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» Gaussian process regression generally does not scale to beyond a few thousands data points without applying some MKA is a data adapted multiscale kernel matrix approximation method, which reflects the “distant clusters only interact in Table 1: Regression Results with k to be # pseudo-inputs/dyore : SMSE(MNLP)
sort of kernel approximation method. a low rank fashion” Insight of the fast multipole method. We have the foIIowing two definitions: Method k Full SOR FITC PITC MEKA MKA
~ Most approximations focus on the high eigenvalue part of the spectrum of the kernel matrix, K, which leads to bad ~ We say that a matrix H is c-core-diagonal if H;;=0 unless elt?s;/‘,/ scori=/J. housing 16 0.36(—0.32) 0.93(—0.03) 0.91(—0.04) 0.96(—0.02) 0.85(—0.08) 0.52(—0.32)
performance when the length scale of the kernel is small. > A c—core-diagonal compression of a symmetric matrix A€ R™"" is an approximation of the form rupture 16 0.17(—0.89) 0.94(—0.04) 0.96(—0.04) 0.93(—0.05) 0.46(—0.18) 0.32(—0.54)
» We introduce Multiresolution Kernel Approximation (MKA), the first true broad bandwidth kernel approximation AQHQ=q/..qHa...q=(m)(=)(m). wine 32 0.59(—0.33) 0.86(—0.07) 0.84(—0.03) 0.87(—0.07) 0.97(—0.12) 0.70(—0.23)
algorithm. | | | QT Q pageblocks 32 0.44(—1.10) 0.86(—0.57) 0.81(—0.78) 0.86(—0.72) 0.96(—0.10) 0.63(—0.85)
» MKA is memory efficient, and a direct method, which means that it also makes it easy to approximate K~ and det(K). where Q Is orthogonal and H is c—core-diagonal. compAct 32 0.58(—0.66) 0.88(—0.13) 0.91(—0.08) 0.88(—0.14) 0.75(—0.21) 0.60(—0.32)
pendigit 64 0.15(—0.73) 0.65(—0.19) 0.70(—0.17) 0.71(—0.17) 0.53(—0.29) 0.30(—0.42)

Application to GPs

The direct way of applying MKA to speed up GP regression is simply using it to approximate the augmented kernel matrix
K’ = (K +0?l) and then inverting this approximation. Note that the resulting K’~! never needs to be evaluated fully, in
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Figure 2: SMSE and MNLP as a function of the number of pseudo-inputs/d.qre 0N two datasets. In the given range MKA

» Gaussian Processes (GPs) are a generalization of multivariate Gaussian distributions to the case when the underlying clearly outperiorms the other methods In both error measures.

variables form a continuum indexed by some set X.
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. . . . . . , "y matrix form. Instead, the matrix-vector product K'~'y can be computed in “matrix-free” form. ~ o R Sy = E=<g [ ]
» A GP is fully specified by its mean function p(x), and covariance function k(x, x’), where k can be any positive . . . L . ~ = S< L o 5R NG TN =3 soR
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» Given training data {(x1, y1), ..., (Xn, ¥n)}, the model is y; = f(x;) + ¢, where e ~ N (0, 0%) and o< is a noise parameter. 5 W K
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where kyx = (k(x, X1),...,K(X,Xn)), Y=(W1,...,¥n), K is the Gram matrix or kernel matrix with elements K;; = k(x;, X;), [Kiestlij = k(X;, X;), = e
and covariance . Writing X~ in blocked form = e
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and taking the Schur complement of D now recovers an alternative approximation K~' := A— BD~'C to K~' which is
consistent with the off-diagonal block K* leading to our final MKA—-GP formula f= K'K= 'y, where f= (f( X1), - f(x/g))T.
While conceptuall this is somewhat more involved than naively estimating K’, assuming p < n, the cost of inverting Dis
negligible, and the overall serial complexity of the algorithm remains (n + p)2.

Global Low Rank Methods

Mathematically,
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,X;_} is a subset of the original point set {xi, ...

Simulation: 1D Toy Data

Assuming that {Xi,... , Xn}, amounts to an approximation of the form

K~ K. ,CK,, with | = {i, ..., in}. The canonical choice for Cis C= W™, where W = K;;, and W* denotes the | | | . o L Log. # pseudo-inputs Log, # pseudo-inputs Log, # pseudo-inputs Log, # pseudo-inputs
Moore-Penrose pseudoinverse of W. The resulting approximation Figure 1: Snelson’s 1D example: ground truth (black circles); prediction mean (solid line curves); one standard deviation in ? compAct compAct pendigit pendigit
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(a) (b) (C) * s W . | ‘, n | » Whether a learning problem is low rank or not depends on the nature of the data rather than just the spectral properties
. L . . b o =y, o AHW of the kernel matrix.
(@) In a simple blocked low rank approximation the diagonal blocks are dense (gray), whereas the ofi-diagonal blocks are Y LT 3 MKA allows fast direct calculations of the inverse of the kernel matrix and its determinant, which are almost always the
low rank. (b) In an HODLR matrix the low rank off-diagonal blocks form a hierarchical structure leading to a much more T, ’ ’ g - at Oti Sn ellsbottlenecks Ili] GP broblems ! y
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