
SherLock: Unsupervised Synchronization-Operation Inference

Guangpu Li
University of Chicago

USA
cstjygpl@uchicago.edu

Dongjie Chen
Nanjing University

China
dongjie@smail.nju.edu.cn

Shan Lu
University of Chicago

USA
shanlu@uchicago.edu

Madanlal Musuvathi
Microsoft Research

USA
madanm@microsoft.com

Suman Nath
Microsoft Research

USA
suman.nath@microsoft.com

ABSTRACT

Synchronizations are fundamental to the correctness and perfor-

mance of concurrent software. Unfortunately, correctly identifying

all synchronizations has become extremely difficult in modern soft-

ware systems due to the various types of synchronizations. Previous

work either only infers specific type of synchronization by code

analysis or relies on manual effort to annotate the synchronization.

This paper proposes SherLock, a tool that uses unsupervised

inference to identify synchronizations. SherLock leverages the fact

that most synchronizations appear around the conflicting opera-

tions and form it into a linear system with a set of synchronization

properties and hypotheses. To collect enough observations, Sher-

Lock runs the unit tests a small number of times with feedback-

based delay injection.

We applied SherLock on 8 C# open-source applications. Without

any prior knowledge, SherLock inferred 122 unique synchroniza-

tions, with few false positives. These inferred synchronizations

cover a wide variety of types, including lock operations, fork-join

operations, asynchronous operations, framework synchronization,

and custom synchronization.

CCS CONCEPTS

· Software and its engineering→ Softwaremaintenance tools;

· Computer systems organization→ Reliability.

KEYWORDS

Synchronization, Unsupervised inference, Concurrency, Happens-

before inducing

ACM Reference Format:

Guangpu Li, Dongjie Chen, Shan Lu, Madanlal Musuvathi, and Suman

Nath. 2021. SherLock: Unsupervised Synchronization-Operation Inference.

In Proceedings of the 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS ’21),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS ’21, April 19ś23, 2021, Virtual, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446754

April 19ś23, 2021, Virtual, USA. ACM, New York, NY, USA, 15 pages. https:

//doi.org/10.1145/3445814.3446754

1 INTRODUCTION

Synchronization operations are fundamental to the correctness and

performance of concurrent software. They induce happens-before

relationships, and determine which operations can or cannot exe-

cute concurrently. Many tools for analyzing concurrent programs,

such as bug finding [9, 17, 20, 21, 25, 32, 34, 35, 38, 42, 46], bug fixing

[22ś24, 27, 33], performance profiling [3, 8, 13, 14, 29], and record-

and-replay [37, 41] tools rely on understanding the semantics of

program synchronizations and the happens-before relationship

induced by them. Typically, these tools rely on manual specifica-

tion of this semantics. Incorrect and/or incomplete synchronization

specifications severely limits the effectiveness of concurrency tools.

Unfortunately, correctly identifying all happens-before-inducing

synchronizations in modern software systems is a challenging task.

Simply identifying all low-level primitives like atomic opera-

tions or fences would not work. These operations do not always

induce happens-before relationship, like when an atomic operation

is used to increment a statistics variable. Even when they do, their

synchronization is often induced upon library code, while their

impact to application code is often unclear and requires manual

specifications.

Identifying common threading and locking APIs, such as those

provided by pthread APIs, is far from sufficient, as modern concur-

rent and distributed programs use various mechanisms to induce

happens-before synchronization, including data-parallel processing

primitives, event-based asynchronous operations, shared-memory

flag variables, language enforced semantics (e.g., finalizers only ex-

ecute after an object is unreachable), system calls, and even server-

side synchronization. Moreover, each form of coordination often

has many variations: for example, C# standard threading library

offers 5 lock classes and 9 signal-wait classes, with each containing

many synchronization APIs and many sub-classes [6]. To compli-

cate things further, programs and frameworks can provide their

own mechanisms for enforcing happens-before relationship in con-

current execution, without using traditional locks or signal/wait

mechanisms [1]. These semantic-rich operations are often difficult

to annotate, as we will see in Section 5.3.

All this complexity eliminates the hope of a once-for-all tedious

manual annotations, which are likely to be error-prone anyway.

In this paper, we cast the synchronization inference as a dynamic

unsupervised probabilistic inference problem. The basic idea is to

314

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3445814.3446754
https://doi.org/10.1145/3445814.3446754
https://doi.org/10.1145/3445814.3446754

ASPLOS ’21, April 19–23, 2021, Virtual, USA Guangpu Li, Dongjie Chen, Shan Lu, Madanlal Musuvathi, and Suman Nath

dynamically observe various signals of synchronization behaviors

during representative executions (say, during testing). While each

signal could be noisy, the goal is to cumulatively combine these

signals over multiple executions to predict synchronizations with

high confidence. Being unsupervised has the crucial advantage

that one needs no user-provided annotations, which we believe is

essential for the general applicability of this technique.

This paper is inspired by prior work on probabilistic inference

for security specifications [12, 31], which identifies source, sink,

and sanitizers for vulnerability detection. In contrast to our work,

these works use a semi-supervised approach that requires manual

annotations to bootstrap their analysis. Also, they analyze the pro-

grams statically, while a key hypothesis of our work is that dynamic

program behavior provides us a variety of signals to identify syn-

chronization whose precision cannot be matched by those available

statically.

This paper proposes SherLock, a tool for identifying program

synchronizations. At high level, SherLock is based on the idea that

all synchronizations are used to order events that would other-

wise result in bugs. For instance, a data race occurs when two

threads concurrently access the same variable with at least one of

them being a write, which we refer to as concurrent conflicting

accesses. Consider two conflicting accesses a and b in a dynamic

execution as shown in Figure 2.a with a occurring before b. To

prevent them from becoming a data race, programmers need to

enforce a happens-before [26] relation between them by using a pair

of synchronizations: a release synchronization after a and an ac-

quire synchronization before b. The acquire synchronization blocks

the execution of b until the release (and thus a) is complete or

changes the control flow to prevent the execution of b. In this pa-

per, we define synchronization as any operation or instruction that

participates in forming a happens-before relation across threads.

Specifically, SherLock identifies synchronizations by relying on

the following three insights.

Insight 1. We hypothesize that most (if not all) such conflicting

accesses in mature programs are properly synchronized. Thus, if

one considers an execution in Figure 2.a, it is highly likely that one

of the operations in the release window that follows a is a release

synchronization and one operation in the acquire window that

precedes b is an acquire synchronization.

Insight 2. While we may not be able to precisely identify from a

single execution which of the operations in the release (or acquire)

window offers a release (or acquire, respectively) synchronization,

we can do so by observing multiple executions and considering

other characteristics of synchronization. Specifically, we design a set

of properties and hypotheses that reflect fundamental assumptions

of synchronizations and their behavior. They work together to

enable us to pinpoint synchronizations. We discuss the details in

Section 2.

Insight 3. Effective inference depends on conflicting operations,

such as the ones in Figure 2.a, being temporally close. Otherwise,

large acquire/release windows will produce too many candidate

operations. Rather than relying on the underlying scheduler to get

lucky, we can actively perturb the execution at strategic locations

to improve inference. We discuss the details in Section 3.

Program	binary	

	

Program	inputs	

Observer	 Solver	 Inferred	

synchroniza;ons	

SherLock	

Perturber	

Figure 1: SherLock workflow

Guided by these insights, we have designed SherLock. As shown

in Figure 1, given a program binary and its inputs, without any

annotation, SherLock runs the program for all inputs and identifies

a set of methods and variables whose entrances and/or exits, reads

and/or writes are synchronizations, through three components

working together:

1. Observer. This component instruments software binaries and

produces execution traces under the provided inputs. The goal of

Observer is to make relevant observation of software behavior that

can be compared against those properties and hypotheses of syn-

chronization operations by the Solver. Its detailed implementation

will be introduced in Section 4.1.

2. Solver. It processes all the observations collected so far. It iden-

tifies a set of acquire synchronizations and a set of release synchro-

nizations, that all strictly satisfy those synchronization properties

and altogether violate those hypotheses about synchronizations

the least. This procedure is conducted by first encoding all the ob-

servations into linear constraints, representing must-be-satisfied

properties, and objective functions, representing better-be-satisfied

hypotheses, and then using a linear solver [2] to output every oper-

ation’s probability of being an acquire or a release synchronization.

The details are presented Section 4.2.

3. Perturber. To help the observer to make useful observations,

without fully relying on the random factors in concurrent program

execution, the perturber injects delays at strategic points of the

execution based on the Solver’s earlier results. These delays will

help observers collect key observations, which will then help the

solver to draw more confident conclusions. The details will be

presented in Section 3.

We applied SherLock on 8 C# open-source applications. In total,

SherLock inferred 122 unique true synchronizations with few false

positives. These include 1) standard synchronization primitives, like

locks (Monitor.Enter/Exit), fork-join (Task.Start/Wait) and

asynchronous tasks (DataflowBlock.Post/Receive); (2) variable

based synchronizations such as spin loops and flag variables; and,

(3) application-specific methods that enforce happens-before rela-

tions by relying on underlying frameworks and language semantics

(e.g. order between last-reference-removing instruction and the

object dispose). A version of FastTrack [17, 18] that we built for

C# applications detects 7× more true data races and 8× fewer false

data races by using these inferred synchronization than the default.

This paper makes the following contributions:

• Identifying a number of properties and hypotheses reflecting

fundamental assumptions about synchronizations and how

they are typically used in software, that work together to

support effective synchronization inference.

315

SherLock: Unsupervised Synchronization-Operation Inference ASPLOS ’21, April 19–23, 2021, Virtual, USA

• A feedback-based delay injection that actively exposes, in-

stead of passively observes, run-time software behaviors that

are particularly helpful for synchronization inference.

• An artifact SherLock that uses unsupervised inference to

identify synchronizations with high coverage and accuracy.

The source code of SherLock is available at https://github.com/

SpectrumLi/SherLock. A virtual machine image that can be used

to easily reproduce all the experimental results in this paper is

available and described in details in the Artifact Appendix.

2 WHAT ARE SYNCHRONIZATION
BEHAVIORS?

To effectively pinpoint synchronizations, we will use a set of prop-

erties and hypotheses that capture common behaviors of synchro-

nizations. The properties represent fundamental assumptions that

every synchronization should satisfy; the hypotheses reflect how

most synchronizations are typically designed and used. They work

together to support our inference.

The goal of this paper is to identify synchronizations in the

application without understanding the semantics of underlying

framework, library, or operating system that implements them. As

mentioned before, we define synchronization as any instruction or

operation in the application that enforces a happens-before relation

across threads. In this paper, we consider every synchronization,

acquire or release, to take one of these forms: a read of a heap

variable; a write to a heap variable; an invocation or entry point of

an API or method; and an exit of an API or method. For example,

the invocation of a thread-creation API and the entry point of

the specified delegate method of the child thread form a pair of

release and acquire that we aim to identify. Note that the actual

implementation of the threading library or framework that enforces

this happens-before relation is irrelevant to SherLock.

Property: Read-Acquire & Write-Release. Not every operation has

the capability to release or acquire. Among memory-access opera-

tions, a heap read does not change system states and hence cannot

be a release synchronization; on the other hand, a heap write can-

not perceive what is going on in the system, and hence cannot

be as an acquire synchronization. Similarly for method-related op-

erations, the invocation of an application method can block the

caller till some condition is satisfied, while the exit of an application

method may satisfy such conditions. Consequently, we associate

a method’s exit with a release and a method’s invocation as an

acquire, but never the other way around. We also enforce that a

release synchronization cannot be an acquire and vice versa.

In addition to these properties, we add a set of hypotheses which

are soft constraints Ð they are satisfied by most synchronizations

most of the time, but not always.

Hypothesis: Mostly Protected. Most, if not all, conflicting accesses

in a mature software should be synchronized. Consequently, given

the observation in Figure 2.a, we could hypothesize that there prob-

ably exists at least one release among 𝑎1, 𝑎2, and 𝑎3, which form the

release window; and that there probably exists at least one acquire

among 𝑏1, 𝑏2, and 𝑏3, which form the acquire window.

Hypothesis: Synchronizations are Rare. In most software, syn-

chronizations should constitute a small portion of all operationsÐ

most methods’ invocations and exits, and most heap accesses will

not cause threads to block or wake up. Further more, within any

acquire/release window as illustrated in Figure 2, it is unlikely

for the same synchronization to occur for many times Ð a non-

synchronization like reading a popular variable or the invocation

of a popular API could occur for many times, but a synchronization

typically does not.

This hypothesis well complements the mostly-protected hypoth-

esis, as the latter can be easily, yet incorrectly, satisfied by identify-

ing all operations that ever appear in an acquire/release window as

synchronizations.

Hypothesis: Acquisition-Time Mostly Varies. Intuitively, how long

a thread needs to wait during an acquire varies a lot at run time.

For example, when a thread acquires a lock, it could get the lock

immediately if no one else holds the lock or take a long time if

many threads are competing for the lock. Specifically, SherLock

applies this hypothesis to every method: if every execution of a

method𝑚 takes roughly the same amount of time, the invocation

of𝑚 is unlikely to be an acquire.

This hypothesis directly helps identify methods that are used

for acquire synchronization. In theory, it could also help identify

acquire synchronizations implemented as code structures surround-

ing variable reads (e.g., while-loops). However, since SherLock does

not attempt to identify such code structures, this hypothesis does

not directly help identify variables used for acquire synchroniza-

tion.

Hypothesis: Mostly Paired. Given the strong semantic connection

between a release and its corresponding acquire, they are often

defined in a paired or clustered way in well-maintained software.

Specifically, if the read of a variable C::v is used for acquire syn-

chronization, the corresponding release synchronization is very

likely the write of the same variable C::v. As for methods, if a

method of a class 𝐶 is involved for release synchronization, its

corresponding acquire is often a method that belongs to the same

class 𝐶 . For example, in C#, invoking Monitor.enter is an ac-

quire, and its corresponding release synchronization is the exit of

method Monitor.exit from the same system class Monitor. This

hypothesis helps identify a release, once its corresponding acquire

is identified with high confidence, vice versa.

Note that, we intentionally do not require an acquire operation

and its corresponding release operation to come from the same

class as this may sometimes not hold in practice. For example,

when forking a thread, the release operation is Thread::Start(),

from the C# system class Thread, but the corresponding acquire op-

eration is the thread delegate from a class defined by developers. Yet,

the Thread class does contain a release operation Thread.Join()

matching our hypothesis.

3 HOW TO FACILITATE INTERESTING
BEHAVIORS?

Challenges. Most of the hypotheses discussed in Section 2 are

about dynamic software behavior. Given the non-determinism of

316

https://github.com/SpectrumLi/SherLock
https://github.com/SpectrumLi/SherLock

ASPLOS ’21, April 19–23, 2021, Virtual, USA Guangpu Li, Dongjie Chen, Shan Lu, Madanlal Musuvathi, and Suman Nath

	
	
b1	 	

	
b2	 	

	
b3	

	
	
a1	 	

	
a2	 	

	
a3	

(a)	A	run	without	delay	

(c)	When	delay	also	affects	b	

Thread1	 a	

b	

a	 rdelay	

b	

a	 rdelay	

b	

(b)	When	delay	does	not	affect	b	

Release	

Window		

Acquire	

Window		

Thread1	

Thread1	

Thread2	

Thread2	

Thread2	

Figure 2: Acquire/release windows for synch. inference

concurrent software’s dynamic behavior, we may not draw infer-

ence conclusions based on just one run.

For example, for any pair of conflicting accesses a and b, the

physical time gap between them likely varies across runs and hence

which operations appear in their acquire window and release win-

dow vary from run to run. When a and b happen to execute far

away from each other, the acquire window and the release window

will contain too many operations to be useful for synchronization

inference. On the other hand, if a and b happen to execute close to

each other, with few operations in between, such a behavior would

be extremely useful and will be referred to as interesting behavior

below.

However, a straw-man approach that simply re-executes the pro-

gram many times is ineffective. Considering the huge interleaving

space of a program, such a passive approach may never observe

interesting behavior even after many runs.

To better handle this challenge, SherLock actively injects delays

at strategic locations based on its inference from earlier runs to

facilitate more interesting software behavior to occur.

Delay injection. At high level, in every run, SherLock injects de-

lays around those top synchronization candidates based on previous

runs, so that the software’s reaction towards these delays can ei-

ther strongly support or strongly dispute existing inference results,

allowing true synchronizations to surface after a small number of

runs (1ś3 runs in our evaluation).

The exact strategy is illustrated in Figure 2. Imagine that Sher-

Lock has inferred r to be the most likely release synchronization

between conflicting accesses a and b based on the observations

collected so far, as shown in Figure 2 (a). In the next run, SherLock

would inject a delay right before r.

This delay injection will produce valuable feedback no matter

how the execution reacts. If, as shown in Figure 2 (b), this delay in

the thread of a fails to cause a cascading delay in the thread of b,

we can conclude that r is actually not the release coordinating a

and b, and that the real release, if exists, should be between a and r

Ð a much smaller release window than the initial window between

in a and b in Figure 2 (a).

On the other hand, if, as shown in Figure 2 (c), the delay manages

to propagate to the other thread, we can trust the current inference

results more. Furthermore, we can confidently refine the acquire

window to be between r and b, also a smaller window than the

initial aÐb window in Figure 2 (a).

Note that our delay injection and delay-propagation observa-

tion is similar to TSVD [28], which uses delay injection to iden-

tify thread-safety violations and uses delay-propagation to infer

happens-before relation between conflicting thread-unsafe API

calls. In contrast, the goal of delay injection in SherLock is to refine

the acquire/release windows and delegates the actual inference

of synchronizations and implied happens-before relations to the

Sovler.

This is because delay injection can only help refine the inference

process but cannot replace it. If there are too many release candi-

dates, there will be too many delays injected, which not only takes

long time but also makes it difficult to judge whether a delay has

propagated. All the properties and hypotheses discussed in Section

2 help the Solver to identify a small number of highly likely release

candidates. Without them, delay injection alone can hardly discover

real release and acquire synchronizations. We will explain the exact

implementation of SherLock Perturber in Section 4.3.

4 SHERLOCK

We now describe the design and implementation of various compo-

nents of SherLock: the Observer, the Solver, and the Perturber. We

also discuss how they work together.

4.1 Observer

Operations to trace. SherLock instruments a given application

binary to trace two types of operations during run time.

First, it traces read/write operations that may form conflicting-

access pairs useful for Mostly-Paired hypothesis. The operations

include (1) read from or write to heap variables (e.g., public fields of

a class), (2) getter and setter methods of public properties of a class,

and (3) invocations of read/write APIs of thread-unsafe libraries

(e.g., List.Add()). Note that, this API list is optional. In the cur-

rent prototype, SherLock instruments 14 well-documented thread-

unsafe C# library classes in the System.Collections.Generic

namespace. Even without this API list, SherLock can still infer

synchronization based on conflicting heap accesses. In fact, in our

experiments, SherLock only misses about 3% of the inferred opera-

tions when this API-list is empty.

Second, SherLock traces potential synchronizations including

accesses to heap variables and entry and exit of methods. For ap-

plication methods, SherLock instruments entry and exit points of

their implementations. For library or system API calls, SherLock

instruments immediately before and after the call sites.

Log-entry content. At run time, SherLock records the following

information for an operation: (1) timestamp, (2) thread ID, (3) op-

eration type: read, write, method entry, or method exit; (4) field

name and its memory address for each read/write operation, and

(5) method name and parent object id for each method entry/exit

operation.

317

SherLock: Unsupervised Synchronization-Operation Inference ASPLOS ’21, April 19–23, 2021, Virtual, USA

Forming acquire/release windows. In theory, we could identify

every pair of conflicting accesses from the execution log and report

an acquire/release window like the one in Figure 2.a. However, that

would form overwhelmingly large number of windows. Particularly,

when two conflicting accesses are far away from each other, there

are too many operations between them to serve as useful hints.

Consequently, SherLock uses a physical time window Near to

filter out less useful pairs (1 second by default). For every pair

of conflicting accesses 𝑎 and 𝑏 that are nearby (i.e., (𝑇𝑏 − 𝑇𝑎) ≤

Near, assuming 𝑎 is before 𝑏 without losing generality), SherLock

extracts all the operations in the log that executes between 𝑇𝑎 and

𝑇𝑏 as release candidates (if they are from the thread of 𝑎) or acquire

candidates (if from the thread of 𝑏).

Note that a static code location may execute multiple times and

hence form many acquire/release windows, particularly when it is

inside a loop. To be not overwhelmed with very similar windows

from the same pair of static locations, SherLock sets a upper bound

(15) for the number of windows that one location pair can form.

After reaching the upper bound of a location pair, SherLock ignores

subsequent windows for it.

4.2 Solver

The goal of the solver is to infer likely synchronizations from the ob-

servations collected from many runs. The key idea is to treat this as

a probabilistic inference problem [12, 31]. Intuitively, if operations

often appear to separate a pair of conflicting operations at runtime,

then the probability of these operations being synchronization is

higher.

Next, we explain the details of our encoding, with every con-

straint and objective function term representing one property or

hypothesis discussed in Section 2.

Variables. SherLock encodes every synchronization candidate

as a random variable, whose assigned probability indicates the

likelihood of this candidate being a synchronization.

For field reads, SherLock generates random variables 𝑟𝑒𝑎𝑑 (𝑓)𝑎𝑐𝑞

and 𝑟𝑒𝑎𝑑 (𝑓)𝑟𝑒𝑙 to respectively represent the probability the oper-

ation is an acquire or a release. Field writes are treated similarly.

SherLock identifies the variables with the fully-qualified type of the

field (i.e., ClassName ::FieldName), and assumes that all dynamic

instances behave the same. That is, if a field is used as a synchroniza-

tion once, it is always used thus. This reflects how synchronization

variables are typically used in practice. More importantly, doing so

enables SherLock to easily generate multiple observations for the

same variable, in one run or across multiple runs, greatly improving

the efficacy of inference.

For every method invocation, SherLock defines two variables,

𝑏𝑒𝑔𝑖𝑛(𝑚)𝑟𝑒𝑙 and 𝑏𝑒𝑔𝑖𝑛(𝑚)𝑎𝑐𝑞 . Similar representations are used for

method exits, 𝑒𝑛𝑑 (𝑚)𝑟𝑒𝑙 and 𝑒𝑛𝑑 (𝑚)𝑎𝑐𝑞 . As in field accesses, Sher-

Lock associates all dynamic instances of a method to a single vari-

able identified by its fully qualified type (i.e., ClassName::MethodName).

SherLock additionally assumes that the synchronization behavior

remains the same independent of the polymorphic types or pa-

rameter values, assigning various forms to the same underlying

variables.

Constraints. SherLock encodes Read-Acquire & Write-Release

property discussed in Section 2 as linear constraints that should

never be violated. This encoding is straightforward, as we simply

need to assign corresponding variables to be 0 (i.e., there is no

chance for them to fulfill a specific type of synchronization).

for any field, 𝑟𝑒𝑎𝑑
(

𝑓
)𝑟𝑒𝑙

= 0, 𝑤𝑟𝑖𝑡𝑒
(

𝑓
)𝑎𝑐𝑞

= 0

for any method, 𝑏𝑒𝑔𝑖𝑛
(

𝑚
)𝑟𝑒𝑙

= 0, 𝑒𝑛𝑑
(

𝑚
)𝑎𝑐𝑞

= 0
(1)

In addition, SherLock encodes the Single Role assumption that

any library API 𝑙 is only used to serve one type of synchronization,

either acquire or release, encoded as 𝑏𝑒𝑔𝑖𝑛
(

𝑙
)𝑟𝑒𝑙

+𝑒𝑛𝑑
(

𝑙
)𝑎𝑐𝑞

≤ 1.

Objective function. The properties above are encoded as hard

constraints that can never be violated. SherLock also uses many

hypotheses, which are essentially soft constraints, in that they can

possibly be violated, but we want such violations to be rare. To rep-

resent these soft constraints, the basic idea, as in previous work [12],

is to use a relaxed constraint 𝐶 ≤ 𝜖 and instruct the solver to mini-

mize an objective function that incorporates 𝜖 , instead of strictly

requiring 𝐶 ≤ 0. Using this idea, SherLock encodes the hypotheses

in Section 2.

Mostly protected. Given 𝑎1, 𝑎2, . . . , 𝑎𝑛 in a release window 𝑤 rel

and 𝑏1, 𝑏2, . . . , 𝑏𝑚 in a corresponding acquire window𝑤acq (as in

Figure 2), SherLock formulates the hypothesis that łthere probably

exists an release synchronization among 𝑎1, 𝑎2, . . .𝑎𝑛ž and łthere

probably exists an acquire synchronization among 𝑏1, 𝑏2, . . .𝑏𝑚ž as

minimizing the following two terms:

𝑟𝑒𝑙
(

𝑤
)

=𝑚𝑎𝑥
(

0, 1 −
∑

𝑖

𝑎𝑟𝑒𝑙𝑖

)

, 𝑎𝑟𝑒𝑙𝑖 ∈ 𝑤𝑟𝑒𝑙

𝑎𝑐𝑞
(

𝑤
)

=𝑚𝑎𝑥
(

0, 1 −
∑

𝑖

𝑏
𝑎𝑐𝑞
𝑖

)

, 𝑏
𝑎𝑐𝑞
𝑖 ∈ 𝑤𝑎𝑐𝑞

(2)

When at least one of 𝑎1, 𝑎2, ... and 𝑎𝑛 is assigned a high probabil-

ity of being an release, the top term would become 0; otherwise, it

remains a positive number. The similar trend applies to the acquire

probability assignment. Consequently, by minimizing the sum of

all the 𝑟𝑒𝑙 and 𝑎𝑐𝑞 scores from all observed release and acquire win-

dows, we can support the hypothesis that most conflicting accesses

are protected. Note that, an operation 𝑜 may have multiple dynamic

instances in an acquire or a release window, but we always only

subtract its corresponding probability variable once. Otherwise,

the 𝑟𝑒𝑙 or 𝑎𝑐𝑞 term can be easily minimized without any variable

having a close-to-1 synchronization-probability.

Synchronizations are rare. To encode the hypothesis that there

are few synchronization operations in the program, SherLock sim-

ply adds a regularization term, which is the sum of all the variables,

to the objective function. Minimizing it will minimize the number

of synchronization operations.

𝑟𝑒𝑔
(

𝑣𝑖
)

= 𝑣𝑖 (3)

To encode the hypothesis that a synchronization is typically not

invoked frequently in any acquire/release window, SherLock adds

the following penalty for a variable based on its average number of

occurrence in every window that it appears in.

𝑟𝑎𝑟𝑒
(

𝑣𝑖
)

= 0.1 ∗
(

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 𝑜 𝑓 𝑣𝑖
)

∗ 𝑣𝑖 (4)

318

ASPLOS ’21, April 19–23, 2021, Virtual, USA Guangpu Li, Dongjie Chen, Shan Lu, Madanlal Musuvathi, and Suman Nath

We choose the coefficient to be 0.1 so that most 𝑟𝑎𝑟𝑒 (𝑣𝑖) is between

0 and 1, similar as the range of the regularization term above and

the variation term below.

Acquisition time mostly varies. SherLock calculates the standard

deviation and mean of every method𝑚’s duration. SherLock then

adds the following term to the objective penalty function, which

helps prioritize those methods that have high duration variation

when identifying acquire synchronization.

𝑣𝑎𝑟
(

𝑚
)

=

(

1 − 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒
(

𝐶𝑉
(

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
(

𝑚
))))

∗ 𝑏𝑒𝑔𝑖𝑛
(

𝑚
)𝑎𝑐𝑞

(5)

Here, coefficient of variation (i.e., standard deviation divided by

mean) represents how much variation a method𝑚’s duration has.

This term 𝑣𝑎𝑟
(

𝑚
)

compares𝑚 with all other methods. The higher

the variation is, the less penalty, ranging from 0 to 1, we get when

inferring𝑚 to be an acquire.

Mostly paired. To capture the hypothesis that release method of-

ten comes from the same class as its corresponding acquire method,

SherLock introduces the following penalty for every class 𝑐 that

contains candidate operations, which is minimized to 0 when the

number of acquire synchronizations in 𝑐 equals the number of

release synchronizations in 𝑐:

𝑝𝑎𝑖𝑟_𝑐
(

𝑐
)

=

�

�

�

�

�

�

∑

𝑜𝑝∈𝑐

𝑜𝑝𝑎𝑐𝑞 −
∑

𝑜𝑝∈𝑐

𝑜𝑝𝑟𝑒𝑙

�

�

�

�

�

�

(6)

To capture the hypothesis that if the read of a field 𝑓 is used to

acquire, the write of 𝑓 is often used to release, vice versa, SherLock

introduces the following penalty score:

𝑝𝑎𝑖𝑟_𝑓
(

𝑓
)

= |𝑟𝑒𝑎𝑑
(

𝑓
)𝑎𝑐𝑞

−𝑤𝑟𝑖𝑡𝑒
(

𝑓
)𝑟𝑒𝑙

| (7)

Overall objective function. Putting the above terms together, the

overall penalty objective function is the following:
∑

𝑤

(

𝑟𝑒𝑙
(

𝑤
)

+𝑎𝑐𝑞
(

𝑤
))

+𝜆
[

∑

𝑐

𝑝𝑎𝑖𝑟_𝑐
(

𝑐
)

+
∑

𝑓

𝑝𝑎𝑖𝑟_𝑓
(

𝑓
)

∑

𝑣

𝑟𝑒𝑔
(

𝑣
)

+
∑

𝑣

𝑟𝑎𝑟𝑒
(

𝑣
)

+
∑

𝑚

𝑣𝑎𝑟
(

𝑚
)]

(8)

Here, 𝜆 is a trade-off knob. It determines the relative weight

between Mostly-Protected hypothesis and all other hypotheses in

our inference. By default, SherLock sets 𝜆 to be 0.2. We will evaluate

different settings of 𝜆 in our evaluation section.

Solving & Result interpretation. SherLock uses a state-of-the-art

linear solver [2] to find an assignment to all the variables that

collectively satisfies all the constraints and minimize the penalty

computed by the objective function.

Given all the variable assignment, we then check which acquire-

probability variables and release-probability variables are assigned

1, and identify corresponding operations as acquire and release

synchronization accordingly.

An important point to note here that these system of equations

do not have a trivial solution Ð say one that makes every operation

a non-synchronization, or one that makes every write a release

and every read an acquire. This is because we require not only

that at least one variable in the acquire (release) window to be

an acquire (release), but also that the number of synchronizations

should be minimized. This together prevents trivial solutions. This

is an important property that allows our system of equations to

have meaningful solutions without requiring bootstrapping with

user annotations.

4.3 Perturber and Feedback across Runs

SherLock executes the target application multiple times (3 times per

input in our evaluation). Across runs, observations are accumulated;

new inferences are made; delays are injected accordingly, which

then facilitate new observations.

To accumulate the observation across runs, SherLock does not

throw away any constraints or objective function terms obtained

from previous runs. Instead, it keeps (1) adding new variables and

corresponding constraints, if new synchronization candidates show

up, (2) adding new objective function terms for every newly ob-

served release window and acquire window, and (3) updating exist-

ing objective function terms, like the average occurrence of a candi-

date operation, the co-efficient of variance of a method’s duration,

etc. Since the variables in our linear constraint system correspond

to static names of methods and fields instead of their dynamic in-

stances, the number of variables is guaranteed to be bounded and

correlating information across runs is straightforward.

A special type of observation that gets accumulated is that, some-

times, SherLock could observe a data race. This occurs when Sher-

Lock observes a concurrent execution of two conflicting accesses

with every operation in the acquire (release) window guaranteed to

not be an acquire (release) synchronization. This can happen when

either the acquire (release) window is empty or every operation in

the window is a write (read) operation. When SherLock encounters

such a data race between accesses 𝑎 and 𝑏, SherLock remembers it

and removes all the Mostly Protected penalty term associated with

the acquire and release windows between 𝑎 and 𝑏 in all runs.

After every run, given the solver’s updated inference results,

SherLock Perturber injects a 100 milli-seconds delay right before

every1 dynamic instance of every operation that is currently con-

sidered as a release synchronization by the solver (i.e., no delay

is injected for the first run). SherLock then checks whether the

injected delay is propagated. Depending on that, the Perturber noti-

fies the Observer to adjust the observed acquire window and release

window accordingly, as illustrated in Figure 2 (b) and (c).

5 EVALUATION

5.1 Methodology

We implemented SherLock using Mono.Cecil [5] binary instrumen-

tation framework, and evaluated SherLock on the latest versions

(as of April 2020) of 8 open-source projects from Github. We run

available unit tests of these projects for our dynamic monitoring. 7

of these projects (all but App-6 in Table 1) are from the benchmark

suite set up by a recent C# concurrency-bug detection paper [28].

Only 2 projects from that suite were not evaluated here, because

one closed its source code recently and one does not contain any

multi-threaded unit tests. We also randomly picked one C# applica-

tion, App-6 in Table 1, from the search results for łrace conditionž in

Github. Table 1 shows the details of all these applications: they are

all well maintained and reasonably popular based on the number of

1We also tried injecting the delay probabilistically, but did not see much difference in
inference results.

319

SherLock: Unsupervised Synchronization-Operation Inference ASPLOS ’21, April 19–23, 2021, Virtual, USA

Table 1: Applications in benchmarks

ID Name LoC #Stars #Tests

App-1 ApplicationInsights 67.5K 306 1193

App-2 DataTimeExtention 3.1K 335 219

App-3 FluentAssertion 78.1K 1886 3729

App-4 K8s-client 332.4K 395 139

App-5 Radical 95.9K 33 798

App-6 RestSharp 19.8K 7363 92

App-7 Stastd 2.3K 125 34

App-8 System.Linq.Dynamic 1.1K 399 7

Table 2: SherLock inferred results after 3 rounds. The sum in

the parentheses is the unique synchronizations across applications.

ID Syncs Data Racy Instr. Errors Not Sync

App-1 46 10 2 7

App-2 6 0 0 0

App-3 8 0 2 0

App-4 20 0 1 0

App-5 14 2 0 2

App-6 14 0 0 2

App-7 19 4 0 0

App-8 6 0 0 1

Sum 133 (122) 16 5 12

stars on Github; their sizes range from around one thousand lines

of code to more than three hundred thousand.

We run the benchmark suite on a Windows 10 laptop, with

Intel(R) i7-8750 CPU, 16G Memory. Our evaluation answers the

following key questions: (1) What synchronization operations can

SherLock identify? (2) How helpful are these inferred synchroniza-

tion operations in data-race detection? (3) What false positives and

false negatives did SherLock incur? and (4) How do different com-

ponents and parameter settings of SherLock affect the inference

results?

5.2 Overall Results

Table 2 shows the results of running SherLock on our benchmarks.

The table reports the results after 3 runs. Later sections will eval-

uate how the results vary with the number of runs. As the table

shows, SherLock successfully identifies many real synchronizations.

Of the 133 synchronizations identified, 122 are unique across the

applications. Surprisingly, many of them are non-traditional syn-

chronizations such as relying on finalizers to be called after the

instruction that makes an object unreachable. We discuss more de-

tails and how the inferred synchronizations help data-race detection

in Sec. 5.3 and 5.4.

Aswith other probabilistic inference techniques, SherLockmakes

33 misclassifications shown in Table 2. 16 out of these 33 participate

in true data races (forming 8 data race pairs). These include accesses

that should be marked volatile to prevent memory consistency

issues [7] as well as bugs due to missing synchronizations. For 5

cases, SherLock honed in on the right synchronization neighbor-

hood but failed due to limitations of our current C# instrumenta-

tion infrastructure. The remaining 12 are instances where SherLock

erroneously identified nonsynchronization operations as synchro-

nizations. We discuss false positives and negatives in Section 5.5.

5.3 What Synchronizations Are Inferred?

SherLock identified 122 unique synchronizations for the applica-

tions in our benchmarks.2 Of these, 51 are release synchronizations

and 71 are acquire synchronizations. We classify these synchroniza-

tions into 19 system-API-based synchronizations, 12 variable-based

synchronizations, and 91 application-method-based synchroniza-

tions.

5.3.1 System-API-Based Synchronization. This class includes meth-

ods in libraries that provide synchronization primitives for appli-

cations. This includes classic methods such as Monitor::Enter

and Monitor::Exit and specialized methods related to to asyn-

chronous processing like DataflowBlock::Post and Receive. An

example of the latter is shown in Figure 3.A. Here Post is a release

synchronization that happens before the entrance of an event han-

dler and Receive is an acquire synchronization that happens after

the exit of the event handler.

Furthermore, SherLock successfully inferred not only above 1-

to-1 acquire-release synchronizations, but also some n-to-1 or n-

to-n acquire-release synchronizations like WaitHandle::WaitAll

in Table 8, which allows one code snippet to wait for many other

code snippets.

If one would manually annotate synchronizations, these APIs

are the simplest to do and this annotation effort can be amortized

across multiple applications. Unfortunately, only a small percentage

of synchronizations (19 out of 122) fall in this class. Moreover, 13 of

these 19 API methods are used in only one application, validating

a long tail of API-based synchronizations even in the small set of

applications we study.

5.3.2 Variable-Based Synchronization. Four applications in bench-

marks use variable-based synchronizations, contributing to 12 out

of the 122 synchronizations. These include 4 while-loop synchro-

nization and 8 if-checking based synchronization. For example,

Figure 3.B shows a variable-based synchronization inferred from

application App-4. Here, endOfFile is a flag indicating if the file

writing has finished. Thread 𝑇 1 sets it to be true after flushing the

buffer to file; Thread 𝑇 2 uses a while-loop to wait for the flushing

to finish.

5.3.3 Application-Method-Based Synchronization. This is by far the

largest class of synchronizations, contributing to 91 out of the 122 in-

ferred ones. In these cases, the application relies on happens-before

relation on a method return or a method entrance for synchroniza-

tion.

Applications can use a variety ofmechanisms to enforce happens-

before ordering of these methods. First, such ordering can be guar-

anteed by the language semantics. For example, C# ensures that all

static fields are properly initialized. This enforces a happens-before

relationship between the return of the static constructor to any use

2Table 8 and Table 9 list the exact synchronizations SherLock inferred.

320

ASPLOS ’21, April 19–23, 2021, Virtual, USA Guangpu Li, Dongjie Chen, Shan Lu, Madanlal Musuvathi, and Suman Nath

// Example A @App -7

_block = CreateMessageParserBlock ()

T1: _block.Post(Event e)

_block.Receive ()

T2: Messagehandler(Event e){...}

// Example B @App -4

volatile bool endOfFile = false;

T1: this.endOfFile = true;

T2: while (!this.endOfFile){/*wait*/}

// Example C @App -2

ConcurrentDictionary <T,T> dayCache;

T1: dayCache.GetOrAdd(year ,delegate d1);

T2: dayCache.GetOrAdd(year ,delegate d2);

// Example D @App -7

task = new Task(Action a1)

task.ContinueWith(Action a2)

T1: Action a1(){...}

T2: Action a2(){...}

// Example E @App -1

T1: void TestInitialize (){...}

T2: void BasicStartOperationWithActivity (){...}

Figure 3: Inferred synchronization examples

of the object. Similarly, C# ensures that finalizers on objects only

run when the object is not reachable. Thus, the instruction that re-

moves the last reference of an object happens before the beginning

of the object’s finalizer. SherLock inferred these relationships with

no prior knowledge of the language semantics.

Method ordering can also be enforced by registering them as call-

backs to system APIs. In Figure 3.C, two threads invoke GetOrAdd

method on a concurrent dictionary. The delegate provided as a

parameter to GetOrAdd executes when the specified key is not

in the dictionary and is guaranteed to be atomic with respect to

other delegates from concurrent calls to GetOrAdd on the same

dictionary. This semantics guarantees a happens-before relation

between the return of d1 and the start of d2 (or vice versa). With-

out understanding the involved semantics of the GetOrAddmethod,

SherLock identified that the starts and returns of the two delegates

as synchronization.

Figure 3.D shows another such example. The program regis-

ters an action a2 to continue with a predefined task a1 using the

ContinueWith API. This API guarantees a2 to execute after a1 in-

dependent of the threads executing these methods. Again, without

understanding the semantics of ContinueWith mechanism in C#,

SherLock infers the return of a1 as a release synchronization and

the start of a2 as the corresponding acquire synchronization.

Some application frameworks enforce happens-before relations.

As shown in Figure 3.E, Microsoft.VisualStudio.TestTools.

UnitTesting, a popular testing framework, provides a staticmethod,

Table 3: SherLock vs. manual annotation in race detection

(Only first data race reported in each run is counted).

True Data Races # False Data Races

ID Manualdr SherLockdr Manualdr SherLockdr

App-1 0 4 263 14

App-2 1 1 0 0

App-3 1 18 31 2

App-4 0 0 32 15

App-5 2 1 0 6

App-6 0 3 31 12

App-7 0 2 33 1

App-8 0 0 1 1

Sum 4 29 391 51

TestInitialize, to set up test environments. This method is guar-

anteed to execute before any unit test, like the BasicStartOperatio-

nWithActivity test function in App-1. Here, SherLock correctly

infers the return of TestInitialize as a release synchronization,

and the start of all executed test methods as acquire without know-

ing its semantics or analyzing any code inside the testing frame-

work.

5.4 How Helpful Are Inferred
Synchronizations?

Synchronizations are crucial in reasoning about concurrent pro-

grams. We quantitatively evaluate the benefit of synchronizations

inferred by SherLock by using them in a dynamic data-race detector

that mimics FastTrack [17, 18]. Since the original FastTrack algo-

rithm was implemented for Java applications, we re-implemented

FastTrack for C#3.

We created two variants. The first, referred to as Manualdr, is

equipped with a list of manually identified synchronizations. For

every Java synchronization tracked by FastTrack, we annotated

corresponding C# synchronization API. We supported volatile

variables, wait-notify synchronization, barriers, and happens-before

relations from static initialization as reported in the paper [18] and

frommanual code inspection. The second, referred to as SherLockdr,

only uses the synchronizations inferred by SherLock. We compared

the two versions when running all the unit tests of our benchmarks

and manually inspecting error reports for true and false data races.

Since the FastTrack algorithm is sound only till the first reported

data race, we only count and inspect the first-data-race report in

any bug-detection run. If the reported first-race is a false positive,

a subsequent true race may get missed.

Table 3 shows that SherLockdr reports more true data races (29,

compared to 4) and fewer false data races (51, compared to 391) than

Manualdr. Our manual inspection showed that all the false data

races reported by Manualdr are due to missed synchronizations. For

example, 323 out of the 391 false data races reported by Manualdr

3We could not find a publicly available state-of-the-art C# data-race detector. For
example, RaceTrack [44] does not handle static constructors or garbage collection,
which FastTrack handles, or modern C# features like task-parallel-library.

321

SherLock: Unsupervised Synchronization-Operation Inference ASPLOS ’21, April 19–23, 2021, Virtual, USA

Table 4: Breakdown of false positives/negatives.

SherLock SherLockdr

#False Sync. #Missed Sync. #False Races

Instr. Errors 5 3 17

Double Roles 2 1 15

Dispose 5 4 11

Static Ctr. 4 2 3

Others 2 2 5

Total 17 12 51

are related to not handling the numerous ways of creating and exe-

cuting tasks in C#, like those from TaskFactory, ThreadPool, etc.

SherLockdr eliminates most of these false positives by its inference.

Improving tools like FastTrack this way with automatically inferred

synchronizations is a key motivation of this work.

SherLockdr reporting fewer false data races than Manualdr is

natural as the former uses more happens-before relations than

the latter. What is surprising is that SherLockdr reports more true

data races than Manualdr. On investigating further, we believe this

is because FastTrack guarantees only hold till the first data race

report. It continues to report subsequent data races, but only in

a best-efforts manner. If the first data race is a false one due to

missing synchronization, the reduced quality of subsequent reports

can prevent it from detecting true data races. SherLockdr suffers

less from this problem and thus reports more true data races.

SherLockdr still reports 51 false data races. This is due to Sher-

Lock’s failure to infer 12 synchronizations (shown under #Missed

Sync column in Table 4), which we discuss below.

5.5 What Caused False Positives/Negatives?

As shown in Table 2, SherLock inferred 33 incorrect synchroniza-

tions. Of these 16 arise from 8 data race pairs. Onmanual inspection,

we found that 2 of these data races resulted in test assertion failures,

implying that these data races are harmful.

Table 4 summarizes the remaining 17 false positives. Every false

synchronization inferred corresponds to a true synchronization

that SherLock missed. These misclassifications result in SherLockdr
reporting false data races due to missed synchronizations, which

are both shown in the table. We only report the false negatives

identified during our manual inspection of data-race reports from

Manualdr and SherLockdr. There might be other synchronizations

that we might have missed.

5 false positives resulted from errors in our instrumentation

framework. Our instrumentation uses heuristics to identify and

skip compiler generated and library code. The heuristics mistakenly

skipped some application methods and did not expose them to

SherLock. These resulted in 3 missed synchronizations and 17 false

data-race reports. We report this category separately in Table 2 as

this is an error in our implementation but not in our algorithm. We

plan to rectify these errors in future versions.

2 false positives arise due to SherLock’s Single-Role assump-

tion that acquire and release cannot occur inside the same system

method. In C#, there are a few APIs that violate that assumption.

Table 5: Inference with or without certain hypothesis

Inferred Sync. Ops.

#Correct #Total Precision

SherLock 122 155 79%

w/o Mostly are Protected 0 0 n/a

w/o Synchronizations are Rare 112 271 41%

w/o Acq-Time Varies 106 152 70%

w/o Mostly are Paired 101 158 64%

w/o Read-Acq & Write-Rel 100 152 66%

w/o Single Role 111 156 71%

For example, UpgradeToWriteLock releases a reader lock and then

acquires a writer lock all inside one API. This resulted in 1 missed

synchronization and 15 false data-race reports. Future SherLock

can try turning the Single-Role assumption into a soft constraint.

The remaining 11 false positives arose because of SherLock’s

inability to refine the acquire/release window effectively. These

include failures to identify the acquire pair for object disposals

(5), the release pair for static constructors (4), and other synchro-

nization (2). For instance, dispose functions are often called during

garbage collection which can execute at a much later time after

the pairing release instruction that removes the last reference to

the object. Since SherLock’s delay injection does not control the

garbage collection, it was not able to refine the windows.

Finally, there is another source of false negatives that are not re-

flected in our evaluation. Like all dynamic tools, SherLock can only

observe executed code, and hence cannot identify un-executed syn-

chronization operations. Fortunately, modern systems all contain

many test cases and SherLock can use any concurrent tests.

5.6 More Detailed Results

How hypotheses helped. Table 5 shows how different hypotheses

and synchronization properties have helped in reaching the Sher-

Lock inference results. All the numbers discussed in this sub-section

and related tables and figures are about unique synchronizations

inferred from 8 applications.

The Mostly-Protected hypothesis is the most crucial one. With-

out it, the Solver will simply decide that no synchronization exists in

a program. Apart from it, the Synchronizations-are-Rare hypothesis

is also crucial: without it, the precision of SherLock drops from 79%

to merely 41%. It well complements the Most-Protected hypothesis

to make sure that not too many operations are tagged as synchro-

nization. The other hypotheses and properties are also helpful, as

removing any one of them leads to fewer true synchronization

identified.

Due to the randomness of concurrent execution, we observed

one new correct synchronization when removing the single-role

hypothesis and two new correct synchronizations when removing

the mostly-paired rule. Overall, SherLock covers almost all the

correct inference results.

How Perturber and multi-run feedback helped. Figure 4 evaluates

several design decisions in our Perturber and feedback mechanism

across runs. The worst performing schemes are when we do not

322

ASPLOS ’21, April 19–23, 2021, Virtual, USA Guangpu Li, Dongjie Chen, Shan Lu, Madanlal Musuvathi, and Suman Nath

Figure 4: The numbers of correctly inferred unique synchro-

nizations under different Perturber and feedback settings.

Table 6: Sensitivity of 𝜆 (numbers are the unique sums across 8

applications after running each test 3 times.)

𝜆 0.1 0.2 0.4 0.6 0.8 1 5 10 50 100

#correct 118 122 115 111 111 110 76 67 29 19

#total 157 155 156 147 144 142 95 85 36 29

Table 7: Sensitivity of Near (numbers are the unique sums across

8 applications after running each test 3 times.)

Near 0.01s 1s 100s

#correct 47 122 117

#total 85 155 183

accumulate constraints across runs at all (the yellow curve) and

when we do not inject delays (the green curve). In both cases, the

number of correctly inferred synchronizations drop from above

120 (SherLock) to around or lower than 90. The other decision that

observes data races and removes corresponding Mostly-Protected

terms from the objective function is also helpful (the blue line). We

can also see that the number of correctly inferred synchronizations

increases significantly for SherLock in the first three runs and

becomes stable after that.

Parameter setting 𝜆. Our overall objective function (Equation 8)

contains a parameter 𝜆 that balances the weight of Mostly-Protected

hypothesis term and all other terms. Table 6 shows the results un-

der different settings of 𝜆. When the 𝜆 increases, the weight of

Mostly-Protected hypothesis decreases and hence infers fewer syn-

chronizations; when decreases, SherLock infers more to ensure that

every conflicting pair is protected. uses 0.2 as the default setting.

Parameter setting Near. We evaluated SherLock on three different

settings of the physical-time window-size parameter Near, which

was defined in Section 4.1. As shown in Table 7, when the win-

dow is too small (0.01 seconds), too few conflicting accesses were

considered to be synchronized, causing SherLock to miss many

synchronization operations. On the other hand, when the window

is too large (100 seconds), the acquire/release windows contain too

many synchronization candidates, which also caused SherLock to

miss some correct synchronization operations, comparing with the

1-second default setting.

Enhancing TSVD inference. A recent thread-safety violation de-

tector TSVD [28] infers happens-before relation between thread-

unsafe API calls through delay injection and propagation check:

when TSVD injects a delay at a thread-unsafe API call site 𝑎 in

thread 1 and observes this delay propagates to block thread 2, it

infers that 𝑎 happens before a thread-unsafe call site 𝑏 in thread 2

right after the blocking period. This inferred happens-before knowl-

edge is crucial for TSVD to save unnecessary effort in trying to

expose thread-safety violation bugs among already synchronized

calls. Note that, TSVD is not designed to pinpoint exact synchro-

nizations and intentionally uses only simple heuristics to make

quick inference, as low overhead is crucial for it. In this evaluation,

we check if the synchronizations inferred by SherLock can help

enhance TSVD happens-before inference.

We ran the open-source TSVD [4] for all applications in our

benchmark suite. After 3 runs of every test input for every appli-

cation, TSVD reports happens-before relation among 8 conflicting

API-call pairs, with 7 of them truly synchronized (some applications

do not call thread-unsafe APIs concurrently at all). By applying

SherLockdr to the same set of benchmarks, 20 pairs of conflicting

API-call pairs are identified as being truly synchronizedÐindeed,

SherLock can be used to enhance TSVD in its happens-before in-

ference and hence bug exposing.

Overhead. The overall overhead of applying SherLock to one

test run, including instrumentation, tracing, and solving, ranges

from 24% to 800%. The average overhead across all test cases is

278%, where tracing incurs 170% and solving incurs 94% overhead.

In the default setting of running each test cases 3 times, the average

overhead of using SherLock versus the baseline of executing the test

cases 3 times without any instrumentation or delay, is 434%, where

the delay injection introduces 156% overhead. Since we do not

expect the current version of SherLock to be used in production, we

consider the overhead of SherLock acceptable and have not worked

on optimizing its various parts yet.

6 RELATED WORK

Happens-before identification and inference. Previous research

worked on automatically identifying custom synchronization that

uses synchronization variables. They [10, 40, 43, 45] apply static

program analysis to identify specific program structures, like spin

loop [40], shared-variable predicated control dependency[10, 43],

and queues [45]. The applied static analysis is complicated and

focuses on specific types of synchronization. In contrast, SherLock

can identify various types of synchronization without sophisticated

static analysis.

Some recent work infers the existence of happens-before relation-

ship based on dynamic observation [11, 13, 28]. Mystery-Machine

[13] infer task A happens-before task B if A always executes before

B in millions of production runs. Orion [11] infers happens-before

relation between two network operations whose time gap is nearly

constant in thousands of runs. TSVD [28] infers a thread-unsafe API

323

SherLock: Unsupervised Synchronization-Operation Inference ASPLOS ’21, April 19–23, 2021, Virtual, USA

Table 8: Inferred synchronizations from FluentAssertion, Radical and RestSharp

Synchronization Description

App:FluentAssertion

Release

FluentAssertions.Execution.AssertionScope::.cctor-End end of static constructor

System.Threading.Monitor::Exit release lock

System.Threading.Tasks.Task::Run create new task

Write-FluentAssertions.Specialized.ExecutionTime::<IsRunning> write flag

Acquire

System.Threading.Monitor::Enter acquire lock

Read-FluentAssertions.Specialized.ExecutionTime::<IsRunning> read flag

AssertionOptionsSpecs.When_concurrently_getting_equality_strategy.b2-Begin start of task

FluentAssertions.Specialized.ExecutionTime::<.ctor>b0-Begin start of task

App:Radical

Release

Microsoft.VisualStudio.TestTools.UnitTesting.Assert::IsTrue end of last access

Radical.Model.Entity::EnsureNotDisposed end of last access

Microsoft.VisualStudio.TestTools.UnitTesting.Assert::IsFalse end of last access

System.Threading.Tasks.TaskFactory::StartNew create new task

Radical.Messaging.MessageBroker::<SubscribeCore>-End end of thread

System.Threading.Thread::Start launch new thread

Radical.Messaging.MessageBrokerTests::<messageBroker_on_different_thread> end of last access

Acquire

Radical.ChangeTracking.ChangeTrackingService::Finalize-Begin start of disposal

Radical.Model.Entity::Finalize-Begin start of disposal

Radical.Tests.Model.Entity.EntityTests/TestMetadata::Dispose-Begin start of disposal

Radical.Messaging.MessageBroker::<Broadcast>-Begin start of thread

Radical.Tests.Windows.Messaging.MessageBrokerTests/TestRunner::<Execute>-Begin start of thread

System.Threading.WaitHandle::WaitAll wait for semaphore

Radical.Messaging.MessageBrokerTests::<broadcast_from_multiple_thread>_1 start of thread

Radical.Messaging.MessageBrokerTests::<broadcast_from_multiple_thread>_2 start of thread

App:RestSharp

Release

System.Threading.ThreadPool::QueueUserWorkItem create new task

RestSharp.Tests.Shared.Fixtures.Handlers/<Generic>b30-End end of task

System.Threading.EventWaitHandle::Set release semaphore

RestSharp.Http::<WriteRequestBodyAsync>b2-End end of task

System.Net.WebRequest::BeginGetResponse send network request

System.IO.Stream::CopyTo producer

RestSharp.RestClient<ExecuteAsync>b0-End end of task

Acquire

RestSharp.Http::<WriteRequestBodyAsync>b0-Begin start of task

System.IO.Stream::Read consumer

RestSharp.Tests.Shared.Fixtures.WebServer::<Run>b40-Begin start of task

System.Threading.WaitHandle::WaitOne wait for semaphore

RestSharp.Http::<WriteRequestBodyAsync>b0-Begin start of message handler

RestSharp.Http::<GetStyleMethodInternalAsync>b0-Begin start of event handler

RestSharp.Http::<WriteRequestBodyAsync>gRequestStreamCallback1-Begin start of message callback

RestSharp.Tests.Shared.Fixtures.WebServer::<Run>b41-Begin start of thread

RestSharp.Tests.Shared.Fixtures.TestHttpServer::<HandleRequests>b0-Begin start of message handler

324

ASPLOS ’21, April 19–23, 2021, Virtual, USA Guangpu Li, Dongjie Chen, Shan Lu, Madanlal Musuvathi, and Suman Nath

Table 9: Inferred synchronizations in DataTimeExtension, KubernetesClient and System.Linq.Dynamic.

Synchronization Description

App:DataTimeExtension

Release

App.Common.ConcurrentLazyDictionary::GetOrAdd-End end of atomic region

App.WorkingDays.EasterBasedHoliday/EasterCalculator::.cctor-End end of static constructor

Write-App.WorkingDays.ChristianHolidays::ascension write flag

Acquire

Read-App.WorkingDays.ChristianHolidays::ascension check flag

App.Common.ConcurrentLazyDictionary::GetOrAdd-Begin start of atomic region

App.WorkingDays.EasterBasedHoliday/EasterCalculator::CalculateEasterDate first access after static constructor

App: KubernetesClient

Release

Write-k8s.ByteBuffer::endOfFile write flag: file is ready

System.Threading.Monitor::Exit release a lock

k8s.Models.V1Status/V1StatusObjectViewConverter::ReadJson-End end of await task

k8s.KubernetesClientConfiguration::GetKubernetesClientConfiguration-End nd of await task

Write-k8s.KubernetesException::Status write flag: meet error

Write-k8s.WatchLoop-End end of await task

k8s.Yaml::LoadFromString-End end of await task

k8s.KubernetesClientConfiguration::MergeKubeConfig-End end of await task

k8s.KubernetesClientConfiguration::LoadKubeConfigAsync-End end of await task

k8s.MuxedStream::Read-End end of await task

Acquire

System.Threading.Monitor::Enter acquire a lock

System.Runtime.CompilerServices.TaskAwaiter::GetResult wait for an await task

k8s.KubernetesClientConfiguration::MergeKubeConfig-Begin await task beginning

k8s.StreamDemuxer::Dispose-Begin await task beginning

k8s.ByteBuffer::Write-Begin await task beginning

k8s.ByteBuffer::WriteEnd-Begin await task beginning

Read-k8s.ByteBuffer::endOfFile read flag: file is ready

k8s.ByteBuffer::Read-Begin await task beginning

Read-k8s.KubernetesException::Status read flag:meet error

k8s.KubernetesClientConfiguration::GetKubernetesClientConfiguration-Begin await task beginning

App:System.Linq.Dynamic

Release

System.Threading.Tasks.TaskFactory::StartNew create new Task

System.Linq.Dynamic.ClassFactory::.cctor-End end of static constructor

System.Threading.ReaderWriterLock::DowngradeFromWriterLock release lock

Acquire

System.Linq.Dynamic.ClassFactory::GetDynamicClass first access after static constructor

System.Linq.Dynamic.Test.DynamicExpressionTests::<CreateClass_TheadSafe> start of thread

System.Threading.ReaderWriterLock::UpgradeToWriterLock require lock

call 𝐴 to happen before another thread-unsafe API call 𝐵, if an in-

jected delay before𝐴 causes cascading delay to 𝐵. These techniques

only infer the existence of synchronization between a pair of tasks

or API calls, but cannot pinpoint the exact synchronizations that

cause the effect. Instead, SherLock directly identifies the synchro-

nizations. Furthermore, by considering multiple hypotheses and

properties of synchronizations and feedback-based delay injection,

SherLock does not require many runs to reach the inferring results.

Role inference in program analysis. Specification inference for

program analysis is a well studied problem [12, 31, 36]. SUSI [36]

trains a supervised support vector machine to identify the privacy

roles in Android APIs. Merlin[31] and Seldon[12] use probabilistic

325

SherLock: Unsupervised Synchronization-Operation Inference ASPLOS ’21, April 19–23, 2021, Virtual, USA

inference for identifying source, sink, and sanitizer specification

for identifying security vulnerabilities.

SherLock is inspired by these works but applies them to the new

setting of synchronization inference. This obviously requires new

set of hypotheses and properties related to synchronizations, and

leads to many differences in respective constraint systems: previ-

ous work [12, 31] uses non-linear constraints or linear constraints

collected from many applications, while SherLock only uses linear

constraints collected from the target application; SherLock updates

its constraint system after every run, instead of statically [12, 31].

SherLock focuses on unsupervised inference while prior work re-

quires to be bootstrapped with manually provided annotations.

Others. Decades of research has been conducted on analyzing

concurrent programs, detecting concurrency bugs [9, 17, 20, 21,

25, 32, 34, 35, 38, 42, 46], and tuning performance of concurrent

programs [3, 8, 13, 14, 29, 39]. SherLock is orthogonal to all these

work and help them to achieve better analysis accuracy and capa-

bility with greatly decreased effort in annotating synchronization

operations.

The hypothesis that mature software is mostly correct has also

been used in statistical bug detection [15, 19], failure diagnosis [30],

and inferring likely program invariants [16, 32]. SherLock shares

similar philosophy with these work, but is solving fundamentally

different problems and using completely different designs from

them.

7 CONCLUSIONS

Synchronizations and happens-before relationship are fundamental

in understanding and reasoning about concurrent programs. This

paper made the first step in using unsupervised inference to iden-

tify synchronizations. The result shows that SherLock is effective

in identifying various types of synchronizations using its well de-

signed set of hypotheses and synchronization properties, assisted

by its perturbation and feedback accumulation across runs.

ACKNOWLEDGMENTS

Wewould like to thank Brandon Lucia, our shepherd, and all review-

ers for the insightful suggestion. This research is supported by NSF

(grants CCF-2028427, CNS-1956180, CCF-1837120, CNS-1764039,

CNS-1563956, IIS-1546543, CNS-1514256), the CERES Center for

Unstoppable Computing, and the Marian and Stuart Rice Research

Award. Dongjie Chen’s research is supported by National Natural

Science Foundation (Grants #61802165) of China.

A ARTIFACT APPENDIX

A.1 Abstract

SherLock is a tool that automatically infers synchronization opera-

tions that induce happens-before relationship in C# programs.

Its workflow contains three steps:

(1) Instrumenting the binary of the target application;

(2) Executing the instrumented binary with test inputs;

(3) Analyzing the log generated by testing runs and reporting

identified synchronization operations.

SherLock can go through the above steps for multiple times using

either the same set of inputs or different inputs, with its results from

previous runs guiding following runs for better inference results.

We provide an artifact inside a virtual machine image, described

in details below, to help easy reproduction of all the experiments de-

scribed in the paper. In addition to that, SherLock source code is also

available on GitHub at https://github.com/SpectrumLi/SherLock.

A.2 Artifact Check-List (Meta-Information)
• Algorithm: Program instrumentation, log analysis, and linear con-

straint solving.

• Binary: A instrumentation tool written in C# and a log analysis

tool in Python.

• Run-time environment: .Net 4.8 and Python 3.

• Metrics: The number of inferred synchronization operations.

• Output: A list of inferred synchronization operations for a target ap-

plication, with the type, class name, method name, and line number

specified for each such operation.

• How much disk space required?: The whole artifact, including

virtual machine images, consumes about 50 GB of disk space. Di-

rectly downloading SherLock source code from the GitHub link

above takes much less disk space, but would require more effort in

setting up the experiment workflow.

• How much time is needed to prepare workflow?: The whole

workflow to reproduce all the experiments in this paper is already

prepared inside the virtual machine image Ð all it takes is to launch

one script.

To run your own experiments outside the provided virtual machine

image, one can download SherLock source code from the link pro-

vided above and follow the set-up information described below.

• Howmuch time is needed to complete experiment?: The total

time needed to reproduce all our experimental results depends on

the setting of your virtual machine. You should assign as many

cores for the virtual machine as you can, if you want to finish the

experiment quickly. In our in-house setting (Intel i7-9700k processor

with 16 GB of physical memory), everything can finish within 2

hours.

• Archived (provide DOI)?: 10.5281/zenodo.4540866

A.3 Description

A.3.1 How to Access. The artifact is available in the zenodo web-

site: https://doi.org/10.5281/zenodo.4540866

A.3.2 Hardware Dependencies. The tools and all the experiments

should be run on a Windows machine.

A.3.3 Software Dependencies. SherLock requires the .NET frame-

work to compile and instrument the target applications. It also

requires a Flipy library for its python script to solve the linear con-

straints. These are all already installed and configured in the virtual

machine image provided by us.

A.3.4 Data Sets. All the applications, including their test suites,

mentioned in this paper are already pre-installed in the virtual

machine image provided by us.

A.4 Installation

The provided Virtual Machine image has already installed every-

thing needed for SherLock experiments. Here is a list of all the main

files and directories in the Virtual Machine image:

326

https://github.com/SpectrumLi/SherLock
https://doi.org/10.5281/zenodo.4540866

ASPLOS ’21, April 19–23, 2021, Virtual, USA Guangpu Li, Dongjie Chen, Shan Lu, Madanlal Musuvathi, and Suman Nath

• C:\TSVD\Benchmarks: This directory includes the source

code of all the open-source applications used for evaluating

SherLock. Note that, we only use AE-1, AE-2, AE-3, New-2,

NAE-1, NAE-2, NAE-3 and NAE-4 directories, each repre-

senting one benchmark application. Other directories were

generated when compiling these 8 applications. Inside each

application directory, launch-prof-mem.ps1 is the script that

you can use to compile, instrument, and run the application.

• C:\InstTool: This directory contains the SherLock instru-

mentation tool. It is a Visual Studio project, and we have

already compiled it.

• C:\SherLock\idealy\log-analyze: This directory contains the

SherLock solver tool, which takes execution logs as inputs

and outputs inferred synchronization operations.

• C:\SherLock\Script: This directory contains the scripts that

can launch the whole SherLock workflow and reproduce

all the experimental results in this paper. The output files

generated by running these scripts will also appear in this

directory.

A.5 Experiment Workflow

Users can go to the directory C:\SherLock \Script and launch the

following command inside our virtual machine:

.\Loop-delay-solve.ps1 [appname] [#round]

This commandwill instrument the specified application (appname)

and run it for the specified number of times (#round), and output

inferred synchronization operations into a local file described be-

low.

That directory also contains a file runall-delay.ps1 that offers an

example of calling Loop-delay-solve.ps1.

To apply SherLock on new applications, one can follow the

example of scripts already provided in the artifact, or refer to the

detailed Readme in SherLock GitHub repository.

A.6 Evaluation and Expected Result

The expected results are the inferred synchronization operations.

In the prepared virtual machine, the output can be found in the direc-

tory C:\SherLock\Script namedwith result-[appname]-[#round].txt.

This output file contains many debugging information and error

messages generated by the original test suite, which you should all

ignore. The real result of SherLock that you should read is at the

end of this file in the following format:

Releasing sites:

Inferred-releasing-op-1

Inferred-releasing-op-2

Acquire sites:

Inferred-acquiring-op-1

Inferred-acquiring-op-2

. . .

REFERENCES
[1] Building async coordination primitives. https://devblogs.microsoft.com/pfxteam.

Accessed: 2021-1-1.
[2] Flipy: linear solver. https://pypi.org/project/flipy/. Accessed: 2020-8-9.
[3] Ibm thread and monitor dump analyze for java.

https://www.ibm.com/support/pages/ibm-thread-and-monitor-dump-analyzer-
java-tmda. Accessed: 2020-8-9.

[4] Microsoft tsvd. https://github.com/microsoft/TSVD. Accessed: 2020-8-9.
[5] Mono.cecil. https://www.mono-project.com/docs/tools+libraries/libraries/Mono.

Cecil/. Accessed: 2020-8-9.
[6] Overview of synchronization primitives. https://docs.microsoft.com/en-us/

dotnet/standard/threading/overview-of-synchronization-primitives. Accessed:
2020-8-9.

[7] Sarita V Adve and Mark D Hill. Weak orderingÐa new definition. ACM SIGARCH
Computer Architecture News, 18(2SI):2ś14, 1990.

[8] Mohammad Mejbah Ul Alam, Tongping Liu, Guangming Zeng, and Abdullah
Muzahid. Syncperf: Categorizing, detecting, and diagnosing synchronization
performance bugs. In Gustavo Alonso, Ricardo Bianchini, and Marko Vukolic,
editors, EuroSys, 2017.

[9] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Na-
garakatte. A randomized scheduler with probabilistic guarantees of finding bugs.
In ASPLOS, 2010.

[10] Feng Chen, Traian-Florin Serbanuta, and Grigore Rosu. jpredictor: a predictive
runtime analysis tool for java. InWilhelm Schäfer, Matthew B. Dwyer, and Volker
Gruhn, editors, ICSE, 2008.

[11] Xu Chen, Ming Zhang, Zhuoqing Morley Mao, and Paramvir Bahl. Automating
network application dependency discovery: Experiences, limitations, and new
solutions. In OSDI, volume 8, pages 117ś130, 2008.

[12] Victor Chibotaru, Benjamin Bichsel, Veselin Raychev, andMartin Vechev. Scalable
taint specification inference with big code. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages
760ś774, 2019.

[13] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F Wenisch.
The mystery machine: End-to-end performance analysis of large-scale inter-
net services. In 11th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 14), pages 217ś231, 2014.

[14] Florian David, Gael Thomas, Julia Lawall, and Gilles Muller. Continuously
measuring critical section pressure with the free-lunch profiler. ACM SIGPLAN
Notices, 49(10):291ś307, 2014.

[15] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
Bugs as deviant behavior: A general approach to inferring errors in systems code.
In SOSP, 2001.

[16] Michael Ernst, Adam Czeisler, William G. Griswold, and David Notkin. Quickly
detecting relevant program invariants. In ICSE, 2000.

[17] Cormac Flanagan and Stephen N Freund. Fasttrack: efficient and precise dynamic
race detection. ACM Sigplan Notices, 44(6):121ś133, 2009.

[18] Cormac Flanagan and Stephen N Freund. The fasttrack2 race detector. Technical
report, Technical report, Williams College, 2017.

[19] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using
automatic anomaly detection. In ICSE, 2002.

[20] Chun-Hung Hsiao, Satish Narayanasamy, Essam Muhammad Idris Khan, Cris-
tiano L. Pereira, and Gilles A. Pokam. Asyncclock: Scalable inference of asyn-
chronous event causality. In Yunji Chen, Olivier Temam, and John Carter, editors,
ASPLOS, 2017.

[21] Chun-Hung Hsiao, Cristiano Pereira, Jie Yu, Gilles Pokam, Satish Narayanasamy,
Peter M. Chen, Ziyun Kong, and Jason Flinn. Race Detection for Event-Driven
Mobile Applications. In PLDI, 2014.

[22] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. Automated
atomicity-violation fixing. In PLDI, 2011.

[23] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu. Automated
concurrency-bug fixing. In OSDI, 2012.

[24] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George Candea. Deadlock
immunity: Enabling systems to defend against deadlocks. In OSDI, 2008.

[25] Baris Kasikci, Cristian Zamfir, and George Candea. Data Races vs. Data Race
Bugs: Telling the Difference with Portend. In ASPLOS, 2012.

[26] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558ś565, July 1978.

[27] Guangpu Li, Haopeng Liu, Xianglan Chen, Haryadi S Gunawi, and Shan Lu. Dfix:
automatically fixing timing bugs in distributed systems. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 994ś1009, 2019.

[28] Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan Padhye.
Efficient scalable thread-safety-violation detection. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, 2019.

[29] Jiaxin Li, Yuxi Chen, Haopeng Liu, Shan Lu, Yiming Zhang, Haryadi S Gunawi,
Xiaohui Gu, Xicheng Lu, and Dongsheng Li. Pcatch: automatically detecting
performance cascading bugs in cloud systems. In Proceedings of the Thirteenth
EuroSys Conference, pages 1ś14, 2018.

[30] Ben Liblit, Mayur Naik, Alice X. Zheng, Alexander Aiken, and Michael I. Jordan.
Scalable statistical bug isolation. In PLDI, 2005.

[31] Benjamin Livshits, Aditya V Nori, Sriram K Rajamani, and Anindya Banerjee.
Merlin: specification inference for explicit information flow problems. ACM
Sigplan Notices, 44(6):75ś86, 2009.

[32] Shan Lu, Joseph Tucek, FengQin, and Yuanyuan Zhou. AVIO: DetectingAtomicity
Violations via Access Interleaving Invariants. In ASPLOS, 2006.

327

https://github.com/microsoft/TSVD
https://www.mono-project.com/docs/tools+libraries/libraries/Mono.Cecil/
https://www.mono-project.com/docs/tools+libraries/libraries/Mono.Cecil/
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives

SherLock: Unsupervised Synchronization-Operation Inference ASPLOS ’21, April 19–23, 2021, Virtual, USA

[33] Brandon Lucia, Joseph Devietti, Karin Strauss, and Luis Ceze. Atom-Aid: Detect-
ing and surviving atomicity violations. In ISCA, 2008.

[34] Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. Race Detection for Android
Applications. In PLDI, 2014.

[35] Boris Petrov, Martin T. Vechev, Manu Sridharan, and Julian Dolby. Race detection
for web applications. In PLDI, 2012.

[36] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning approach
for classifying and categorizing android sources and sinks. In NDSS, volume 14,
page 1125. Citeseer, 2014.

[37] Michiel Ronsse and Koenraad De Bosschere. Recplay: A fully integrated practical
record/replay system. ACM Trans. Comput. Syst., 17(2):133ś152, 1999.

[38] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. Eraser: A dynamic data race detector for multithreaded programs.
ACM TOCS, 1997.

[39] Aater M. Suleman, Onur Mutlu, Moinuddin K Qureshi, and Yale N. Patt. Accel-
erating critical section execution with asymmetric multi-core architectures. In
ASPLOS ’09, pages 253ś264.

[40] Chen Tian, Vijay Nagarajan, Rajiv Gupta, and Sriraman Tallam. Dynamic recog-
nition of synchronization operations for improved data race detection. In ISSTA,

2008.
[41] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang, Pe-

ter M. Chen, Jason Flinn, and Satish Narayanasamy. Doubleplay: Parallelizing
sequential logging and replay. In ASPLOS, 2011.

[42] Benjamin P. Wood, Luis Ceze, and Dan Grossman. Low-level detection of
language-level data races with lard. In ASPLOS, 2014.

[43] Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou, and Zhiqiang Ma. Ad
hoc synchronization considered harmful. In OSDI, 2010.

[44] Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack: efficient detection of data
race conditions via adaptive tracking. In Proceedings of the twentieth ACM
symposium on Operating systems principles, pages 221ś234, 2005.

[45] Jiaqi Zhang,Weiwei Xiong, Yang Liu, Soyeon Park, Yuanyuan Zhou, and Zhiqiang
Ma. Atdetector: improving the accuracy of a commercial data race detector
by identifying address transfer. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 206ś215, 2011.

[46] Wei Zhang, Junghee Lim, Ramya Olichandran, Joel Scherpelz, Guoliang Jin, Shan
Lu, and Thomas Reps. ConSeq: Detecting Concurrency Bugs through Sequential
Errors. In ASPLOS, 2011.

328

	Abstract
	1 Introduction
	2 What are synchronization behaviors?
	3 How to facilitate interesting behaviors?
	4 SherLock
	4.1 Observer
	4.2 Solver
	4.3 Perturber and Feedback across Runs

	5 Evaluation
	5.1 Methodology
	5.2 Overall Results
	5.3 What Synchronizations Are Inferred?
	5.4 How Helpful Are Inferred Synchronizations?
	5.5 What Caused False Positives/Negatives?
	5.6 More Detailed Results

	6 Related Work
	7 Conclusions
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result

	References

