Math. 314: Homework 7

1. Problem 14 from Rudin, Chapter 14: Let \(\Omega : \{ z = x + iy \mid y \in (-1, 1) \} \), \(f \in H(\Omega) \), \(|f| \leq 1 \) in \(\Omega \), and \(\lim_{x \to \infty} f(x) = 0 \). Prove that \(\lim_{x \to \infty} f(x + iy) = 0 \), uniformly for \(y \in [-\alpha, \alpha] \) for \(0 < \alpha < 1 \).

2. Problem 18, Chapter 14: Let \(\Omega \) be an open simply connected domain and \(f : \Omega \to D, g : \Omega \to D \) one-to-one conformal maps onto the unit disk \(D \). What relationship exists between \(f \) and \(g \)? What if \(f(z_0) = g(z_0) = a \) for some \(z_0 \in \Omega, a \in D \)?

3. Problem 26. This is a problem outlining the proof due to Koebe of the Riemann mapping thm. Please note that Rudin denotes the unit disk by \(U \).

4. Problem 29. This is about the composition powers of a function \(f : \Omega \to \Omega, f \in H(\Omega) \), assuming \(f(a) = a \) for some \(a \in \Omega \).

5. Problem 32. This problem asks to compute the image of various sets under

\[
 f(z) = \exp \left\{ i \log \frac{1+z}{1-z} \right\}.
\]