} |w - z|^{(1-n)q} \right]^{\frac{1}{q}} \leq \left[\int_{B(z,2r)} |w - z|^{(1-n)q} \right]^{\frac{1}{q}} \leq Cr^{1-n/p}
\]

(b) By the previous inequality, taking \(x = \frac{y+z}{2} \) and \(r = |y-z| \), we obtain the inequality
\[
|f(y) - f(z)| \leq C|y-z|^{1-\frac{n}{p}} \|f\|_{W^{1,p}(\mathbb{R}^n)}
\]