
DFix: Automatically Fixing Timing Bugs in
Distributed Systems

Guangpu Li
University of Chicago

USA
cstjygpl@uchicago.edu

Haopeng Liu
University of Chicago

USA
haopliu@uchicago.edu

Xianglan Chen∗
University of Sci. and Tech. of China

China
xlanchen@ustc.edu.cn

Haryadi S. Gunawi
University of Chicago

USA
haryadi@cs.uchicago.edu

Shan Lu
University of Chicago

USA
shanlu@uchicago.edu

Abstract
Distributed systems nowadays are the backbone of comput-
ing society, and are expected to have high availability. Un-
fortunately, distributed timing bugs, a type of bugs triggered
by non-deterministic timing of messages and node crashes,
widely exist. They lead to many production-run failures, and
are difficult to reason about and patch. Although recently
proposed techniques can automatically detect these bugs,
how to automatically and correctly fix them still remains
as an open problem. This paper presents DFix, a tool that
automatically processes distributed timing bug reports, stati-
cally analyzes the buggy system, and produces patches. Our
evaluation shows that DFix is effective in fixing real-world
distributed timing bugs.

CCSConcepts • Software and its engineering→Cloud
computing; Software maintenance tools; • Computer sys-
tems organization → Reliability.

Keywords Distributed system; Timing; Bug fixing

ACM Reference Format:
Guangpu Li, Haopeng Liu, Xianglan Chen, Haryadi S. Gunawi,
and Shan Lu. 2019. DFix: Automatically Fixing Timing Bugs in
Distributed Systems. In Proceedings of the 40th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI
’19), June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3314221.3314620

∗The work was done when Xianglan Chen visited University of Chicago

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00
https://doi.org/10.1145/3314221.3314620

RM AM NM

put(e) put(e)

Event Queue

Figure 1. A message-timing bug in MapReduce[3].

1 Introduction
Distributed systems such as scale-out storage systems [20,
24, 28, 57] and cloud computing frameworks [23, 56] are the
backbone of our computing ecosystem. High availability of
these systems is crucial, with minutes of outage costing mil-
lions of dollars [55, 66], but severely threatened by software
bugs, particularly distributed timing bugs [31, 46, 70], a type
of bugs triggered by non-deterministic timing of message
communication or component failures (e.g., node crashes).

Distributed timing bugs impose a particularly large threat
to system availability for several reasons. They are difficult
to expose before code release, given their non-deterministic
nature, and the limited scale and duration of in-house testing.
Consequently, they widely exist in the field [14, 31, 33, 46]
and easily manifest during large-scale and long-running pro-
duction deployment, contributing to more than a quarter
of cloud-system failures [70]. Although many recent tools
[25, 32, 43, 45, 47–49, 63] can automatically detect these bugs,
system availability does not improve until after these bugs
are fixed. Unfortunately, correctly fixing distributed timing
bugs is challenging for developers, as it involves global rea-
soning beyond one thread or one node, and often requires
non-traditional synchronization, as we will elaborate below.

1.1 Examples
There are two types of distributed timing bugs: message-
timing bugs and fault-timing bugs. Figure 1 illustrates a
message-timing bug in MapReduce, triggered when a user
kills a job unexpectedly early. From the figure, we can see two
series of concurrent operations involved in this bug. Starting

https://doi.org/10.1145/3314221.3314620
https://doi.org/10.1145/3314221.3314620

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Guangpu Li, Haopeng Liu, Xianglan Chen, Haryadi S. Gunawi, and Shan Lu

HMaster RS

OpenRegion();

RIT.remove(h);

while(RIT.contains(h)){

sleep(1);}

Figure 2. A fault-timing bug in HBase [2] (red explosion:
bug-triggering crash; green explosion: tolerable crash).

from the left-hand side of the figure, when a user issues a
task-kill command, the resource-manager RM sends an RPC
killAttempt to the application-manager AM; the RPC han-
dler in AM then creates an event UP to asynchronously check
the status of job J . Starting from the right-hand side of the
figure, node-manager NM sends an RPC heartBeat to AM;
the corresponding RPC handler in AM then creates an event
AS to asynchronously update J ’s status to ASSIGNED. Since
these two sets of operations are concurrent with each other,
UP may non-deterministically read the job status before AS
updates the status to ASSIGNED, causing a JobNotExisting
exception and a job abort.
A naïve way to fix this bug is to use a single-machine

synchronization primitive like condition-variable wait to
force the status read in UP to wait for the status update in
AS. However, this could cause safety and liveness problems.
The blocking wait may cause an RPC timeout in the RPC
client, potentially leading to failures. Furthermore, it may
cause deadlocks by blocking not only the status read but
also the status update, as these two accesses may share the
same event-handling or RPC-handling thread — the number
of event-queue or RPC-server handling threads is usually
configurable and is 1 by default in many of our benchmarks.
Fixing this bug in a distributed manner is still challeng-

ing. First, reasoning about the timing relationship among
distributed operations is error prone. For example, naïvely
forcing RM to send killAttempt after NM sends heartBeat
cannot guarantee event UP to execute after event AS if the
system configures multiple event or RPC handling threads.
Second, it is not trivial to enforce a distributed execution or-
der. It often involves adding either a distributed synchroniza-
tion service like ZooKeeper [4] or a few new RPCs/messages
among various nodes for coordination. Both may produce
patches that are too complicated to adopt.

Figure 2 illustrates a fault-timing bug in HBase, triggered
by an unexpected region-server (RS) node crash in the mid-
dle of opening a region. In HBase, a region server RS opens
a region by executing an OpenRegion function, illustrated

in the figure. This function first remotely causes a record
to be inserted into HMaster’s region-in-transition RIT map,
indicating that a region is to be opened, and later remotely
removes this record from RIT through a RegionOpenedmes-
sage, indicating that the region has been opened. If RS hap-
pens to crash in between, denoted by the red-explosion sym-
bol in figure 2, HMaster would be stuck in a loop while
(RIT.contains (h)), waiting for the record to be removed
forever and making the whole HMaster service unavailable.
Clearly, fixing this bug cannot rely on traditional wait-

based synchronization primitives like locks, condition vari-
ables, and semaphores — it is useless to wait as one cannot
predict when a node would crash. Traditional file-system
crash consistency does not help here either, as the impact of
the crash goes beyond one node and beyond file systems.

1.2 Challenges & Goals
Those challenges discussed above widely apply:

• Fixing distributed timing bugs often cannot rely on
traditional synchronization primitives like locks and
condition variables, as blocking waits cannot help fix
fault-timing bugs, and can introduce new bugs if put
in event/RPC handlers where most message-timing
bugs are located [46, 48].

• Fixing distributed timing bugs often requires global
code changes and reasoning about operation timing
and side effects across threads, processes, and nodes.

In addition to these unique challenges, there are also
generic challenges like keeping patches not only correct,
but also reasonably simple and well performing [64].
These challenges are reflected in how developers fix dis-

tributed timing bugs in practice.
Fixing distributed-timing bugs lacks dominant or system-

atic strategy in practice. According to the previous study
[46], a variety of schemes, including ad-hoc ones, are used
by developers: about half are fixed by a set of schemes like
message retries, message ignoring, message faking (e.g., the
bug in Figure 2), and others that allow software to better
tolerate buggy timing; <30% are fixed by proactively dis-
abling buggy timing, including <10% using distributed waits;
about 20% are fixed through significant data-structure and
semantic changes (e.g., the bug in Figure 1), partly due to the
difficulty of finding semantic-preserving patches.

Fixing distributed-timing bugs is time consuming and er-
ror prone. Similar to single-machine timing bugs [29], dis-
tributed timing bugs take days to months to fix, with bug
understanding and patch design all taking time. Even dis-
tributed timing bugs tagged with the highest priority [1, 5]
suffer from incorrect patch releases after many days’ patch
design and review.
Although techniques have been proposed to help detect

[32, 43, 45, 47–49, 63] and diagnose [21, 26, 42, 51, 54, 70, 71]
distributed timing bugs, no techniques have been proposed

DFix: Automatically Fixing Timing Bugs in Distributed Systems PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

to help automatically fix them. Auto-fixing has been pro-
posed and heavily researched for local timing bugs where
some use locks, condition variables, or well designed waits
to fix multi-threaded concurrency bugs after these bugs are
detected [36, 38–40, 50, 53, 67], and some [11] use domain-
specific event policies to fix event races in web applications.
Unfortunately, these techniques cannot handle distributed
timing bug challenges discussed above.
Overall, it is desirable to have techniques that automati-

cally apply a unified strategy to fix many distributed-timing
bugs through best-effort patches similar to what a human
would create. Such a technique can save manual effort in fix-
strategy design, global reasoning, global code changes, and
code correctness review. The resulting patches could serve as
either temporary patches, which improve system availability
while helping developers to figure out final patches (as long
as the automatically generated patches are in source code,
which DFix patches are), or directly as final patches.

1.3 Contributions
This paper proposes DFix, a tool that takes in distributed
timing bug reports, and automatically generates best-effort
patches for many of them, through static program analysis.
At the high level, DFix does not use traditional blocking-

wait synchronization primitives. Instead, it systematically
generates patches that handle observed buggy timing through
rollbacks [40, 58, 59, 62, 67] or fast-forwards.
Specifically, to fix a message-timing bug, DFix patches

a selected code region r to observe if r ’s thread or node is
executing undesirably fast, and if so, slow down by repeated
roll-back and re-execution.
To fix a fault-timing bug, DFix patches a selected region

r to observe whether another node has crashed at an unde-
sirable moment and if so, rollback or fast-forward selected
operations on behalf of the crashed node, pretending the
crash occurred earlier or later.

At the low level, DFix uses static analysis to automatically
decide where and how to observe buggy timing, and where
and how to conduct rollback or fast-forward, so that the
resulting patches satisfy several properties:

1. They are designed to only constrain the timing and
not to change any computation logic of the original
software execution. Specifically, the static analysis of
DFix carefully avoids liveness violations like insert-
ing blocking-waits inside RPC/event handlers, and
safety violations like re-executing non-idempotent op-
erations, etc.

2. They cover a wide variety of real-world fixing schemes
through a unified high-level strategy. Depending on
the rollback/fast-forward region location and length,
some DFix patches are essentially equivalent with de-
veloper patches that proactively disable buggy timing,
and some are equivalent with developer patches that

reactively tolerate buggy timing (e.g., in the case of
Figure 2); some involve message retries, and some es-
sentially ignore or fake messages.

3. They often involvemultiple threads and nodes. Through
automated analysis and transformation, DFix relieves
developers from distributed reasoning and code changes.

4. They do not introduce severe degradation to perfor-
mance or code complexity. DFix intentionally gives up
its bug fixing if the patch would be too complicated.

We evaluate DFix on all the 22 real-world distributed tim-
ing bugs reported by recently proposed message-timing bug
detector DCatch [48] (10 bugs) and fault-timing bug detector
FCatch [49] (12 bugs), which come from Cassandra, HBase,
MapReduce, and ZooKeeper. DFix automatically fixes 17 of
them with similar performance and simplicity as manual
patches. The source code of DFix and details about all the
bug benchmarks, including patches generated by DFix and
patches provided by developers, are all available at our web-
site https://github.com/SpectrumLi/TimingBugFixing.

In summary, DFix is not a panacea. There are distributed
timing bugs that DFix cannot fix. There are also bugs that
DFix can fix but cannot fix in the most desirable way, particu-
larly when the ideal patch requires semantics changes, which
DFix has no conceivable way to automatically generate with
correctness guarantees. However, we believe DFix provides
a solid starting point towards solving this critical problem of
patching real-world distributed timing bugs, which is very
challenging for developers to manually reason about even
after bug detection as we will see in DFix design, and im-
proving availability of distributed systems.

2 Background
Distributed Timing Bugs Previous study [46] categorizes
real-world distributed timing bugs into two types, with each
type containing two sub-categories, as illustrated in Figure
3. Before we present how DFix fixes these two major types
in Section 3 and 4, we explain all the sub-categories below.

Message-timing bugs can be categorized into order viola-
tions and atomicity violations. Amessage order violationman-
ifests when an operation B unexpectedly accesses a shared
resource before an operation A, like reading data before ini-
tialization (figure 3a). A or B or both are initiated through
messages. The bug shown in figure 1 belongs to this category.
A message atomicity violation manifests when an operation
B unexpectedly executes in between and hence violates the
atomicity of a code region A1–A2 (figure 3b). A1, A2, and
B access the same resource, with at least one initiated by
messages.
Fault-timing bugs can be similarly categorized. In a fault

order violation, operation B cannot proceed until A initiated
by another node has executed. Unfortunately, when that
other node crashes before A or drops a message whose han-
dler conducts A, B waits forever and causes the system to

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Guangpu Li, Haopeng Liu, Xianglan Chen, Haryadi S. Gunawi, and Shan Lu

CRASH

B

A

B B

B

A1

BA2

B

B

A

B

BA1

BA2

CRASH

Don’t execute before A Don’t execute between A1—A2 Don’t crash before A Don’t crash between A1—A2

(a) Message Order Violation (b) Message Atomicity Violation (c) Fault Order Violation (d) Fault Atomicity Violation

Figure 3. Distributed message-timing bugs ((a) and (b)) and distributed fault-timing bugs ((c) and (d)).

partially or completely hang (figure 3c). The bug shown in
figure 2 belongs to this category. In a fault atomicity violation,
when a node unexpectedly crashes in a specific time window,
denoted by A1–A2 in figure 3d, it leaves a system state that
cannot be correctly handled by its recovery routine. Once
that system state is read by the operation B in figure 3d, the
recovery attempt or the whole system fails.

DFix Front End As an auto-fixing, not bug-detection, tool,
DFix relies on its front end to provide accurate bug reports.
Ideally, a bug report should contain (1) the bug type — which
one out of the four types listed in figure 3; (2) racing instruc-
tions and buggy window boundaries — all the operations
illustrated in figure 3, each identified by its static instruction
ID and dynamic context (call stack and causality stack), un-
der which the bug is triggered. DFix is not responsible for
fixing unreported bugs and unreported contexts.
Here, causality stack refers to a sequence of causal oper-

ations that lead to the execution of I : when I is inside an
event handler, the top of its causal stack is the corresponding
event enqueue operation; when I is inside a message or RPC
handler, the top of its causality stack is the message/RPC
sending operation from another node; when I is inside a
regular thread, the top is the thread creation from its parent.
Causality stack is crucial to identify dynamic context related
to bug manifestation [48, 49].
We expect DFix to work with most dynamic distributed-

timing-bug detectors, as information like bug type and racing
instructions are fundamental bug components and should be
reported by most detectors. The dynamic context needed by
DFix may not be reported by default, but should be easy
to extract from any dynamic detector. The current DFix
prototype uses DCatch [48] and FCatch [49] as front end
for message-timing and fault-timing bugs, respectively. The
bug report inputs used in DFix experiments can be found at
https://github.com/SpectrumLi/TimingBugFixing.

3 Fixing Message-Timing Bugs
3.1 Overview
This section uses a simplified example from the real-world
bug in figure 1 to explain how a DFix patch works and what
are the key challenges in patch generation.

Running Example Figure 4 contains data races to a shared
heap object state from the event handler handle and the
RPC function update, denoted asA and B respectively. A job
fails if B reads state before A updates state. Consequently,
the patch should make sureA executes before B. Note that, B
exists in an event handler instead of an RPC function in the
real bug illustrated in figure 1. The simplification in figure
4 does not make the bug easy to fix: forcing RM to invoke
RPC after NM (not shown in figure 4) still cannot guarantee
B to execute after A due to the asynchronous nature of A;
blocking-wait before B still incurs deadlocks and undesirable
RPC timeouts. We will explain how to fix the original bug
later in this section.

Roadmap All DFix patches for message-timing bugs, in-
cluding both order violations and atomicity violations, con-
tain similar components: somewhere before B like 2○ in
figure 4, the patch calls DF_CHECK to see whether B’s thread
is executing too fast based on a flag set by DF_SET some-
where else like 1○ in figure 4, and, if so, the patch calls
DF_ROLLBACK to roll back the execution to a place marked
by DF_ReEx_Start like 3○ in figure 4 and uses repeated re-
execution from DF_ReEx_Start to slow down (the meaning
of B is explained in Section 2).
To generate these patches, DFix takes several steps as

sketched out in Algorithm 1:
First (line 2), DFix decides the re-execution region loca-

tion by analyzing functions on the causality stack of B. The
starting location of re-execution is particularly important,
which is denoted as LocStart in Algorithm 1 and exemplified
by location 3○ in figure 4. The details of this step is explained
in Section 3.2.
Second (line 5), DFix decides where to check the buggy-

timing and potentially initiate rollback by analyzing func-
tions on the causality stack of B and the LocStart identified
above. This location is denoted as LocCHECK in Algorithm 1.
It is sometimes right before the race instruction like 2○ in
figure 4, but not always. The details are in Section 3.3.

Third (line 8), DFix generates code snippets that conduct
the rollback by analyzing the locations of DF_ReEx_Start
and DF_CHECK — whether they are inside the same function,
whether they are inside the same node, and others. These
code snippets are underneath DF_ReEx_Start, DF_ReEx_End,

DFix: Automatically Fixing Timing Bugs in Distributed Systems PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Node AM: Thread 1

void handle (ASEvent e) {
...
state = transition(state,ASSIGNED); //A

+ DF_SET(...);
}

Node AM: Thread 2

void update (int id) {
TA ta = TAmap.get(id);
S state = ta.state;

+ if (DF_CHECK(...))
+ DF_ROLLBACK

state = transition(state, UPDATE); //B

}

Node RM: Thread 1

+ DF_ReEx_Start
RPC (update, id);

+ DF_ReEx_End

1 2

3

Figure 4. DFix patch for a bug simplified from figure 1 (green part illustrates the patch; identities of A and B, including their
bug-triggering causality stacks, are the inputs to DFix).

and DF_ROLLBACK located at 2○ of figure 4. The details are
explained in Section 3.4.
Finally, DFix generates code snippets to allow its patch

finding out the buggy timing at run time. Specifically, DFix
decides where to set and unset a buggy-timing flag (line
11–15 in Algorithm 1), exemplified by the DF_SET located
at 1○ in figure 4; DFix also generates the parameters for
DF_SET, DF_UNSET, and DF_CHECK calls (line 18–21, 27–31).
The details are presented in Section 3.5.

3.2 Where does the Re-execution Start?
The starting point of re-execution (i.e., the rollback destina-
tion) cannot be arbitrary. Particularly, it cannot be inside
resource-holding or time-sensitive regions, like lock critical
sections or event/RPC handlers, as repeated re-executions
can cause deadlocks and/or timeouts. In fact, there may be
no suitable rollback destination throughout the thread of B,
because if B is in an RPC or event handler, everywhere in B
thread is prone to deadlocks and/or timeouts.

Solutions Starting from the location right before B, DFix
searches backward for a suitable rollback destination along
B’s causality stack (i.e., not call stack like previous local
concurrency-bug fixing tools [38, 39]). Given a location L,
DFix makes the following check: (1) if L is inside a lock criti-
cal section, the search continues at where the corresponding
lock was acquired; (2) if L is inside an event handler, the
search continues at where the corresponding event was en-
queued in another thread; (3) if L is inside an RPC or message
handler, the search continues at where the RPC request was
invoked at another node. If L does not fall into any of the
three cases above, it is chosen as the starting point of re-
execution (i.e., rollback destination), denoted as LocStart.
For the bug in figure 4, the search starts from inside the

update RPC handler, right before B in the middle column of
the figure. Since the rollback destination cannot be inside
an RPC handler, the search moves to the RPC caller side on
node RM, and ends at right before the RPC request on RM
(i.e., 3○ in figure 4).

1Inputs to this algorithm are provided by the front-end bug detector, and
are explained in Section 2 and Figure 3. We use PATCH X @ Y to indicate
that a DFix patch inserts code snippet X at location Y.

Algorithm 1: Patching a message-timing bug1.
Input : {A, B} for an order violation,

{A1, A2, B} for an atomicity violation
1 /*locate the re-execution region so that re-execution is not inside

lock critical sections or RPC handlers */
2 {LocStart, LocEnd} = FindReexecutionRegion (B);
3

4 /*locate the check location so that re-execution is idempotent*/

5 LocCHECK = FindCheckLocation (LocStart, B);
6

7 /*generate rollback routine based on where re-execution region is*/

8 {DF_ROLLBACK, DF_ReEx_Start, DF_ReEx_End}=
CausalityRollBack (LocStart, LocCHECK);

9

10 /*locate flag (un)set location to observe buggy timing*/

11 if (the bug is an Order-Violation) then
12 LocSET = After (A);
13 else
14 LocSET = Before (A1); LocUNS = After (A2);
15 end
16

17 /*pre-compute the race-location for DF_CHECK*/

18 RaceIDpre = Slicing (B.raceobj, LocCHECK);
19 if (!Idempotent (RaceIDpre)) then
20 RaceIDpre = Constant;
21 end
22

23 /* Generate the Patch */

24 PATCH (
25 DF_ReEx_Start @ LocStart,
26 DF_ReEx_End @ LocEnd,
27 DF_SET (ID(A.raceobj)) @ LocSET, //order vio.
28 DF_SET (ID(A1.raceobj)) @ LocSET, //atom. vio.
29 DF_UNSET (ID(A2.raceobj)) @ LocUNS, //atom. vio.
30 “IF(DF_CHECK(RaceIDpre)) {DF_ROLLBACK}”
31 @ LocCHECK);

3.3 Where to Check Timing and Initiate Rollback?
Somewhere beforeB and after the staring point of re-execution
LocStart, the patch should check for the buggy timing and

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Guangpu Li, Haopeng Liu, Xianglan Chen, Haryadi S. Gunawi, and Shan Lu

potentially initiate the rollback (i.e., invoking DF_ROLLBACK
based on the DF_CHECK result in figure 4). There is a trade-off
here about the DF_CHECK and hence DF_ROLLBACK location:
on one hand, we prefer the checking to be closer to LocStart,
as a shorter rollback/re-execution region is easier to guaran-
tee correctness; on the other hand, we prefer the checking to
be closer to B, as it is easier to predict whether B will execute
shortly before B.

Solutions To balance this tradeoff, DFix starts from LocStart
identified earlier, and searches forward along B’s causality
chain towards B for a suitable location LocCHECK, so that
LocCHECK dominates B and the resulting region is the longest
one that contains no side-effect instructions. This way, we
can easily guarantee that repeated rollback and re-execution
will not change program semantics without checkpoints.
DFix gives up its patching attempt if LocCHECK ends up in a
different node from B.

Naturally, all read operations and writes to stack variables
whose stack frames are rolled back (e.g., the write to ta and
state in function update of figure 4) are free of side effects.
An event enqueue, an RPC call, and a message sending are
free of side effects if the corresponding handler only updates
return values or stack variables during re-execution. This
applies for RM’s RPC request in figure 4, because the update
function only updates stack variables before B.

3.4 How to Rollback
Since every rollback region in DFix patches is free of side
effect, rollback and re-execution do not require any check-
pointing and can be repeated for many times without intro-
ducing new bugs. We just need to pick different re-execution
mechanisms for intra-node situations and inter-node situa-
tions, respectively.
To roll back a code region inside one thread or one han-

dler, the patch puts the code into a loop and rolls back by
a loop continue — such a loop and loop continue are put
underneath DF_ReEx_Start and DF_ReEx_End surrounding
the RPC call on RM in figure 4. Inter-procedural rollback is
done similarly and uses exception throw to rollback from
the callee function to the caller.
To roll back code regions across threads, handlers, or

nodes, the rollback procedure is essentially multiple intra-
thread/handler rollbacks chained together. Starting from the
thread/handler where rollback is initiated (e.g., DF_ROLLBACK
in figure 4), every thread/handler simply terminates itself and
then informs its causality parent (i.e., the parent thread, the
message sender, the event creator, etc.) to also rollback until
the rollback-destination thread/handler is reached, where a
loop continues to launch re-execution (e.g., the loop under-
neath DF_ReEx_Start and DF_ReEx_End in figure 4).

How to inform the causality parent to rollback varies for
different causality operations:

For RPC calls or other synchronous messages, this is done
by throwing a remote exception/error. For example, in fig-
ure 4, DF_ROLLBACK throws an exception with the excep-
tion handler executing loop continue on RM as part of
DF_ReEx_End.

For asynchronous causal operations like event enqueues,
a flag variable is used to coordinate between the event han-
dler and the event creator function C . After C enqueues the
corresponding event, it repeatedly checks the flag until: (1)
the flag is set by the event handler indicating that no buggy
timing is observed and hence no rollback is needed, in which
caseC continues its execution; (2) the flag is set by the event
handler indicating that buggy timing is observed and roll-
back is needed, in which case C rolls back itself and notifies
its causality parent; or (3) the flag is not updated for a thresh-
old amount of time and C is a time-sensitive code region
like in an RPC handler. In this case, C rolls back and throws
an exception to trigger an RPC resending. The patch makes
sure that the re-sended RPC does not cause redundant event
enqueues. This is how the original bug in figure 1 is fixed in
a semantics-preserving way.

3.5 How to Observe the Buggy Timing
At the checking site identified earlier, the DFix patch checks
a flag to decide whether the current thread is executing too
fast. In figure 4, this checking is done by DF_CHECK function
and the function parameter helps decide which flag to check.
The challenge here is to maintain a precise flag, particu-

larly (1) when to set and unset the flag, and (2) how to distin-
guish flags that belong to different dynamic instances of one
static bug. The latter was ignored by local concurrency-bug
fixing tools [38, 39], but is particularly important in cloud
systems, where the same instruction could execute for many
times (e.g., once per task attempt or job) and ordering is
expected only among certain dynamic instances (e.g., the
status read of job J needs to wait for initialization of J only,
not other jobs).

Solutions For an order violation {A, B}, a flag is set right
after A, and B can execute once the flag is set (line 12 in
Algorithm 1). For an atomicity violation {A1–A2, B}, a flag is
set right beforeA1 and reset right afterA2, and B can execute
if the flag is not set (line 14 in Algorithm 1).
Since different dynamic instances of A or B could access

different objects, DFix creates a flag map for each bug, in-
dexed by the hash-code of the race object m accessed by
racing instructions. DF_CHECK and DF_SET in figure 4 use
such hash code as parameters, which help locate the right
flag.

The remaining question is to figure out which object will
be accessed by the buggy instruction B at the checking site.
This is trivial if DF_CHECK is right before B like that in figure
4, but challenging otherwise like that in figure 5.

DFix: Automatically Fixing Timing Bugs in Distributed Systems PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Node AM: Thread 2

void handle (UPEvent e) {

TA ta = TAmap.get(e.id);

S state = ta.state;

... transition(state,...); //B

}

Node AM: Thread 3

void update (int id,) {

Event et = new Event(id);

+ TA ta = TAmap.get(et.id);

+ S state = ta.state;

+ ...DF_CHECK(...).

put (et);

}slicing edges

Figure 5. Pre-computation of race-object hash-code.

DFix first statically identifies all instructions that may af-
fect the race-object identity along any path between DF_CHECK
and B. To do so, DFix extends traditional static slicing by
concatenating slices in multiple threads or handlers together
along the causality chain (line 18 in Algorithm 1). DFix then
puts these instructions together, with variable names ad-
justed (e.g., replace this.f1 by o.f1) or replaced by corre-
sponding gettermethod (e.g., replace this.f1 by o.getf1()),
to get the race-object reference for DF_CHECK. Finally, DFix
statically checks whether the above pre-computation is idem-
potent. If not, DFix simply uses a constant number as the
flag-map key, making all dynamic instances of a bug share
the same flag (line 19–21 in Algorithm 1).
For example, in figure 5, DFix wants to pre-compute the

race-object identity, which is state used by B in Thread 2,
right after the event-enqueue in Thread 3. To accomplish
this, static slicing starts from B and identifies two operations
that determine the identity of state in the handle function,
as indicated by the arrows in figure 5. Then, following the
causality chain, DFix knows that the handle’s parameter e
is actually the local variable et inside the update function
in Thread 3. Then, these related instructions are cloned to
function update with some name adjustment (i.e., replacing
e by et) to pre-compute the race-object identity.

The above pre-computation is accuratewhen other threads
cannot affect which objectBwould access between DF_CHECK
and B (i.e., no time-of-check time-of-use races [15, 16]).
DFix proves this assumption when (1) B accesses a glob-

al/static object; or (2) the pre-computation only reads vari-
ables whose content cannot be changed by other threads
between the checking and B, like local variables, final vari-
ables, heap objects whose references haven’t been put to
another shared objects yet. etc. When DFix cannot prove so,
it still generates the patch. In the very rare cases when a
TOCTOU race happens right before a buggy timing occurs,
the patch would fail to fix the bug but would not introduce
new bugs.

3.6 Patch Correctness Analysis
DFix carefully prevents its patches from introducing new
bugs through several efforts. First, DFix makes sure that
the rollback/re-execution region in its patch does not con-
tain any side-effect operations (Section 3.3), and the extra
pre-computation conducted to observe the buggy timing is
idempotent (Section 3.5). This way, DFix patches guarantee

to only change the execution timing, but not introducing
new program semantics. Second, a DFix patch does not intro-
duce any blocking wait inside RPC handlers, given its overall
design and its safety-net timeout (Section 3.4), and hence
does not introduce any unexpected RPC timeout exceptions.
Third, DFix sets a threshold for the number of rollbacks in its
patch (20 by default). This way, a DFix patch is guaranteed
not to cause deadlocks, although in theory it may fail to
prevent a bug manifestation that could have been prevented
if there were more rollbacks. We further elaborate on the last
point. Naïvely, one may want to delay B until A is executed.
However, doing so may cause deadlocks if A never executes,
a realistic issue in distributed systems where a node crash
easily makes an instruction that was supposed to execute
disappear. This is why DFix needs to set a threshold for the
number of rollbacks.

Furthermore, although unnecessary for patch-correctness
guarantees, DFix still makes its best effort in analyzing whe-
ther the waited-for instruction is guaranteed to execute,

if there is no node crashes or message drops, to provide
more information to developers. To do so, DFix leverages
the traditional dominating and post-dominating relationship
analysis [12] and also extends it with causality information
to reason beyond one thread or one node — if a causality
child like an RPC handler has executed, we know for sure
that the causality parent like the RPC caller has executed.
This way, DFix can ensure that the waited-for instruction
is guaranteed to execute for most message-timing bugs that
we encountered in fault-free situation (Section 6.3).

4 Fixing Fault-Timing Bugs
4.1 Overview
We use the bug discussed in figure 2 to demonstrate how
DFix fixes a fault-timing bug through fast-forward.

Running example As shown in figure 6, HMaster’s thread
1 executes a loop that exits only when a specific entry name
is removed from the RITmap. This entry is inserted through
a request by RS right before the process function, and is
removed through an OPENED handler in HMaster-Thread 2
also remotely requested by RS atA2. When RS crashes inside
this process function before the OPENED request is sent out
at A2, HMaster gets stuck in the while loop, making the
whole HBase system unavailable.

Roadmap All DFix patches for fault-timing bugs contain
similar components: right before where the failure gets ex-
posed according to the bug report like 2○ in figure 6, the
patch checks whether another node Nf ault has crashed in
the buggy time window. If so, this checking node attempts
to either rollback (in rollback patch) or fast-forward (in fast-
forward patch like figure 6) some of the crash-persistent
operations on behalf of Nf ault (i.e., inside DF_FastFwd in
figure 6); logging surrounding the buggy time window (i.e.,

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Guangpu Li, Haopeng Liu, Xianglan Chen, Haryadi S. Gunawi, and Shan Lu

void assignMeta(){
while (RIT.contains(name)) {//B

waitFor(100);
+ if (DF_CHECK())
+ DF_FastFwd();

} //hang loop (failure site)

deletedir(META_TEMP);
}

void process(){
+ DF_Start();

// A1
…

if (!createdir(META_TEMP)) {//U
+ DF_End();

return;
}

_transit (name, OPENED);//A2

+ DF_End();
}

void opened (String name){
RIT.remove (name);

}2

1
HMaster: Thread 1 HMaster: Thread 2 RS: Thread 1

Figure 6. DFix fast-forward patch for the bug in figure 2 (this patch, in green, is essentially the same with developers’ patch;
identities of A1, A2, and B are the inputs to DFix).

inside DF_Start and DF_End in figure 6) is used to support
the above checking and rollback or fast-forward.

Algorithm 2: Patching a fault-timing bug2.
Input :A1, A2, B

1 /*locate the start and end of buggy window */

2 LocStart = Before (A1);
3 LocEnd = CFGExitNodes (A1, A2);
4 OP = CrashPersistentOperations (A1, A2);
5

6 /*Identify fastforward operations and their parameters*/

7 if (SafeFastFwd(A1, A2)) then
8 OPFF = RequireFastFwd (OP);
9 ParamsOPFF = Slicing (OPFF, A1);

10

11 /* Generate Fast-Forward Patch */

12 PATCH (
13 Log(START, ParamsOPFF) @ LocStart,
14 Log(END) @ LocEnd,
15 Log(OpID) @ After(OPFF),
16 “IF(DF_CHECK()) {DF_FastFwd();}”
17 @ Before(B);
18 end
19

20 /*Identify rollback operations */

21 if (SafeRollback(A1, A2)) then
22 OPRB = RequireRollBack (OP);
23

24 /* Generate Roll-Back Patch */

25 PATCH (
26 Log(START) @ LocStart,
27 Log(END) @ LocEnd,
28 Log(OpID, CheckPoint) @ Before(OPRB),
29 “IF(DF_CHECK()) {DF_RollBack()};”
30 @ Before(B);
31 end

To generate these patches, DFix takes several steps as
sketched out in Algorithm 2:

First (line 2–4 inAlgorithm 2), DFix decideswhere to insert
logging code to allow its patch checking whether and where
node Nfault has crashed inside the bug-timing window, by
analyzing every path connecting A1 and A2. In the example
shown in figure 6, the locations of DF_Start and DF_End are
decided at this step. The details are presented in Section 4.2.

Next, DFix checks whether a fast-forward patch is suitable
for the bug (line 7 in Algorithm 2). If so, DFix identifies all
the crash-persistent operations that potentially need fast-
forward, denoted asOPFF in Algorithm 2, decides how to pre-
compute all the parameters needed by them before entering
the buggy window (line 9), and generates the patch (line
12–17). The details of this step is presented in Section 4.3.

Finally, DFix checks whether a rollback patch is suitable
for the bug (line 21). If so, it identifies all the crash-persistent
operations that potentially need rollback, denoted as OPRB
in Algorithm 2, inserts a content-checkpoint function right
before each of these operations (line 28), and generates the
remainder of the patch similar to that of a fast-forward patch
(line 26–30). The details are presented in Section 4.4.

Note that, unlike generic transactional rollback or fast-
forward design, DFix puts much attention to patch simplicity
— if too complicated, the patch will probably not be accepted
in practice anyway. As a result, although DFix attempts to
generate a rollback patch and a fast-forward patch for every
fault-timing bug, either or both attempts may fail as simple
rollback/fast-forward patches do not exist for every bug.

4.2 How to Observe the Buggy Timing
To allow a DFix patch checking whether and where node
Nfault has crashed inside the bug window A1 – A2, logging
code is inserted to mark the beginning and the end of the bug
window, and all operations inside the window that might
require rollback or fast-forward.

2Inputs are provided by the front-end detector and illustrated in Figure 3;
Patch X @ Y indicates a DFix patch adding code X at location Y; the details
of the logging function Log will be explained in Section 4.2 – 4.4.

DFix: Automatically Fixing Timing Bugs in Distributed Systems PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Specifically, DFix statically analyzes every path connect-
ing A1 to A2 on the control flow graph (CFG), and conducts
the following checking for every operation I along the path.

First, if I has a successor I ′ that cannot reachA2, DFix logs
“END” right before I ′ to indicate the end of the bug-triggering
fault window (line 14 and 27 in Algorithm 2) — that is how
the two DF_End locations are decided in Figure 6.

Second, if I has side-effect beyond its local node Nfault, in-
cluding global file-system updates3 and message/RPC send-
ing, DFix adds logging at I unless proved to be unnecessary
later in Section 4.3 and 4.4. When I is a file operation, DFix
places the logging right before and after the operation for
rollback (line 28 in Algorithm 2) and fast-forward (line 15 in
Algorithm 2) patches, respectively. This way, even if Nfault
crashes between I and the logging, we can still guarantee
correct patch semantics. Every log entry is appended with
node and process ID, source file and line number. In figure
6, the two operations tagged withU and A2 respectively are
identified as having global side effects. Neither of them needs
logging for different reasons: DFix decidesU needs no fast-
forward, which will be explained in Section 4.3, and hence
does not insert logging for it; the logging for A2 is combined
with the end-of-buggy-window logging inside DF_End.

DFix currently only supports A1 and A2 coming from the
same thread. We discuss how to obtain them for both sub-
types of fault-timing bugs in Section 5.

4.3 Fast-Forward Design
At high level, a DFix fast-forward patch makes system up-
dates thatNf ault planned to but did not make due to its crash,
which we refer to as operation fast-forward, so that the sys-
tem can proceed as if Nf ault crashed after the bug-triggering
window.

Now that the DFix patch can decidewhich crash-persistent
operations have yet executed (Section 4.2), we discuss be-
low (1) how to identify operations that do not require fast-
forward — the details behind the RequireFastFwd(OP) on
line 8 of Algorithm 2; (2) how to get parameters of a to-be-
fast-forward operation with its execution context wiped out
by the crash — the details behind the ParamsOPFF on line 9 of
Algorithm 2; (3) how to execute the operation on behalf of an-
other node (i.e., Nfault) — the details behind the DF_FastFwd
function in Algorithm 2 and Figure 6.
Note that, DFix identifies and gives up its fast-forward

patching in either of these two cases, which is represented
by the SafeFastFwd function in line 7 of Algorithm 2. First,
there is a thread-waiting (e.g., a condition variable wait) be-
tweenA1 andA2. In this case, fast-forwarding any operation
after the wait may require fast-forwarding the waited-for
thread too, which greatly complicates the patch. Second,
whether a may-fast-forward operation will be executed and

3When B is executed and hence the failure is perceived during the restart
of Nfault, local file updates are also identified.

what are its parameter values cannot be decided before en-
tering the buggy time window at runtime. We will elaborate
on this case later.

Identify Operations That Need Fast-forward The crash-
persistent operations that Nf ault did not execute did not all
require fast-forward. Specifically, DFix skips two types of
operations I . First, I is post-dominated by another opera-
tion I ′ inside the buggy time window and they write to the
same file, without any file read, synchronization, or com-
munication operation in between. Second, a similar I ′ like
the first case exists in code regions that post-dominate the
failure site. For example, in figure 6, DFix static analysis
identifies a deletedir operation that post-dominates the
failure site and updates the same resource as createdir,
which makes createdir unnecessary to fast forward4. Con-
sequently, the DF_FastFwd function in figure 6 executes the
other crash-persistent operation inside the buggy window —
the _transit function tagged as A2.

Fast-forwardParameter Preparation ADFix patch needs
to pre-evaluate and record all the parameter values of all
operations that may need to be fast-forwarded by another
node before entering the buggy time window. To do so, DFix
uses static slicing to identify all the instructions used to
compute a parameter value, and clone these instructions to
right before the buggy time window, just like how DFix pre-
computes race-object identity in Section 3.5. Also like that in
Section 3.5, DFix gives up its fast-forward patching if the pre-
computation is not idempotent or relies on shared variables
that might be updated by other threads during the buggy
time window. In practice, file-update and message-sending
parameters, like file paths, IP addresses, port numbers, and
file/message content, are often constant or determined by
thread-local variables, and hence can often pass the check-
ing of DFix. At runtime, Nf ault may crash right before or
in between the pre-computation. since the pre-computation
occurs right outside the buggy time window, such a node
crash will not trigger any bugs.

Take the bug in figure 6 as an example. _transit has two
parameters: name is a local variable and OPENED is a constant.
In fact, name is updated to be this.region.toString() in-
side the process function. DFix identifies this assignment,
and makes its patch pre-evaluates and records the content of
this.region.toString() right before the buggy window,
inside DF_Start. Here, region is a final field and hence its
value is guaranteed not to change.

These pre-computed parameter values, as well as their
type information, are logged to a file. DFix uses protocol
buffer [7] for non-primitive parameters. When another node
attempts fast-forward, it retrieves parameter information
from the file and then conducts fast-forward. In figure 6, this
is inside DF_FastFwd in the HMaster node.

4DFix has built-in knowledge about Java.io.File library.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Guangpu Li, Haopeng Liu, Xianglan Chen, Haryadi S. Gunawi, and Shan Lu

Operation Fast-forward Finally, executing an operation
on behalf of a different node is straight-forward for file up-
dates, but requires API-specific handling for inter-node com-
munication. The _transit function in figure 6 is a ZooKeeper
API that any node can execute and achieve the same effect
— certain znode is updated in ZooKeeper server with a par-
ticular value, which then causes ZooKeeper to send out cor-
responding messages. For socket message and RPC request
sending, DFix pre-evaluates and records the destination IP
address, port number, and message content in advance. We
skip the detailed implementation for space constraints5.

4.4 Rollback Design
At the high level, DFix’s rollback patch follows the tradi-
tional transaction undo-log approach [30, 34]. When Nf ault
executes inside the buggy window, right before every crash-
persistent write, the DFix patch records the original content
and the update location. Later on, if Nf ault crashes inside the
buggy window, the DFix patch rolls back Nf ault , pretending
that Nf ault crashed before the buggy window.
The main challenge is to balance patch simplicity and

capability. At one extreme, to roll back arbitrary code, the
patch could be very complicated in supporting coordinated
rollback across many threads or nodes [19]. At the other
extreme, existing single-node rollback techniques are simple,
but too limited for many fault-timing bugs. For example,
the rollback used in Section 3.4 to fix message-timing bugs
and existing transactional memory techniques [34] do not
support file or message rollbacks, and hence cannot help
roll back crash-persistent operations. Existing file-system
transaction techniques [6] do not handle message rollbacks;
it is also impractical to change file-system in one bug patch.

Solutions DFix chooses a design that balances simplicity
and capability: (1) it supports multi-thread and multi-node
rollback, but is limited to the thread of A1–A2 on Nf ault and
the thread of the failure site where the crash is observed
and rollback is launched, which we denote as B on NB like
HMaster-Thread 1 in figure 6; (2) it supports rollback of
some common, but not all, heap accesses, file accesses, and
messages.
Given a fault-timing bug, DFix first decides whether its

rollback can fix this bug by statically analyzing every path
between A1 and A2. DFix gives up its rollback patching once
it identifies (1) a thread-signal, a thread-creation, or an event
enqueue; or (2) an inter-node communication whose recipi-
ent handler cannot be statically identified; or (3) a recipient
handler with side effects beyond the thread of B, A1, and
A2. This is how the SafeRollback function on line 21 of
Algorithm 2 works.

During the above static checking, DFix also identifies all
operations that may require rollbacks — file updates and
5Like previous tracing [54] and bug detectors [48, 49] for distributed systems,
DFix requires built-in knowledge about common library interfaces.

NB ’s heap updates. For simplicity and performance concerns,
DFix further prunes out operations that do not require roll-
back: (1) any write w dominated by write w ′ that updates
the same object or file in the buggy window; (2) any file
update dominated by the creation of its parent directory in
the buggy window. This is how OPRB is computed on line
22 of Algorithm 2.

After a bug passes the above checking and has all the may-
rollback operations identified, DFix inserts content recording
before every such operation (line 28 in Algorithm 2). For a
heap update, an object clone to a shadow object is inserted.
For a file update, the current prototype of DFix simply copies
the whole to-be-updated file into a shadow file, as well as
records the original file name. This simple scheme could
lead to performance problems for large files, and our future
work will improve this part by recording only the updated
file content or leveraging copy-on-write mechanisms like
reflink provided by some file systems.

One issue of this implementation is that a file update, if it
is towards a global file, may already be read by another node
before the rollback. This is usually not a problem, because
if another node could read the inconsistent file image, an-
other fault-timing bug would have been reported. Our future
implementation can also try buffering global-file updates.

4.5 Patch Correctness Analysis
DFix relies on several assumptions to work correctly. First,
the input provided by front-end bug detectors is correct. If
this assumption does not hold, fast-forward or rollback may
be conducted while node Nfault is still alive, which could
lead to software misbehaviors. This bug-detection problem
goes beyond the scope of DFix bug fixing. Second, the tar-
get software uses standard APIs for thread creation/join,
signal/wait, and other synchronization operations. As dis-
cussed in Section 4.3 and 4.4, DFix may give up its patching
when certain types of synchronization operations exist in
the buggy time window. Automatically identifying arbitrary
custom synchronization goes beyond the scope of DFix.
Under these assumptions, the DFix patch can correctly

judge whether a fault-timing bug has occurred and make
a best-effort fault handling like what developers’ patches
usually do. The logging design in Section 4.2 makes sure
that the patch can correctly judge which operations require
fast-forward or rollback, and the fast-forward and rollback
design in Section 4.3 and 4.4 make sure that the patch does
not introduce any new semantics and only makes the system
behave as if the crash occurred later or earlier. There is also
no risk of deadlocks, as the DFix patch does not conduct
any blocking waits. DFix static analysis is conservative, and
would give up chances for any optimization, like combining
two updates to the same resource during fast-forward or
rollback, if correctness cannot be guaranteed.

DFix: Automatically Fixing Timing Bugs in Distributed Systems PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

5 Implementation Details & Limitations
DFix is implemented using WALA Java byte code analysis
framework v1.3.5 [37] and JavaParser v3.2.4 for a total of
around 5000 lines of code.

Bug Report Pre-processing Our current prototype uses
bug reports automatically generated by a message-timing
bug detector DCatch [48] and a fault-timing bug detector
FCatch [49]. They are both dynamic bug detectors, and hence
easily provide all the needed call stack and causality chain
information. They also provide bug-triggering support, so
that users can confirm whether a bug can truly cause severe
failures before bug fixing.

The main information that is missing and has to be filled
up by DFix is the buggy time window for fault order viola-
tions (figure 3c). FCatch reports A and B for this type of bug.
A is clearly the end of the buggy fault time window. However,
in practice, there is often a start point of the window — the
bug is often not triggered if the node crashed too early. For
example, the bug in figure 2 is a fault order violation, but the
bug does not manifest if RS crashes earlier than OpenRegion.
The current prototype of DFix uses the fault injection sup-
port provided by FCatch to figure out what is the start of the
time window before B in the thread of B.

Library Specifications DFix identifies RPCs,message send-
ing operations, event related functions, and synchronization
following the related library interfaces, like VersionProto
[9], ProtoBase [10], Hadoop GenericEventHandler [8], Zoo-
Keeper [4], similar to previous work that dynamically an-
alyzes and detects bugs in distributed systems [48, 49, 54].
DFix also contains built-in knowledge about Java basic file-
operation APIs. A system that uses a different RPC, message,
or event library would require customizing DFix with a new
interface specification, which is easy to provide as also sug-
gested by previous work [48, 49, 54].

Generate Source-code Patches DFix static analysis is con-
ducted at WALA intermediate representation level, which
WALA transfers from source code. At this level, all the ob-
ject IDs are replaced by virtual register IDs. To generate
source-code level patches for program developers to review,
we translate the intermediate code back to source code lever-
aging a virtual-register-to-object map maintained by WALA.

Causality Clone Like previous tools that patch single-
machine concurrency bugs [38, 39], DFix clones bug-related
functions and applies its patch only in cloned functions,
so that the patch only takes effect under the causality and
calling context indicated by the bug report. Imagine the
bug report indicates that a racing instruction is inside an
RPC function foo remotely invoked by function bar. DFix
would clone foo into a new function foo_DCFix, and add
patching code in foo_DCFix but not foo. Similarly, DFix also

clones bar into bar_DCFix, and changes bar_DCFix to in-
voke foo_DCFix. Since this clone technique is very similar
to that in previous work [38], we skip the details due to space
constraints.

Limitations of DFix DFix does not aim to fix all bugs.
In fact, semantics-preserving simple patches do not exist
for many bugs. As discussed earlier, DFix gives up on a
message-timing bug, if the location that DFix chooses to
initiate rollback, LocCHECK, ends up on a different node from
B; DFix gives up on fixing a fault-timing bug, if (1) the bug-
triggering fault window boundaries cannot be identified or
cannot be located in one thread and (2) the rollback/fast-
forward may involve more than one thread on the crashed
node. DFix also gives up on using fast-forward to fix a fault-
timing bug, if it cannot correctly pre-compute the context of
the to-be-fast-forward operations; DFix gives up on using
rollback to fix a fault-timing bug, if the rollback goes beyond
the faulty node and the system-failure node. Furthermore,
DFix fixes bugs that are triggered under specific call stack
and causality stack reported by the front-end detector. DFix
cannot fix bugs that are not reported.

6 Evaluation
6.1 Methodology
Benchmarks To evaluate DFix, we try all the 22 harmful
bugs reported by front-end bug detectors in their papers [48,
49]6. These include 10 message-timing bugs by DCatch [48],
with 3 atomicity violations and 7 order violations, and 12
fault-timing bugs by FCatch [49], with 7 atomicity violations
and 5 order violations. These are real-world bugs in 4 widely
used systems: Cassandra key-value stores (CA), HBase key-
value stores (HB), Hadoop Mapreduce (MR), and ZooKeeper
metadata management service (ZK).

DFix successfully fixes 17 out of these 22 benchmark bugs.
The remaining 5 include 4 fault-timing bugs whose bug-
triggering time window A1–A2 goes beyond one thread and
hence cannot be handled by DFix; and one message-timing
bug that cannot be reliably triggered and hence is dropped
from our benchmark suite.
Table 1 provides details for these 17 bugs. Clearly, devel-

opers took a long time to fix them7, with only 4 of them
fixed in < 1 week. Note that, these bugs took long time to fix
not because they are considered not critical. Among them,
7 are tagged as top 10% important bugs by developers (i.e., 4
“blocker”s and 3 “critical”s), 7 are “major”, 1 is “minor”. The
remaining 2 did not appear in bug-reporting systems.

6The original papers showed more, but some bugs are fixed once some other
bugs are fixed and hence we did not double count.
7The time listed in Table 1 includes both bug-understanding time and patch-
design time. We can only see that both are very time consuming, but cannot
tell exactly how much time went to each from bug reports.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Guangpu Li, Haopeng Liu, Xianglan Chen, Haryadi S. Gunawi, and Shan Lu

Table 1. DFix benchmarks used in Section 6.2 – 6.3. Those 4/5-digit numbers are bug-IDs in bug databases.

ID App-BugID LoC Manual
Fixing Description

Root Cause: Message Atomicity Violations
AM1 CA-1011 61K 114 days Another node joins the cluster while one node is bootstrapping.
AM2 HB-4539 188K 5 days A ZKnode delete happening between a creation and a delete causes double delete exception.
AM3 HB-4729 213K 27 days A ZKnode create happening between a creation and a delete causes double create exception.
Root Cause: Message Order Violations
OM1 CA-extra1 61K 182 days The seed node sends the message so late that the follower shuts down itself.
OM2 MR-3274 1.2M 4 days A map entry is removed before read by rpc handler from another node.
OM3 MR-4637 1.3M 48 days An update event arrives in statemachine before it transferring to ASSIGNED state.
OM4 ZK-1144 102K 8 days A map entry is read by a socket message handler before local node puts it to the map.
OM5 ZK-1270 110K 7 days A list element is read by a socket message handler before local node puts it to the list.
OM6 ZK-1194 110K 45 days The follower registers the epoch before the leader.

Root Cause: Fault Atomicity Violations
AF1 HB-2611 137K 998 days While RS taking over HLog, crashing between ZKHLog create and delete causes data loss.
AF1 HB-3596 137K 12 days While RS taking over HLog, crashing between ZKLock create and delete causes data loss.
AF2 HB-12241 137K 918 days While RS taking over HLog, crashing between ZKpeerID create and delete causes data loss.
AF3 ZK-1653 67K 272 days A node crashes between two file updates cause data inconsistency
Root Cause: Fault Order Violations
OF1 CA-5393 159K 22 days While taking snapshot, the leader will hang if the follower loses its ack message.
OF2 CA-6415 159K 5 days While collecting merkle tree, the leader will hang if the follower loses its tree message.
OF3 CA-extra2 159K 91 days While processing antientropy, the leader will hang if the follower loses its response.
OF4 HB-10090 536K 5 days HMaster will hang if the META-region open message is lost.

Setup We use two machines, with Intel i7-3770 CPU, 8GB
RAM, Ubuntu 14.04, and JVM v1.7. We evaluate whether
DFix can fix a bug, as well as the performance and simplicity
of the resulting patches. We also compare DFix with manual
patches and alternative naïve patching strategies.

6.2 Overall Result
Functionality As shown in table 2, DFix successfully fixes
all 17 bugs listed in table 1; naïve patch strategies like adding
locks around racing operations and restarting the crashed
node after local-file cleanups can only fix 2 benchmarks, OM1
and AF4 (they also cannot fix any of the 5 not in table 1 and 2
that DFix cannot fix); there is one benchmark, AF2, that even
the final manual patch did not completely fix — the manual
patch only added sleep to lower the failure probability.
We make our best effort in evaluating patch correctness

through stress testing, code inspection, and comparison with
manual patches. Our stress testing inserts random-length
sleeps around racing operations for message-timing bugs,
and injects node faults randomly in the bug-triggering time
window. Under this setting, the original software fails about
50 – 100% of times in 20 runs; the software with DFix patches
never fail in our experiments.
Naïve patches for message-timing bugs apply traditional

locks and condition-variable signals/waits around racing
operations. It fails to fix 8 out of 9 message-timing bugs. It
does not apply to AM2 and AM3, as racing objects are znodes
on third-party ZooKeeper servers and we cannot change the
ZooKeeper library. It causes deadlocks for 6 benchmarks, due
to circular waits on event handling thread (OM3), message
handling threads (AM1, OM2), and locks (OM4, OM5, OM6).

Table 2. Overall results. (*: manual patching takes so long
that the software has changed too much for performance
comparison; Tcorrect : no sleep inserted, baseline is original
software; Tbuддy : sleep inserted to trigger the bug, baseline
is manual patch; #: goes down with shorter sleep.)

Overhead (%)
Is the bug fixed? Tcorrect Tbuддy

ID Manual DFix Naive Manual DFix DFix

AM1 ✓ ✓ ×hanд * 0.5 *
AM2 ✓ ✓ × 0.7 0.2 -0.1
AM3 ✓ ✓ × 2.3 2.4 -1.6
OM1 ✓ ✓ ✓ * 0.4 *
OM2 ✓ ✓ ×hanд 0.2 0.4 21.2#
OM3 ✓ ✓ ×hanд 0.2 0.7 23.3#
OM4 ✓ ✓ ×hanд -1.2 0 0.3
OM5 ✓ ✓ ×hanд -2.1 0 0.2
OM6 ✓ ✓ ×hanд -0.5 0.8 -0.1
AF1 ✓ ✓ × * -4.2 *
AF2 ✓– ✓ × 13.0 0.1 -0.4
AF3 ✓ ✓ × * 1.6 *
AF4 ✓ ✓ ✓ -3.4 -4.0 -0.1
OF1 ✓ ✓ × 0.2 1.6 -1.1
OF2 ✓ ✓ × -2.6 0.6 2.1
OF3 ✓ ✓ × * 2.4 *
OF4 ✓ ✓ × 3.3 -4.3 3.4

Naïve patches for fault-timing bugs always restart the
crashed node after clean up local temporary files (e.g., we
clean up the hadoop.tmp.dir directory). This strategy can
fix 1 out of 8 fault-timing bugs (i.e., AF4). For the 4 order
violations, simply restarting the crashed node does not help

https://github.com/SpectrumLi/TimingBugFixing/tree/master/Message%20Timing%20Bugs/benchmark/ca-1011
https://github.com/SpectrumLi/TimingBugFixing/tree/master/Message%20Timing%20Bugs/benchmark/hb-4539
https://github.com/SpectrumLi/TimingBugFixing/tree/master/Message%20Timing%20Bugs/benchmark/hb-4729
https://github.com/SpectrumLi/TimingBugFixing/tree/master/Message%20Timing%20Bugs/benchmark/ca-extra
https://github.com/SpectrumLi/TimingBugFixing/tree/master/Message%20Timing%20Bugs/benchmark/mr-3274
https://github.com/SpectrumLi/TimingBugFixing/tree/master/Message%20Timing%20Bugs/benchmark/mr-4637
https://github.com/SpectrumLi/TimingBugFixing/tree/master/Message%20Timing%20Bugs/benchmark/zk-1144
https://github.com/SpectrumLi/TimingBugFixing/tree/master/Message%20Timing%20Bugs/benchmark/zk-1270
https://github.com/SpectrumLi/TimingBugFixing/tree/master/Message%20Timing%20Bugs/benchmark/zk-1194
https://github.com/SpectrumLi/TimingBugFixing/tree/master/Fault%20Timing%20Bugs/benchmark/hb-2611
https://github.com/SpectrumLi/TimingBugFixing/tree/master/Fault%20Timing%20Bugs/benchmark/hb-3596
https://github.com/SpectrumLi/TimingBugFixing/tree/master/Fault%20Timing%20Bugs/benchmark/hb-2611
https://github.com/SpectrumLi/TimingBugFixing/tree/master/Fault%20Timing%20Bugs/benchmark/zk-1653
https://github.com/SpectrumLi/TimingBugFixing/tree/master/Fault%20Timing%20Bugs/benchmark/ca-5393
https://github.com/SpectrumLi/TimingBugFixing/tree/master/Fault%20Timing%20Bugs/benchmark/ca-6415
https://github.com/SpectrumLi/TimingBugFixing/tree/master/Fault%20Timing%20Bugs/benchmark/ca-5393
https://github.com/SpectrumLi/TimingBugFixing/tree/master/Fault%20Timing%20Bugs/benchmark/hb-10090

DFix: Automatically Fixing Timing Bugs in Distributed Systems PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

sending a message that another node is waiting for; for 3
atomicity violations (AF1, AF2, AF3), the node crash left
inconsistency among global files and local cleanup does not
work. Furthermore, restart without local cleanup cannot fix
any bugs.

Performance We have measured performance of DFix pat-
ches under both correct timing and bug-triggering timing,
indicated by Tcorrect and Tbuддy in table 2.

DFix patches introduce almost no overhead under correct
timing, comparing with the original software with no code
changes (Tcorrect in table). No sleep/fault was injected and
the baseline run-time varies from 1 second to half a minute
in different benchmarks. We take the average of 40 runs
for every performance number in the table. As we can see,
the overhead of both manual and DFix patches are negli-
gible. The only exception is that, the manual patch inserts
a random sleep for AF2, which can lead to huge overhead
non-deterministically and leads to a 13% overhead on av-
erage in our experiments. Both manual patches and DFix
patches occasionally incur negative overheads. The amount
is negligible and is caused by fluctuation of the running
environment.

DFix patches are as fast as manual patches under the bug-
triggering timing for all but 2 benchmarks, OM2 and OM3
(Tbuддy in table). We use the manually patched software
as baseline, because the original software fails under bug-
triggering timing. For OM2, OM3, manual patches actually
changed the original software data structure, related pro-
cessing algorithms and semantics, so that the B operation
no longer needs to wait for A operation. The 20% overhead
of DFix in actually inevitable for any semantic-preserving
patches — to trigger the bug, 1–20 seconds of random sleeps
are inserted, which not only delaysA but also B to guarantee
B executes after A. In manual patch, B does not wait for A
and hence is not delayed for that 1–20 seconds. In fact, this
overhead is much smaller when we trigger bugs with short
sleeps.

There are 3 benchmarks, AF1, AF3, and AF4, that DFix can
generate two patches, a fast-forward and a rollback patch.
Table 1 only reports the performance of their fast-forward
patches. The performance of rollback patches is similar.

6.3 Patch details
Message-timing patches Among the 9 message-timing
bugs, 5 of them (AM1, AM2, AM3, OM2, and OM3) require
inter-node rollbacks, while the other 4 are fixed through
intra-node rollbacks. Among these 4, three of them have their
race operations inside synchronized blocks. Consequently,
DFix identifies rollback destination outside the synchronized
blocks to avoid deadlocks. Object-specific flag IDs (Section
3.5) are crucial for 5 of them (AM1, AM2, AM3, OM2, OM3).

As discussed in Section 3.6, DFix proves 7 of 9 bug patches
to be deadlock free – the waited-for instruction is guaranteed

Table 3. DFix fault-timing patches.

Fast-forward Rollback #crash-persistent Ops

ID Fixed? Fixed? raw optimized

AF1 ✓ ✓ 1 1
AF2 × ✓ 4 2
AF3 ✓ ✓ 1 1
AF4 ✓ ✓ 2 2
OF1 ✓ × 1 1
OF2 ✓ × 1 1
OF3 × ✓ 1 1
OF4 ✓ × 18 2

to execute. For the remaining two benchmarks (AM1 and
OM2), their waited-for instructions are inside a branch body
of the heartbeat handler. Static analysis cannot guarantee
those instructions will execute and also cannot identify a
location, after which those instructions definitely will not
execute due to the periodic nature of heartbeat protocol. DFix
uses timeouts in all its patches to prevent infinite rollbacks.

Fault-timing Patches As shown in table 3, fast-forward
and rollback each can fix most but not all of these 8 bench-
marks. Fast-forward can fix all but two bugs. For AF2 and
OF3, the parameter pre-evaluation depends on shared vari-
ables whose content might be changed later during Nf ault ’s
execution in the buggy window. Consequently, DFix gives
up. Rollback can fix all but three bugs, OF1, OF2, and OF4.
The buggy windows of these three bugs contain inter-node
communication that DFix cannot handle. These two strate-
gies nicely complement each other and work together to
help DFix fixes all these 8 bugs.
The last two columns of table 3 present the number of

crash-persistent operations inside each buggy time window.
One bug’s window only involves file updates; 3 only involve
message sending; the remaining 4 involve both types of
operations. For AF2 and OF4, some of their crash-persistent
operations are considered as unnecessary for rollback/fast-
forward through DFix static analysis, as discussed in Section
4.3 and 4.4.

Simplicity DFix patches for all the 17 benchmarks range
between 5 to a little over 20 lines of code, excluding util-
ity functions like logging and wait-with-timeouts in DFix
library. The path-size differences are mainly affected by the
complexity of pre-computing the race-object identity, and
the number of crash-persistent operations.

Patch Generation The static analysis used by DFix to gen-
erate patches is scalable, as the analysis is applied only to
bug related call stacks and causality stacks. All the patches
are generated within 200 seconds in our experiments.

Comparison with Manual Patches 10 out of 17 bugs
are fixed by developers using exactly the same strategy as
DFix. One bug’s manual patch (AF2) does not completely

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Guangpu Li, Haopeng Liu, Xianglan Chen, Haryadi S. Gunawi, and Shan Lu

work. For the other 6, developers redesigned algorithms/data-
structures, so that the race operations either disappear (3
bugs) or the originally unexpected timing no longer causes
failures (3 bugs). The former three patches are much more
complicated, and the latter three are simpler thanDFix patches.

Here are two examples where patches manually developed
by programmers use exactly the same strategy as patches
automatically generated by DFix. Bug ZK-1270 (OM5) is a
message-timing bug: O1, a local operation, races with O2, an
operation inside amessage-handler. Manual patch introduces
a variable to indicate ifO1 has executed (like DFix in Section-
3.3) and rolls back O2’s message handler when the checking
fails (like DFix in Section-3.4). Manual-patch’s re-execution
region is the same as DFix-patch. Bug ZK-1653 (AF4) is a fault-
timing bug: a node writes new epoch-ID to file A and then B.
If it crashes in between, restart would fail due to inconsistent
epoch-IDs in A-and-B. The manual patch creates a flag-file
to indicate whether A and/or B was updated, just like DFix.
Using that file, restart checks if the crash was in between
and, if so, copies new epoch-ID from A to B, just like how
DFix fast-forwards B’s missing update.

7 Related Work
Automated Bug Fixing Motivated by the huge cost in bug
fixing and its huge impact to software availability, much re-
search has been conducted for automating patch generation
recently [22, 41, 65, 69]. In addition to single-node concur-
rency bug fixing techniques discussed in Section 1.1, other
auto-fixing techniques have also been proposed. Some of
them focus on specific types of bugs that are unrelated to dis-
tributed timing bugs [27, 60]; some use program verification
and synthesis techniques to find patches that fit a specific
template (e.g., only change one variable or one operator in
software) [18, 52]; and many techniques use heuristics to
search software mutation space to find mutations that can
pass all regression tests [44]. None of them suits the problem
of fixing distributed timing bugs, where the program space
is huge and the bug exists in timing, instead of computation
logic.

DistributedTiming-BugDetection Bug detection [17, 48,
49] and model checking tools [32, 43, 45, 47, 63] have been
proposed to detect distributed timing bugs. They are all po-
tential front ends to auto-fixing tools like DFix.

Note that, bug detection tools can help but cannot replace
bug fixing tools. As we can see in the design of DFix, even
after the details of a bug are known, there are still many
program analysis and reasoning required to produce a patch.
It is desirable to relieve developers from such costly and
error-prone effort.

ImprovingDistributed SystemAvailability Program ver-
ification and auto-proving [35, 68] is a promising direction

to build highly available distributed systems. Existing tech-
niques cannot scale to large distributed systems with many
protocols, and sacrifice performance greatly.

PAR [13] uses protocol-specific knowledge to design cor-
rect disk-failure recovery routines in cloud storage that is
built upon replicated state machine (RSM) protocol. It does
not help fixing our bugs, as none of them is from RSM proto-
col. Olive[61] describes an approach, lock with intent, that
provides exactly-once semantics for a transaction of opera-
tions that work on certain type of global storage. It is very
effective for fault tolerance of certain type of transactions,
and can help fix some of our fault-timing bugs like AF1 –
AF3, but cannot help other fault-timing bugs that go beyond
storage problems and involve more complicated storage sys-
tems. These fault tolerance techniques do not help fix the
message-timing bugs.

8 Conclusion
Distributed timing bugs widely exist in distributed systems
and take long time to fix. Fixing them encounters unique
synchronization and scope challenges. In this paper, DFix
explores using carefully designed rollback and fast-forward
to handle bug-triggering timing and fixes distributed timing
bugs without introducing new bugs. DFix is just a starting
point. Future work can further explore the design space of
patch coverage and patch simplicity.

Acknowledgments
We would like to thank Shaz Qadeer, our shepherd, and
the anonymous reviewers for their insightful feedback and
comments. This research is supported by NSF (grants CCF-
1837120, CNS-1764039, 1563956, 1514256, IIS-154654) and
CERES Centerfor Unstoppable Computing.

References
[1] 2013. ZooKeeper 1653. https://issues.apache.org/jira/browse/

ZOOKEEPER-1653. (2013). Accessed: 2013-11-26.
[2] 2017. HBase 10090. https://issues.apache.org/jira/browse/

HBASE-10090. (2017). Accessed: 2017-09-16.
[3] 2017. MapReduce 4637. https://issues.apache.org/jira/browse/

MAPREDUCE-4637. (2017). Accessed: 2017-09-16.
[4] 2017. ZooKeeper. https://zookeeper.apache.org/. (2017). Accessed:

2017-09-16.
[5] 2017. ZooKeeper 1270. https://issues.apache.org/jira/browse/

ZOOKEEPER-1270. (2017). Accessed: 2017-09-16.
[6] 2018. Btrfs Rollback. https://ramsdenj.com/2016/04/05/

using-btrfs-for-easy-backup-and-rollback.html. (2018). Accessed:
2018-04-30.

[7] 2018. Google Protocol Buffer. https://developers.google.com/
protocol-buffers/docs/reference/overview. (2018). Accessed: 2018-
05-01.

[8] 2018. Hadoop AsyncDispatcher. https://hadoop.apache.org/docs/r2.4.
1/api/org/apache/hadoop/yarn/event/AsyncDispatcher.html. (2018).
Accessed: 2018-05-01.

[9] 2018. Hadoop VersionProto. https://blog.woopi.org/wordpress/
files/hadoop-2.6.0-javadoc/org/apache/hadoop/yarn/proto/

https://issues.apache.org/jira/browse/ZOOKEEPER-1653
https://issues.apache.org/jira/browse/ZOOKEEPER-1653
https://issues.apache.org/jira/browse/HBASE-10090
https://issues.apache.org/jira/browse/HBASE-10090
https://issues.apache.org/jira/browse/MAPREDUCE-4637
https://issues.apache.org/jira/browse/MAPREDUCE-4637
https://zookeeper.apache.org/
https://issues.apache.org/jira/browse/ZOOKEEPER-1270
https://issues.apache.org/jira/browse/ZOOKEEPER-1270
https://ramsdenj.com/2016/04/05/using-btrfs-for-easy-backup-and-rollback.html
https://ramsdenj.com/2016/04/05/using-btrfs-for-easy-backup-and-rollback.html
https://developers.google.com/protocol-buffers/docs/reference/overview
https://developers.google.com/protocol-buffers/docs/reference/overview
https://hadoop.apache.org/docs/r2.4.1/api/org/apache/hadoop/yarn/event/AsyncDispatcher.html
https://hadoop.apache.org/docs/r2.4.1/api/org/apache/hadoop/yarn/event/AsyncDispatcher.html
https://blog.woopi.org/wordpress/files/hadoop-2.6.0-javadoc/org/apache/hadoop/yarn/proto/YarnServerCommonProtos.VersionProto.html
https://blog.woopi.org/wordpress/files/hadoop-2.6.0-javadoc/org/apache/hadoop/yarn/proto/YarnServerCommonProtos.VersionProto.html
https://blog.woopi.org/wordpress/files/hadoop-2.6.0-javadoc/org/apache/hadoop/yarn/proto/YarnServerCommonProtos.VersionProto.html

DFix: Automatically Fixing Timing Bugs in Distributed Systems PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

YarnServerCommonProtos.VersionProto.html. (2018). Accessed:
2018-05-01.

[10] 2018. HBase ProtoBase. http://www.grepcode.com/file/repository.
cloudera.com/content/repositories/releases/org.apache.hadoop/
hadoop-yarn-common/2.3.0-cdh5.1.4/org/apache/hadoop/yarn/api/
records/impl/pb/ProtoBase.java?av=h. (2018). Accessed: 2018-05-01.

[11] Christoffer Quist Adamsen, AndersMøller, Rezwana Karim, Manu Srid-
haran, Frank Tip, and Koushik Sen. 2017. Repairing event race errors
by controlling nondeterminism. In Proceedings of the 39th International
Conference on Software Engineering. IEEE Press, 289–299.

[12] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006.
Compilers: Principles, Techniques, and Tools (2Nd Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[13] Ramnatthan Alagappan, Aishwarya Ganesan, Eric Lee, Aws Albargh-
outhi, Vijay Chidambaram, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. 2018. Protocol-Aware Recovery for Consensus-Based
Storage. In 16th USENIX Conference on File and Storage Technolo-
gies (FAST 18). USENIX Association, Oakland, CA, 15–32. https:
//www.usenix.org/conference/fast18/presentation/alagappan

[14] Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj Patel, Thanu-
malayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. 2016. Correlated Crash Vulnerabilities.
In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016. 151–
167. https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/alagappan

[15] Matt Bishop and Michael Dilger. 1996. Checking for Race Conditions
in File Accesses. Computing Systems 2, 2 (1996), 131–152. http://www.
usenix.org/publications/compsystems/1996/spr_bishop.pdf

[16] Nikita Borisov and Robert Johnson. 2005. Fixing Races for Fun and
Profit: How to Abuse atime. In Proceedings of the 14th USENIX Security
Symposium, Baltimore, MD, USA, July 31 - August 5, 2005. https:
//www.usenix.org/conference/14th-usenix-security-symposium/
fixing-races-fun-and-profit-how-abuse-atime

[17] Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin T. Vechev.
2017. Serializability for eventual consistency: criterion, analysis, and
applications. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January
18-20, 2017. 458–472.

[18] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodik.
2011. Angelic debugging. In Software Engineering (ICSE), 2011 33rd
International Conference on. IEEE, 121–130.

[19] K Mani Chandy and Leslie Lamport. 1985. Distributed snapshots:
Determining global states of distributed systems. ACM Transactions
on Computer Systems (TOCS) 3, 1 (1985), 63–75.

[20] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Debo-
rah A Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E Gruber. 2008. Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer Systems (TOCS) 26, 2
(2008), 4.

[21] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F
Wenisch. 2014. The Mystery Machine: End-to-end Performance Anal-
ysis of Large-scale Internet Services.. In OSDI. 217–231.

[22] Eduardo Faria de Souza, Claire Le Goues, and Celso Gonçalves Camilo-
Junior. 2018. A Novel Fitness Function for Automated Program Repair
Based on Source Code Checkpoints. (2018).

[23] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[24] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: amazon’s
highly available key-value store. ACM SIGOPS operating systems review
41, 6 (2007), 205–220.

[25] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Raja-
mani, and Damien Zufferey. 2013. P: safe asynchronous event-driven

programming. ACM SIGPLAN Notices 48, 6 (2013), 321–332.
[26] Dennis Michael Geels, Gautam Altekar, Scott Shenker, and Ion Stoica.

2006. Replay debugging for distributed applications. (2006).
[27] Aaron Gember-Jacobson, Aditya Akella, Ratul Mahajan, and

Hongqiang Harry Liu. 2017. Automatically Repairing Network Control
Planes Using an Abstract Representation. In Proceedings of the 26th
Symposium on Operating Systems Principles, Shanghai, China, October
28-31, 2017. 359–373. DOI:http://dx.doi.org/10.1145/3132747.3132753

[28] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The
Google file system. In ACM SIGOPS operating systems review, Vol. 37.
ACM, 29–43.

[29] Patrice Godefroid and Nachiappan Nagappani. 2008. Concurrency at
Microsoft – An Exploratory Survey. Technical Report. MSR-TR-2008-75,
Microsoft Research.

[30] Jim Gray and Andreas Reuter. 1992. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA. http://portal.acm.org/citation.cfm?id=573304

[31] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa,
Tiratat Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar,
Agung Laksono, Jeffrey F. Lukman, Vincentius Martin, and Anang D.
Satria. 2014. What Bugs Live in the Cloud? A Study of 3000+ Issues
in Cloud Systems. In Proceedings of the ACM Symposium on Cloud
Computing (SOCC).

[32] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Junfeng Yang, and
Lintao Zhang. 2011. Practical software model checking via dynamic in-
terface reduction. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles. ACM, 265–278.

[33] Zhenyu Guo, Sean McDirmid, Mao Yang, Li Zhuang, Pu Zhang,
Yingwei Luo, Tom Bergan, Madan Musuvathi, Zheng Zhang, and Li-
dong Zhou. 2013. Failure Recovery: When the Cure Is Worse Than
the Disease. In 14th Workshop on Hot Topics in Operating Systems,
HotOS XIV, Santa Ana Pueblo, New Mexico, USA, May 13-15, 2013.
https://www.usenix.org/conference/hotos13/session/guo

[34] Tim Harris, James Larus, and Ravi Rajwar. 2010. Transactional Memory,
2Nd Edition (2nd ed.). Morgan and Claypool Publishers.

[35] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R Lorch, Bryan
Parno, Michael L Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet:
proving practical distributed systems correct. In Proceedings of the 25th
Symposium on Operating Systems Principles. ACM, 1–17.

[36] Jeff Huang, Charles Zhang, and Julian Dolby. 2013. CLAP: recording
local executions to reproduce concurrency failures. In PLDI.

[37] IBM. 2017. Main Page - WalaWiki. http://wala.sourceforge.net/wiki/
index.php/Main_Page. (2017).

[38] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. 2011.
Automated atomicity-violation fixing. InACMSIGPLANNotices, Vol. 46.
ACM, 389–400.

[39] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu.
2012. Automated Concurrency-Bug Fixing.. In OSDI, Vol. 12. 221–236.

[40] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George Can-
dea. 2008. Deadlock Immunity: Enabling Systems To Defend Against
Deadlocks. In OSDI.

[41] René Just, Chris Parnin, Ian Drosos, and Michael D Ernst. 2018. Com-
paring developer-provided to user-provided tests for fault localization
and automated program repair. In Proceedings of the 27th ACM SIG-
SOFT International Symposium on Software Testing and Analysis. ACM,
287–297.

[42] Baris Kasikci, Cristian Zamfir, and George Candea. 2012. Data races
vs. data race bugs: telling the difference with portend. ACM SIGPLAN
Notices 47, 4 (2012), 185–198.

[43] Charles Killian, James W Anderson, Ranjit Jhala, and Amin Vahdat.
2007. Life, death, and the critical transition: Finding liveness bugs in
systems code. NSDI.

[44] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley
Weimer. 2012. A Systematic Study of Automated Program Repair:

https://blog.woopi.org/wordpress/files/hadoop-2.6.0-javadoc/org/apache/hadoop/yarn/proto/YarnServerCommonProtos.VersionProto.html
http://www.grepcode.com/file/repository.cloudera.com/content/repositories/releases/org.apache.hadoop/hadoop-yarn-common/2.3.0-cdh5.1.4/org/apache/hadoop/yarn/api/records/impl/pb/ProtoBase.java?av=h
http://www.grepcode.com/file/repository.cloudera.com/content/repositories/releases/org.apache.hadoop/hadoop-yarn-common/2.3.0-cdh5.1.4/org/apache/hadoop/yarn/api/records/impl/pb/ProtoBase.java?av=h
http://www.grepcode.com/file/repository.cloudera.com/content/repositories/releases/org.apache.hadoop/hadoop-yarn-common/2.3.0-cdh5.1.4/org/apache/hadoop/yarn/api/records/impl/pb/ProtoBase.java?av=h
http://www.grepcode.com/file/repository.cloudera.com/content/repositories/releases/org.apache.hadoop/hadoop-yarn-common/2.3.0-cdh5.1.4/org/apache/hadoop/yarn/api/records/impl/pb/ProtoBase.java?av=h
https://www.usenix.org/conference/fast18/presentation/alagappan
https://www.usenix.org/conference/fast18/presentation/alagappan
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/alagappan
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/alagappan
http://www.usenix.org/publications/compsystems/1996/spr_bishop.pdf
http://www.usenix.org/publications/compsystems/1996/spr_bishop.pdf
https://www.usenix.org/conference/14th-usenix-security-symposium/fixing-races-fun-and-profit-how-abuse-atime
https://www.usenix.org/conference/14th-usenix-security-symposium/fixing-races-fun-and-profit-how-abuse-atime
https://www.usenix.org/conference/14th-usenix-security-symposium/fixing-races-fun-and-profit-how-abuse-atime
http://dx.doi.org/10.1145/3132747.3132753
http://portal.acm.org/citation.cfm?id=573304
https://www.usenix.org/conference/hotos13/session/guo
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Guangpu Li, Haopeng Liu, Xianglan Chen, Haryadi S. Gunawi, and Shan Lu

Fixing 55 out of 105 Bugs for $8 Each. In ICSE.
[45] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F

Lukman, and Haryadi S Gunawi. 2014. SAMC: Semantic-Aware Model
Checking for Fast Discovery of Deep Bugs in Cloud Systems.. In OSDI.
399–414.

[46] Tanakorn Leesatapornwongsa, Jeffrey F Lukman, Shan Lu, and
Haryadi S Gunawi. 2016. TaxDC: A taxonomy of non-deterministic
concurrency bugs in datacenter distributed systems. In ACM SIGPLAN
Notices, Vol. 51. ACM, 517–530.

[47] Haoxiang Lin, Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou.
2009. MODIST: Transparent model checking of unmodified distributed
systems. In Proc. of USENIX Symposium on Networked Systems Design
& Implementation (NSDI).

[48] Haopeng Liu, Guangpu Li, Jeffrey F Lukman, Jiaxin Li, Shan Lu,
Haryadi S Gunawi, and Chen Tian. 2017. DCatch: Automatically
Detecting Distributed Concurrency Bugs in Cloud Systems. In ASP-
LOS.

[49] Haopeng Liu, Xu Wang, Guangpu Li, Shan Lu, Feng Ye, and Chen Tian.
2018. FCatch: Automatically Detecting Time-of-fault Bugs in Cloud
Systems. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating
Systems. ACM, 419–431.

[50] Peng Liu, Omer Tripp, and Charles Zhang. 2014. Grail: Context-aware
Fixing of Concurrency Bugs. In FSE.

[51] Xuezheng Liu, Wei Lin, Aimin Pan, and Zheng Zhang. 2007. WiDS
checker: Combating bugs in distributed systems. (2007).

[52] Francesco Logozzo and Thomas Ball. 2012. Modular and verified
automatic program repair. In ACM SIGPLAN Notices, Vol. 47. ACM,
133–146.

[53] Brandon Lucia and Luis Ceze. 2013. Cooperative empirical failure
avoidance for multithreaded programs. In Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’13, Houston,
TX, USA - March 16 - 20, 2013. 39–50. DOI:http://dx.doi.org/10.1145/
2451116.2451121

[54] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot tracing:
Dynamic causal monitoring for distributed systems. In Proceedings of
the 25th Symposium on Operating Systems Principles. ACM, 378–393.

[55] IHS Markit. 2016. Businesses Losing $700 Billion a Year to IT Down-
time, Says IHS. http://news.ihsmarkit.com/press-release/technology/
businesses-losing-700-billion-year-it-downtime-says-ihs. (2016).

[56] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martín Abadi. 2013. Naiad: a timely dataflow system.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. ACM, 439–455.

[57] Edmund B Nightingale, Jeremy Elson, Jinliang Fan, Owen S Hofmann,
Jon Howell, and Yutaka Suzue. 2012. Flat Datacenter Storage.. In OSDI.
1–15.

[58] Jeff H Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe,
Jonathan Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood,
Stelios Sidiroglou, Greg Sullivan, and others. 2009. Automatically

patching errors in deployed software. In Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles. ACM, 87–102.

[59] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou.
2005. Rx: treating bugs as allergies—a safe method to survive software
failures. InAcm sigops operating systems review, Vol. 39. ACM, 235–248.

[60] Hesam Samimi, Max Schäfer, Shay Artzi, ToddMillstein, Frank Tip, and
Laurie Hendren. 2012. Automated repair of HTML generation errors
in PHP applications using string constraint solving. In Proceedings of
the 34th International Conference on Software Engineering. IEEE Press,
277–287.

[61] Srinath Setty, Chunzhi Su, Jacob R. Lorch, Lidong Zhou, Hao Chen,
Parveen Patel, and Jinglei Ren. 2016. Realizing the Fault-Tolerance
Promise of Cloud Storage Using Locks with Intent. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16).
USENIX Association, Savannah, GA, 501–516. https://www.usenix.
org/conference/osdi16/technical-sessions/presentation/setty

[62] Stelios Sidiroglou, Oren Laadan, Carlos Perez, Nicolas Viennot, Jason
Nieh, and Angelos D Keromytis. 2009. Assure: automatic software
self-healing using rescue points. ACM SIGARCH Computer Architecture
News 37, 1 (2009), 37–48.

[63] Jiri Simsa, Randy Bryant, and Garth A Gibson. 2010. dBug: Systematic
Evaluation of Distributed Systems.. In SSV.

[64] Ian Sommerville. 2006. Software Engineering: (Update) (8th Edition).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[65] Akito Tanikado, Haruki Yokoyama, Masahiro Yamamoto, Soichi Sumi,
Yoshiki Higo, and Shinji Kusumoto. 2017. New Strategies for Selecting
Reuse Candidates on Automated Program Repair. In Computer Software
and Applications Conference (COMPSAC), 2017 IEEE 41st Annual, Vol. 2.
IEEE, 266–267.

[66] Theregister. 2017. AWS’s S3 outage was so bad Amazon couldn’t get
into its own dashboard to warn the world. https://www.theregister.co.
uk/2017/03/01/aws_s3_outage/. (2017).

[67] Yin Wang, Terence Kelly, Manjunath Kudlur, Stephane Lafortune, and
Scott Mahlk. 2008. Gadara: dynamic deadlock avoidance for mult-
threaded programs. In OSDI.

[68] James R Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi
Wang, Michael D Ernst, and Thomas Anderson. 2015. Verdi: a frame-
work for implementing and formally verifying distributed systems. In
ACM SIGPLAN Notices, Vol. 50. ACM, 357–368.

[69] Yang Wu, Ang Chen, Andreas Haeberlen, Wenchao Zhou, and
Boon Thau Loo. 2017. Automated Bug Removal for Software-Defined
Networks.. In NSDI. 719–733.

[70] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu
Zhao, Yongle Zhang, Pranay Jain, and Michael Stumm. 2014. Simple
Testing Can Prevent Most Critical Failures: An Analysis of Production
Failures in Distributed Data-intensive Systems. In OSDI.

[71] Yongle Zhang, SergueiMakarov, Xiang Ren, David Lion, andDing Yuan.
2017. Pensieve: Non-intrusive failure reproduction for distributed
systems using the event chaining approach. In Proceedings of the 26th
Symposium on Operating Systems Principles. ACM, 19–33.

http://dx.doi.org/10.1145/2451116.2451121
http://dx.doi.org/10.1145/2451116.2451121
http://news.ihsmarkit.com/press-release/technology/businesses-losing-700-billion-year-it-downtime-says-ihs
http://news.ihsmarkit.com/press-release/technology/businesses-losing-700-billion-year-it-downtime-says-ihs
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/setty
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/setty
https://www.theregister.co.uk/2017/03/01/aws_s3_outage/
https://www.theregister.co.uk/2017/03/01/aws_s3_outage/

	Abstract
	1 Introduction
	1.1 Examples
	1.2 Challenges & Goals
	1.3 Contributions

	2 Background
	3 Fixing Message-Timing Bugs
	3.1 Overview
	3.2 Where does the Re-execution Start?
	3.3 Where to Check Timing and Initiate Rollback?
	3.4 How to Rollback
	3.5 How to Observe the Buggy Timing
	3.6 Patch Correctness Analysis

	4 Fixing Fault-Timing Bugs
	4.1 Overview
	4.2 How to Observe the Buggy Timing
	4.3 Fast-Forward Design
	4.4 Rollback Design
	4.5 Patch Correctness Analysis

	5 Implementation Details & Limitations
	6 Evaluation
	6.1 Methodology
	6.2 Overall Result
	6.3 Patch details

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

