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Motivation

I Gaussian process regression generally does not scale to beyond a few thousands data points without applying some
sort of kernel approximation method.

I Most approximations focus on the high eigenvalue part of the spectrum of the kernel matrix, K , which leads to bad
performance when the length scale of the kernel is small.

I We introduce Multiresolution Kernel Approximation (MKA), the first true broad bandwidth kernel approximation
algorithm.

I MKA is memory efficient, and a direct method, which means that it also makes it easy to approximate K−1 and det(K ).

Gaussian Process Regression

I Gaussian Processes (GPs) are a generalization of multivariate Gaussian distributions to the case when the underlying
variables form a continuum indexed by some set X .

I A GP is fully specified by its mean function µ(x), and covariance function k(x , x ′), where k can be any positive
semi-definite kernel.

I Given training data {(x1, y1), . . . , (xn, yn)}, the model is yi = f (xi) + ε, where ε ∼ N (0, σ2) and σ2 is a noise parameter.
The posterior is also a GP with mean

µ′(x) = µ(x) + k x(K + σ2I)−1y ,
where k x = (k(x , x1), . . . , k(x , xn)), y =(y1, . . . , yn), K is the Gram matrix or kernel matrix with elements Ki ,j = k(xi, xj),
and covariance

k ′(x , x ′) = k(x , x ′)− k x ′(K + σ2I)−1k x .

Global Low Rank Methods

Mathematically,

k(x , x ′) ≈
m∑

s=1

m∑
j=1

k(x , xis) cis,ij k(xij, x
′),

Assuming that {xi1, . . . , xim} is a subset of the original point set {x1, . . . , xn}, amounts to an approximation of the form
K ≈ K∗,I C K>∗,I, with I = {i1, . . . , im}. The canonical choice for C is C =W+, where W =KI,I, and W+ denotes the
Moore-Penrose pseudoinverse of W . The resulting approximation

K ≈ K∗,IW+K>∗,I,

is known as the Nyström approximation.

Local and Hierarchical Low Rank Methods

(a) (b) (c)
Figure: (a) In a simple blocked low rank approximation the diagonal blocks are dense (gray), whereas the off-diagonal blocks are low rank. (b) In an HODLR matrix the low rank
off-diagonal blocks form a hierarchical structure leading to a much more compact representation. (c) H2 matrices are a refinement of this idea.(a) In a simple blocked low rank approximation the diagonal blocks are dense (gray), whereas the off-diagonal blocks are
low rank. (b) In an HODLR matrix the low rank off-diagonal blocks form a hierarchical structure leading to a much more
compact representation. (c) H2 matrices are a refinement of this idea.

Multiresolution Kernel Approximation (MKA)

MKA is a data adapted multiscale kernel matrix approximation method, which reflects the “distant clusters only interact in
a low rank fashion” insight of the fast multipole method. We have the following two definitions:
I We say that a matrix H is c–core-diagonal if Hi ,j = 0 unless either i , j ≤ c or i = j .
I A c–core-diagonal compression of a symmetric matrix A∈Rm×m is an approximation of the form

A ≈ Q>H Q = q>1 . . . q
>
L︸ ︷︷ ︸

Q>

H qL . . . q1︸ ︷︷ ︸
Q

= ( ) ( ) ( ) ,

where Q is orthogonal and H is c–core-diagonal.

Application to GPs

The direct way of applying MKA to speed up GP regression is simply using it to approximate the augmented kernel matrix
K ′ = (K +σ2I) and then inverting this approximation. Note that the resulting K̃ ′−1 never needs to be evaluated fully, in
matrix form. Instead, the matrix-vector product K̃ ′−1y can be computed in “matrix-free” form.
Assuming that the testing set {x1, . . . , xp} is known at training time, however, we can take an alternative approach,
whereby instead of approximating K or K ′, we compute the MKA approximation of the joint train/test kernel matrix

K =

(
K K∗

K>∗ Ktest

)
where

Ki ,j = k(xi, xj) + σ2

[K∗]i ,j = k(xi, x ′j )
[Ktest]i ,j = k(x ′i , x

′
j ).

Writing K−1 in blocked form

K̃−1 =

(
A B
C D

)
,

and taking the Schur complement of D now recovers an alternative approximation K−1 := A− BD−1C to K−1 which is
consistent with the off-diagonal block K ∗ leading to our final MKA–GP formula f̂ = K>∗ K−1y , where f̂ = (̂f (x ′1), . . . , f̂ (x

′
p))
>.

While conceptuall this is somewhat more involved than naively estimating K ′, assuming p � n, the cost of inverting D is
negligible, and the overall serial complexity of the algorithm remains (n + p)2.

Simulation: 1D Toy Data

Figure 1: Snelson’s 1D example: ground truth (black circles); prediction mean (solid line curves); one standard deviation in
prediction uncertainty (dashed line curves).
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Experiments on Real Data

Table 1: Regression Results with k to be # pseudo-inputs/dcore : SMSE(MNLP)
Method k Full SOR FITC PITC MEKA MKA
housing 16 0.36(−0.32) 0.93(−0.03) 0.91(−0.04) 0.96(−0.02) 0.85(−0.08) 0.52(−0.32)
rupture 16 0.17(−0.89) 0.94(−0.04) 0.96(−0.04) 0.93(−0.05) 0.46(−0.18) 0.32(−0.54)
wine 32 0.59(−0.33) 0.86(−0.07) 0.84(−0.03) 0.87(−0.07) 0.97(−0.12) 0.70(−0.23)
pageblocks 32 0.44(−1.10) 0.86(−0.57) 0.81(−0.78) 0.86(−0.72) 0.96(−0.10) 0.63(−0.85)
compAct 32 0.58(−0.66) 0.88(−0.13) 0.91(−0.08) 0.88(−0.14) 0.75(−0.21) 0.60(−0.32)
pendigit 64 0.15(−0.73) 0.65(−0.19) 0.70(−0.17) 0.71(−0.17) 0.53(−0.29) 0.30(−0.42)

Figure 2: SMSE and MNLP as a function of the number of pseudo-inputs/dcore on two datasets. In the given range MKA
clearly outperforms the other methods in both error measures.
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Across the range of pseudo-inputs/dcore size considered, MKA’s performance is robust to dcore, while low-rank based
methods’ performance changes rapidly, which shows MKA’s ability to achieve good regression results even with a crucial
compression level.

Conclusions

I Whether a learning problem is low rank or not depends on the nature of the data rather than just the spectral properties
of the kernel matrix.

I MKA allows fast direct calculations of the inverse of the kernel matrix and its determinant, which are almost always the
computational bottlenecks in GP problems.
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