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Abstract
Self-adjusting computation provides an evaluation model where
computations can respond automatically to modifications to their
data by using a mechanism for propagating modifications through
the computation. Current approaches to self-adjusting computation
guarantee correctness by recording dependencies in a trace at the
granularity of individual memory operations. Tracing at the granu-
larity of memory operations, however, has some limitations: it can
be asymptotically inefficient (e.g., compared to optimal solutions)
because it cannot take advantage of problem-specific structure, it
requires keeping a large computation trace (often proportional to
the runtime of the program on the current input), and it introduces
moderately large constant factors in practice.

In this paper, we extend dependence-tracing to work at the gran-
ularity of the query and update operations of arbitrary (abstract)
data types, instead of just reads and writes on memory cells. This
can significantly reduce the number of dependencies that need to
be kept in the trace and followed during an update. We define an
interface for supporting a traceable version of a data type, which
reports the earliest query that depends on (is changed by) revis-
ing operations back in time, and implement several such structures,
including priority queues, queues, dictionaries, and counters. We
develop a semantics for tracing, extend an existing self-adjusting
language, ∆ML, and its implementation to support traceable data
types, and present an experimental evaluation by considering a
number of benchmarks. Our experiments show dramatic improve-
ments on space and time, sometimes by as much as two orders of
magnitude.

Categories and Subject Descriptors D.3.0 [Programming Lan-
guages]: General; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms Languages
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1. Introduction

Many applications must process data that changes, sometimes con-
tinuously, over time possibly with small changes at each step. For
example, a traffic controller needs to update a traffic map after an
accident blocks a road segment, a robot may need to update its
motion plan after encountering a new obstacle, a theorem prover
may need to update its conclusions after discovering a new fact,
or a blood-flow simulator must compute properties of molecules
that move continuously over time. In these and similar applica-
tions, small or continuous changes to data often cause only small
updates to the output, making it possible to respond to dynamically-
changing data more efficiently than re-computing the output from
scratch, often asymptotically. To exploit this potential, one can de-
velop so called “dynamic” of “kinetic” algorithms that are opti-
mized to deal with particular forms of changing input. Indeed, there
has been significant progress on such algorithms (e.g., [7, 11, 14]).
Designing and implementing these algorithms turns out to be quite
difficult even for problems that are simple in the absence of data
changes, such as many of the simple graph and computational ge-
ometry algorithms. All too often, when such algorithms exist, they
are quite complex and difficult to implement.

Alternatively, the programming languages community has de-
veloped techniques that automate or mostly automate the process of
translating an implementation of an algorithm for fixed input into
a version for changing input (e.g., [12, 15, 23]) by storing certain
trace information during the computation. A recent approach based
on a combination of dynamic dependence graphs [2] and memoiza-
tion has been used to develop asymptotically efficient versions of a
reasonably broad set of problems [5, 25]. This approach, called self-
adjusting computation (SAC), generates a computation dependence
graph while running the program on the initial data, and stores infor-
mation at each node of the graph representing the code that needs
to be rerun if its input changes. A change-propagation algorithm
propagates any input changes through this graph, updating the parts
of the graph and the output that depend on them. Memoization al-
lows the algorithm to reuse portions of the graph during propaga-
tion. The time taken by change-propagation depends on how stable
the computation trace is with respect to changes in input [20]. Re-
cent work shows that self-adjusting computation and its variants
can be supported by extending existing languages, such as C [16],
Java [25], and Standard ML [19].

To achieve automatic and correct updates under data modifica-
tions, existing self-adjusting computation techniques trace depen-
dencies at the (memory) cell level by recording memory operations.
Although very flexible, this fine-grained approach to tracing has
some performance problems, both in terms of time and space. First,
it creates a considerable time overhead, slowing down essentially
every memory operation. Second, it requires significant memory
space for storing fine-grained dependence information. Third, when
implementing data types using the approach, updates can cause
many changes internal to the data type implementation, even when



the changes that propagate to the interface are small—i.e., the com-
putation can be stable with respect to operations of the data type,
but not stable with respect to individual cell accesses—ultimately
causing sub-optimal updates. An example of this third problem is in
maintaining a priority queue, where inserting a single element can
require linear time for change-propagation at the cell level even if
it only creates a single change (an additional insert operation) at
the interface level. Many algorithms that use a priority queue will
suffer from this problem.

In this paper, we extend the tracing of dependencies to support
the query and update operations of arbitrary (abstract) data types,
instead of just the reads and writes of a cell. For many applications,
this asymptotically reduces the number of dependencies that are
traced, reducing memory and time overhead, and for some it can
speed up change propagation dramatically by making them more
stable. This extension involves developing traceable versions of
any data type that needs its dependencies to be traced directly,
and adapting the change-propagation algorithm to handle the more
general dependence tracing. The change propagation algorithm
itself remains insensitive to the specifics of the data structures,
which we achieve by providing a unified interface for all traceable
data types. From the perspective of a user who is implementing self-
adjusting programs, the changes to the code are minimal: all this
requires is to substitute a different library or implementation for
the data type. In addition to improving performance, the approach
can also greatly simplify the analysis of stability since the user
need only consider the operations on the data type instead of all the
memory accesses inside of it. In Section 2, we explain the problem
of tracing dependencies at the memory cell level in more detail,
give an overview of our approach, and present algorithms that use
traceable data types.

We define a relatively simple interface that one must implement
to support a traceable data type (TDT) (Section 3). It is based
on maintaining an operation trace for each instance and allowing
any operation of the standard data type to be invoked or revoked
anywhere in the trace. Such revisions must return a pointer to
the earliest following query in the trace made inconsistent by the
revision, if any. Implementations of TDTs do not need to be aware
of the change-propagation algorithm beyond the interface. We have
implemented traceable versions of several data types, including
queues, priority queues, dictionaries, and accumulators (Section
3.1). We note that we do not expect that new data types would be
implemented very often.

To support traceable data types uniformly, we modify change
propagation in some relatively small but subtle ways. First, instead
of storing closures with just the read operations on each cell, we
store a closure for each query on TDTs. In fact, we treat cells as a
TDT instance with read and write operations, and refer to them
as modifiable references. Second, as with standard change prop-
agation, during execution we keep a time-ordered priority queue
of inconsistent queries (reads), but instead of tracking all incon-
sistencies for all TDT instances, we only keep the earliest incon-
sistency for each instance. This is critical for efficiently handling
certain data types (Section 3). We present a formal self-adjusting
core calculus that is extensible by arbitrary TDTs (Section 4). We
present a static and dynamic semantics for the core calculus, in-
cluding change propagation for traceable data types. A key com-
ponent of the calculus is the open-endedness of the tracing and
change-propagation semantics to support arbitrary traceable data
types, without knowledge of how they are implemented.

We assess the effectiveness of the approach by extending the
∆ML language [19, 20] to support TDTs, and implementing a num-
ber of benchmarks, including heap sort, Dijkstra’s shortest path al-
gorithm, breadth-first search on graphs, Huffman coding, and inter-
val stabbing (Section 6). An interesting property of TDTs is that
they enable operating efficiently on certain continuously varying

values such as “time”. Taking advantage of this property, we im-
plement a library for algorithmic motion simulation that enables
performing motion simulation with self-adjusting programs by ap-
propriately changing the “time” (Section 7). Specifically, we con-
sider an algorithm for computing convex hulls in 3D making it pos-
sible to safely implement motion simulation without requiring un-
safe manipulation of the internals of the run-time system to ensure
efficiency as in previous work [4].

Using these benchmarks, we perform an experimental evalua-
tion of the proposed approach (Section 6). The experiments show
substantial time and space improvements. Even on moderate input
sizes, the improvements range between a factor of 3 and 20 reduc-
tion in from-scratch running time, between a factor of 4 and 50
reduction in space, and between a factor of 4 and 5, 000 reduction
in update time compared to the version using only modifiable refer-
ences (memory cells).

2. Overview
We motivate traceable data types, overview their structure, and
consider some examples in the ∆ML language.

2.1 Motivation

Consider a priority queue whose signature is shown in Figure 1.
The priority queue provides a new operation that takes a compari-
son function on keys returns an empty priority queue, an insert
function for inserting a key and a value into a priority queue, and a
delMin function for removing the element with the minimum pri-
ority. Consider a program that uses this priority queue data struc-
ture. Using existing self-adjusting computation techniques (e.g.,
[16, 20]), we can write a self-adjusting version of priority queues
and the program.

A self-adjusting program responds interactively to modifica-
tions to its input data. To achieve this, as the program executes,
the run-time system constructs a trace of the execution. A change-
propagation algorithm uses this trace to update the output when
the input is modified. In existing self-adjusting computation tech-
niques, the trace will be constructed by recording operations on
so called modifiable references (modifiables for short) that hold
changeable data, i.e., data that can change over time. For exam-
ple, to make a heap data structure (a priority queue) self-adjusting,
the child pointers of each heap node can be replaced by modifi-
ables. Languages such as ∆ML [19, 20] make this transformation
relatively straightforward.

By placing data in modifiables, it is possible for a program to
respond to input changes efficiently. Although relatively straight-
forward, this approach suffers from several limitations. First, the
execution is traced at a fine granularity constructing a relatively
large trace, typically asymptotically as large as the running time of
the program. Second, by tracing every operation on a modifiable,
the program is slowed down significantly by introducing reason-
ably large overheads. Third, our response times could suffer be-
cause change-propagation can spend significant time maintaining
the fine-grain dependence information recorded in the trace.

As a concrete example, consider a self-adjusting version of a
heap data structure where each child pointer is placed in a mod-
ifiable. The trace would record every access to the child pointer,
contributing significantly to the size of the program trace. Since
the work performed after each child access is essentially a com-
parison between priorities (keys) and thus relatively small, trac-
ing would slow down the computation significantly. Interestingly,
dependence-tracing at the level of modifiables can also result in
sub-optimal update performance with change-propagation. To see
this we will need to look further into the structure of the trace. As
an example, we consider a worst-case scenario.

Consider a self-adjusting program P that takes as input an in-
teger list, creates an empty queue and inserts the first element of



signature PRIORITY QUEUE = sig

type (’k,’v) t

val new: (’k * ’k -> order) -> (’k,’v) t

val insert: (’k,’v) t * ’k * ’v -> unit

val delMin: (’k,’v) t -> (’k * ’v) option

end

Figure 1. The signature for priority queues.

signature PRIORITY QUEUE TRACEABLE = sig

type (’k,’v) t

val new: (’k * ’k -> order) -> (’k,’v) t

val invoke insert: ts * ((’k,’v) t * ’k * ’v) -> ts option * unit

val revoke insert: ts -> ts option

val invoke delMin: ts * (’k,’v) t -> ts option * (’k * ’v) option

val revoke delMin: ts -> ts option

end

Figure 2. The signature for traceable priority queues.

[new () ⇒ Q] [a → Q] [1 → Q] 〈1, a〉 [Q → 1] [2 → Q] 〈2, a〉 [Q → 2] [3 → Q] 〈3, a〉 [Q → 3] · · · [n → Q] 〈n, a〉 [Q → n]

· · ·

[new () ⇒ Q] [b → Q] [1 → Q] 〈1, b〉 [Q → 1] [2 → Q] 〈2, b〉 [Q → 2] [3 → Q] 〈3, b〉 [Q → 3] · · · [n → Q] 〈n, b〉 [Q → n]

[new () ⇒ Q] [a → Q] [1 → Q] [Q → 1] [2 → Q] [Q → 2] [3 → Q] [Q → 3] · · · [n → Q] [Q → n]

· · ·

[new () ⇒ Q] [b → Q] [1 → Q] [Q → 1] [2 → Q] [Q → 2] [3 → Q] [Q → 3] · · · [n → Q] [Q → n]

Figure 3. Two pairs of traces of a hypothetical program P at the level of queue operations and comparisons (top) and at the level of abstract
queue operations (bottom). Each pair corresponds to a run of P with inputs [a, 1, 2, . . . , n] and [b, 1, 2, . . . , n].

the list into the priority queue. Starting with the second element,
the program then inserts each element into the priority queue us-
ing the element both as a priority and as a value and removes the
minimum element by performing a delMin. Assume that the pri-
ority queue is implemented via conventional self-adjusting compu-
tation techniques requiring the tracing of every comparison. Fig-
ure 3 (top) shows the traces (represented abstractly) for an execu-
tion of P with the input [a, 1, 2, . . . , n] and [b, 1, 2, . . . , n], where
a, b > n and a != b. We write [i → Q] for an instance of the op-
eration insert(Q, i, i), [Q → i] for an instance of the operation
delMin(Q) that returns i as the minimum priority, and 〈i, j〉 for a
comparison of the keys i and j. Now comparing the two traces, note
that every comparison in the first trace has the form 〈i, a〉 and ev-
ery comparison in the second trace has the form 〈i, b〉 (1 ≤ i ≤ n)
and no two comparisons match—the difference between the two
traces is Θ(n). In the figure, we use and to indicate the oper-
ations of the trace that match and that do not match (respectively).
Consequently, starting with the first input running the program P ,
changing the input by replacing a by b, and performing change-
propagation would require at least linear time to update the output
(a more precise account of the relationship between the trace dis-
tances and change-propagation can be found elsewhere [20]).

This argument extends to any priority queue data structure,
because every time a new key i is inserted, the priority queue
contains only the element with the largest key, either a or b and
thus a comparison with i must be performed to determine the
minimum priority required by the next operation. It is thus not
possible to use change-propagation based on conventional self-
adjusting computation to update the output in less than linear time.
Fortunately, there is great potential for improvement. To see this
suppose that we record just the priority queue operations in the
trace and not the comparisons. As shown in Figure 3 (bottom), the
traces of the two runs of P are very similar; they differ in only one
operation.

The example shows that if we can record dependencies at the
level of priority queue operations instead of the internal compar-
isons performed by the priority queue operations, then the trace is
smaller and there are fewer differences between the computations,

and thus change-propagation can be performed more efficiently.
This is the main idea behind traceable data types. As we discuss
in Section 6 both the improvements in the size of the trace and the
update time can be asymptotic. Challenges to realizing traceable
data types include the question of whether it is possible to design
and implement them efficiently, whether they can be made to work
with change-propagation so that programs can still respond auto-
matically to modifications to their data, and whether they can be
supported naturally without requiring a cumbersome interface.

2.2 Traceable Data Types

A traceable data type (TDT) permits tracing dependencies at the
level of its operations rather than memory cells. For an abstract data
type, a traceable version of the data type provides an analogous op-
eration to initialize the data type and two versions, called invoke
and revoke, for each of the remaining operations. These operations
essentially allow revisions to the sequence of operations performed
on a data structure by inserting new operations (via invoke) and
deleting existing operations (via revoke). To enable efficient revi-
sions, TDTs maintain an internal operation trace of the operations
performed labelled with their timestamp (of type ts).

If the abstract data type has an operation op: α -> β, the
traceable version has the operations

invoke op: ts * α -> ts option * β
revoke op: ts -> ts option

These operations revise the operation trace by inserting a new
op operation at a given timestamp (invoke op) and by removing
an op operation at a given timestamp from the operation trace
(revoke op). Both the invoke and revoke operations return an
optional timestamp corresponding to the next operation, if any, that
has been invalidated by the revision. As an example, Figure 2 shows
the signature for the traceable priority queue.

To enable change-propagation, invoke and revoke operations
identify the first operation of the trace made inconsistent by the
revision by returning the timestamp for that operation. We call an
operation inconsistent if its return value changes after the revision.
Suppose for example that we perform the operations



insert(pq,3,3), insert(pq,2,2), insert(pq,1,1),
delMin(pq), delMin(pq), delMin(pq).

The delMin operations will return the values 1, 2, 3 in sorted or-
der. If we now revoke insert (pq,1), the first delMin opera-
tion will be the earliest affected operation and thus its timestamp
be returned by this revision. Note that in fact all other delMin oper-
ations are inconsistent. In Section 3 we define traceable data types
more precisely, consider several examples, and describe how they
can be implemented efficiently. In Section 4 we present an extensi-
ble semantics for integrating TDTs into a self-adjusting language
including change-propagation.

The proposed interface with invoke and revoke operations are
significantly more cumbersome to use than the standard data types.
Fortunately, these operations need not be used by the programmer
at all. In fact, it is possible to present a “user-level” interface for
traceable data types that is essentially the same as the standard
version. We describe how to achieve this in the context of the ∆ML
language.

2.3 ∆ML with Traceable Data Types

The ∆ML language extends Standard ML (SML) with support for
self-adjusting computation. The principal extensions to SML are
modifiable references which are ML-style references with support
for dependence-tracing, adaptive functions that help identify oppor-
tunities for computation reuse, and a change-propagation mecha-
nism for updating computations and outputs. In ∆ML, after a self-
adjusting program executes, the contents of the input modifiables
may be modified and the output can be updated by calling change-
propagation. To support efficient compilation and updates, ∆ML
offers two kinds of function spaces: conventional functions of type
α->β and adaptive functions of type α-$>β. Application of adap-
tive function f to argument a is written f$a. Adaptive functions,
defined by keywords afun and mfun, can be either non-memoized
or memoized (respectively), and can call conventional function as
well as adaptive functions. Conventional functions are not permit-
ted to call adaptive functions.1

Consider a program that uses some (standard) data type, e.g.,
a priority queue, and suppose that we have a traceable version of
that data type. To enable the user to operate on the traceable data
types in the same way as the standard data types, we provide a
user-level interface to the data type that essentially matches the
standard interface with the exception of requiring each operation to
be an adaptive function. More specifically, each operation of type
α->β becomes α-$>β. For example, the user-level interface for
the traceable priority queue would be:

signature PRIORITY QUEUE TDT USER = sig

type (’k,’v) t

val new: (’k * ’k -> order) -$> (’k,’v) t

val insert: (’k,’v) t * ’k * ’v -$> unit

val delMin: (’k,’v) t -$> (’k * ’v) option

end

Given a program using the user-level interface to traceable data
types, our (extended) ∆ML compiler can translate the program to
use the corresponding invoke and revoke operations and integrate
them with change-propagation. To this end, the compiler generates
the necessary code for tracing the invoke and revoke operations and
for finding and re-executing them when necessary during change-
propagation. For example, we can compile some program that uses
the above interface to traceable priority queues shown in Figure 2.

1 Each self-adjusting program has a single entry point which itself is an
adaptive function.

structure PQ : PRIORITY QUEUE TDT USER

afun heapsort (compare, l) =

let

val heap = PQ.new $ compare

afun insert x = PQ.insert $ (heap, x, ())

mfun loop m =

case m of

NONE => NIL

| SOME (k, ()) =>

let val t = loop $ (PQ.deleteMin $ heap)

in CONS(k, put $ t) end

in

(List.app insert $ l;

put $ (loop $ (PQ.deleteMin $ heap)))

end

Figure 4. Code for heap sort in ∆ML.

2.4 Example: Heap Sort

As an example of how a traceable data type can be used in a
user program, we consider a ∆ML implementation of heap sort
as shown in Figure 4. The algorithm first allocates an empty prior-
ity queue and inserts all the keys in its input to the priority queue
(with unit payload). It then constructs the sorted output by repeat-
edly removing the minimum element until the queue is empty and
returning them in a list. This algorithm has several notable features:
First, it has an optimal O(n log n) running time. Second, but most
importantly, it is highly stable under small modifications to its in-
put when the trace is at the granularity of priority queue operations.
Thus, with traceable priority queues, we can obtain an efficient self-
adjusting sorter (our experiments in Section 6 confirms that the al-
gorithm performs well in practice).

Finally, the self-adjusting version in ∆ML only differs from the
standard SML implementation in the underlined code fragments
(also highlighted in red) and the use of the user-level traceable
priority queue. The only major differences are the use of modifiable
lists where the tail of each cell is placed in a modifiable, and that the
priority queue functions have the adaptive function type. We define
loop as a memoized function as it performs non-constant work.

This example provides evidence that programming with TDTs
requires little modifications to existing code. Note also that in-
stead of using a traceable priority queue, we could also use a self-
adjusting version of a priority queue that has the same interface
(e.g., a heap or a treap implemented using modifiables). As dis-
cussed in Section 2.1 and further in Section 6, such modifiable-
based implementations, however, perform significantly worse.

2.5 Example: Dijkstra’s Algorithm

As another example, we consider Dijkstra’s algorithm for comput-
ing single-source shortest-paths, whose ∆ML code is shown in Fig-
ure 5. The code strongly resembles the SML implementation: drop-
ping the underlined text yields the SML code. We omit some details
to focus attention on the aspects relevant to our interest here. Dijk-
stra’s algorithm takes a graph and a root node and finds the shortest-
path distance from the root to every node in the graph. We represent
the input graph as a dictionary of nodes (t graph), mapping each
node to the list of its neighbors along with the edge weights. Sim-
ilarly, we represent the output as a dictionary of nodes (dict sp),
mapping each node to its distance to the root. The key idea in the al-
gorithm is to maintain a set of explored vertices and their distances
to the root and expand this set iteratively. For this purpose, we main-
tain a priority queue (pq v) of visited vertices and their current dis-
tances. The algorithm starts by inserting the root into the priority
queue with distance 0. It then repeatedly visits the vertices in the
order of their current distance by calling the function loop. Given



structure Dict : DICTIONARY = struct ... end

structure PQ : PRIORITY QUEUE TDT USER

structure List : LIST = struct ... end

type t node = ...

type t dist = ...

type t graph = (t node, (t node * t dist) List.t) Dict.t

afun dijkstra (root: t node, graph: t graph) =

let

val dict sp: (t node, t dist) Dict.t = Dict.new $ ()

val pq v: (t dist * t node) PQ.t = PQ.new $ ()

afun visit (u, d:t dist) =

let afun ins (v,w) = PQ.insert $ (pq v, (d + w, v))

in case Dict.lookup $ (graph, u) of

NONE => ()

| SOME ns => List.app ins $ ns

end

mfun loop (u:t node, d:t dist) =

(if (Dict.lookup $ (dict sp, u)) = NONE then

(Dict.insert $ (dict sp, u, d); visit (u,d))

else ();

case PQ.deleteMin $ pq v of

NONE => dict sp

| SOME (d, v) => loop $ (v,d))

in loop $ (root, 0) end

Figure 5. Code for Dijkstra’s algorithm in ∆ML.

a vertex u and its current distance d, the function loop checks if u
is already visited. If so then it continues by removing the next ver-
tex from the priority queue. If not then the exact distance for u is
found; it inserts u into the output (dict sp) and visits it. To visit a
vertex, it traverses each outgoing edge (u, v) by inserting v into the
priority queue with an updated distance. As with the heap sort algo-
rithm, we are able to obtain a self-adjusting version of the algorithm
without modifying its structure, and we can use both a traceable pri-
ority queue or a self-adjusting priority queue implemented by using
modifiables directly (Section 6 compares these implementations).

3. Traceable Data Types
We define an (conventional) abstract data type D as a quadruple
(τ tdt,S ,mk, {op 1, . . ., op n}) consisting of

• a type constructor τ tdt,
• a state constructor S ,
• a creation (make) operation mk, and
• a set of operations op i (1 ≤ i ≤ n).

A specification of a data type is a set of state-transformation rela-
tions, one for each constructor or operation. The state-transformation
relation for the constructor maps a given value v to an initial state

S0, written v
mk→ S0. The state-transformation relations for the other

operations map a state and a given value to another state and an-

other value, e.g., S ; v
op i→ S ′; v′ defines how op i operation with

argument v transforms the state from S to S ′ and yields result v′.
Any data type can, however complex, be specified in this way by
coming up with an appropriate representation for the state and by
specifying the state-transformation function.

To define the traceable version of a data type D=(τ tdt,S ,mk,
{op 1, . . ., op n}), we let T denote a totally ordered set of times-
tamps. We define a operation-trace H for a data type as an initial
state S0 and a sequence [(t1, o1, v1), (t2, o2, v2), . . . , (tn, on, vn)],
where the ti ∈ T, ti < ti+1, and each oi is an operation of the
form op k v′

i that takes some v′
i as an argument to return vi. Let

vD(H, t) be the value returned by performing the sequence of op-

operation: type state-transformation

put : τ → τ modref v
put→ modref v

get : unit → τ modref v; ()
get→ modref v; v

set : τ → unit modref v; v′
set→ modref v′; ()

mod : τ cmp × τ → τ mod (vc , v)
mod→ mod (vc , v)

mget : (τ, τ ′)dis → τ ′ mod (vc , v); vd
mget→ mod (vc , v); v′

pq : unit → (τk , τv)pq ()
pq→ pq 〈〉

ins : τk × τv → unit pq PQ ; (vk , vv )
ins→ pq PQ + (vk , vv ); ()

min : unit → τk × τv pq PQ ; ()
min→ pq PQ − (vk , vv ); (vk , vv )

Table 1. Formal specification of modifiables, modular modifiables,
and priority queues.

erations (o1, o2, . . .) in H up to time t, inclusive. We say that an
element (ti, oi, vi) ∈ H of the operation-trace is inconsistent if
vD(H, ti) != vi. We say that an operation-trace is inconsistent if
any element is inconsistent and consistent otherwise.

For a data type D, the traceable version Dr abstractly maintains
an operation-trace H for each instance and provides the following
operations:

– mk(v) : Returns a new operation-trace H with initial state S0

(where v
mk→ S0) and empty operation sequence.

– invoke(H,o, t) : Computes v = vD(H, t), updates the
operation-trace H by inserting (t, o, v), and returns v and the
time of the earliest inconsistent operation.

– revoke(H, t) : Removes the element with time t from H (if
any) and returns the time of the earliest inconsistent operation.
We refer to invoke and revoke (meta-)operations as revisions

and require them to be applied as part of a revision sequence—a
sequence of revisions on an initially consistent operation-trace such
that (1) the times of the revisions are increasing, and (2) for each
revision at time t, all operation at times before t are consistent.2

It may seem odd that revisions only return the earliest incon-
sistent operation as opposed to all of them. In fact, this suffices
because revision sequences require that the earliest inconsistency
is fixed (revoked and possibly reinvoked) before proceeding to the
next one. Fixing the first inconsistency will then return the next
inconsistent operation, if any. This ability to return inconsistent op-
erations lazily is critical for efficiency because otherwise we would
have to maintain a potentially large sequence of inconsistent op-
erations as some become consistent or others become inconsistent,
and we would not be able to take advantage of subsequent revisions
fixing inconsistencies. For example imagine invoking an additional
insert operation on a priority queue inserting an element with
higher priority than all the others. This will cause all the rest of
operations to become inconsistent. Invoking another deleteMin
operation subsequently, however, would make all operations con-
sistent by removing the newly inserted element.

As we formalize in Section 4, a traceable data type can be used
to support the underlying data type in self-adjusting computation.
This allows a modular way to use new data types without having to
know anything about the change-propagation algorithm itself.

3.1 Examples

We describe the interface of several TDTs. Sample formal specifi-
cations of abstract data type are given in Table 1.

Modifiables. A modifiable provides the functionality an ML-
style reference with type constructor τ modref and state con-
structor modref v where v is a value of type τ . This is what we have

2 Multiple revision sequences can be applied to an operation-trace sequen-
tially, each returning the operation-trace to a consistent state before the next
starts.



informally referred to as memory cells. Modifiable commands in-
clude the creation operation put and manipulation operations get
for dereference and set for update. Table 1 shows the signature
types and state-transformations. Intuitively, creating a modifiable
with contents v and then dereferencing the modifiable multiple
times yields an operation-trace with initial state modref v and oper-
ation sequence [(t1,get (), v), . . . , (tn,get (), v)]. If we change
the initial value to v′ then the initial state becomes modref v′ and the
timestamp t1 identifies the earliest inconsistent operation. Change
propagation can successively reinvoke each revision to obtain the
consistent sequence [(t1,get (), v′), . . . , (tn,get (), v′)].

Modular Modifiables. In some applications the domain of data
may be continuous even when the computation produces a discrete
result, e.g., a program computing the convex hull of a set of mov-
ing points represented combinatorially. In such a case, using mod-
ifiables makes change-propagation sensitive to any change forcing
recomputation even if the result is the same. In many of these cases,
we partition the continuous domain into some discrete number of
sets and consider values equal if they fall into the same set. For
example, we may care only about the sign of a real number. Our
motion simulation benchmarks make critical use of modular modi-
fiables for storing the time variable.

A modular modifiable allows discretizing a totally-ordered con-
tinuous set to avoid recomputation when modifications don’t affect
the discrete outcome. The type of modular modifiables is τ mod
and the state constructor is acc (vc, v), where vc is a comparison
function of type τ cmp(= τ × τ → order) (where order is the
SML order datatype) and v is the value of the modifiable. Modu-
lar modifiables are created by the mod operation and manipulated
by the modular dereferencing operation mget: A modular derefer-
ence takes a discretization argument vd of type (τ, τ ′)dis which is
a (finite) partition of the continuous type τ together with an assign-
ment of values from the discrete type τ ′ to each equivalence class.
Formally, the discretization is represented by a list [c1, . . . , cn] that
partitions τ into intervals and the assignment is a list [d0, . . . , dn]
of τ ′ elements. The result of such a dereference is v′ = di where
the current value of the modular modifiable is ci ≤ v < ci+1.
Due to the structure of the partition, the outcome of a modular
dereference only changes when the value of the modular modifi-
able changes equivalence classes.

Priority Queues. A priority queue with τk priorities and τv val-
ues has type (τk, τv)pq. The state constructor is pq PQ where PQ
is a sequence of pairs 〈(vki, vvi)〉 where entry vvi has priority vki.
Priority queue commands include the creation operation pq and
manipulation operation ins for inserting an element vv with pri-
ority vk and min for deleting the element with lowest priority:
where PQ + (vk, vv) adds the element vv with priority vk , and
PQ − (vk, vv) removes the element vv with highest priority vk .

Accumulator Modifiables. An accumulator modifiable provides
efficient change-propagation for adding elements from a commuta-
tive group and querying the total. The query must come after all
updates. Adding to a (regular) modifiable-based accumulator in-
volves fetching the current value of the accumulator and storing
the updated sum, which makes the operation sensitive to the cur-
rent partial sum and thus change-propagation may take linear time
in the number of additions. An accumulator modifiable provides a
primitive addition operation that is not sensitive to the intermedi-
ate sums and can change-propagate in constant time by using the
group’s inverse operation to update the result of querying a total.

Queues and Dictionaries. In addition to the above examples,
traceable versions of many other data structures can be specified
by giving their state-transformations functions. We have also for-
mulated and implemented traceable first-in-first-out queues and un-
ordered dictionaries.

3.2 Implementing Traceable Data Types

We briefly describe how to implement the traceable version of the
data types described in the previous subsection. In the context of
this paper, these descriptions indicate how to implement functions
for signatures such as one in Figure 2. A more complete description
of the data types and how to implement others can be found else-
where [3]. The basic idea behind the implementations is to keep
an augmented version of the operation trace. In particular, most
of our structures maintain a data structure for the trace that is or-
dered by timestamps and supports insert(T, v, t) (insert v at time t),
delete(T, t) (delete the element at time t), findPrev(T, t) (returns
the greatest element in T that is less that t) and findNext(T, t). For
a trace with n entries, all these can be implemented in O(log n)
time using balanced trees. Some of our traceable data types also
maintain balanced trees ordered by keys (e.g., the priority queue,
and modular modifiables).

We first consider the traceable implementation of a modifiable
(a read/write cell). Our implementation maintains a time-ordered
sequence of operations. Each operation is tagged with the value it
has read or written. To invoke a get (read) or put (write) at time
t, we insert the operation into the trace data structure at t. If the
operation is a get, then we also use findPrev(T, t) to access the
value returned by the read—the previous element in the trace might
either be a get or put, but both types of operation are stored with
values. Note that a revision sequence requires that all operations
before time t are consistent; therefore, the value of this previous
element contains the correct value for time t. To revoke a get or
put at time t, we simply delete the operation from the trace. For all
revisions (invokes or revokes) we can use findNext(T, t) to return
the earliest inconsistent operation, if any. In particular, if the next
operation is a get and has a different value, then it is inconsistent
and is returned, otherwise nothing is returned. All operations on a
trace with n elements take O(log n) time.

The implementation of dictionaries is based on modifiables as
described in the previous paragraph. Basically, we create a standard
hash table, where each entry in the table is a modifiable with its
own trace. The first time an operation is invoked on a particular
key k, we create a new modifiable for that key with its own trace—
we refer to this as mk. Any insert of a key-value pair (k, v) into
the dictionary at time t will correspond to a put of value v into
mk at t. Any delete of a key k from the dictionary at time t will
correspond to a put of value ∅ into mk at t, where ∅ is a special
value indicating that the dictionary has no entry at that key. Any
search of a key k at time t corresponds to a get mk at t. Finally, if
a revoke of an operation on key k removes the last operation from
the trace of mk, then we can delete mk from the dictionary (this
avoids a memory leak).

The implementation of priority queues is beyond the scope of
this paper, but we note that it can be done with two balanced
trees one ordered by time for the trace and the other by key. In
addition, during an update sequence, the implementation maintains
two additional balanced trees, one for insertions invoked during
the current update sequence and the other for insertions revoked
during the sequence. All operations take O(log n) time. A modular
modifiable is implemented by keeping all the boundary elements ci

for all mget operations on a modular modifiable m sorted by their
ordering. We call this Sm. Invoking or revoking a mget operation
on m corresponds to inserting or deleting the partitioning elements
from Sm. Changing the initial value will identify all partitions
that are crossed by the change of value and return the earliest as
inconsistent. An accumulator modifiable is implemented simply by
“adding” to the sum using the commutative operator on an invoke
and subtracting from the sum on a revoke. For any value other than
the identity, this will return the next read as the earliest inconsistent
operation.



Finally, we use an order-maintenance data structure [13] to
implement time stamps. Simpler alternatives such as using integers,
fixed-precision floating-point numbers do not work because they
do not allow insertions of new timestamps between two adjacent
integers. Arbitrary precision real numbers would work but are not
efficient.

4. The Tgt Language
The ∆ML language (Section 2) is compiled into the Tgt language
by the ∆ML compiler. In this section we present the Tgt language
to show how TDTs can be integrated orthogonally into a language
with intrinsic support for self-adjusting computation.

The Tgt language provides both evaluation to reduce expres-
sions to values and change propagation to adapt computations to
input changes, and is open-ended to extension by any TDT. The
semantics of the Tgt language uses traces to capture the struc-
ture of the computation, which are used by change-propagation to
identify the need for recomputation and the opportunity for com-
putation reuse. The former approach to self-adjusting computation
used trace actions that correspond to individual memory operations.
To support TDTs, the new approach to self-adjusting computation
uses trace actions that correspond to high-level TDT operations.
The invoke and revoke operations of TDTs are used by the seman-
tics of the Tgt language to identify which parts of a computation,
i.e., which actions of the trace, are affected by changes.

The Tgt language is a simply-typed λ-calculus with natural
numbers and recursive functions3, extended with a memoization
primitive and any number of traceable data types (TDTs). The
syntax of Tgt is given by the following grammar, which defines
types τ , expressions e, values v, and adaptive commands κ, using
identifier metavariables f and x.

τ ::= res | nat | τx → τ | τ tdt
e ::= v | caseN vn ez (x .es) | ef vx

v ::= x | zero | succ v | fun f .x .e | " | κ
κ ::= halt v | memo e | mk vmk vk | op vl varg vk

Tgt enforces a continuation-passing style (CPS) discipline to help
identify opportunities for reuse and computations for re-execution.4

The type res is an opaque answer type for continuations, while
halt is a continuation that injects a final value into the res type.
The CPS discipline allows pure computations (e.g., natural num-
bers and recursive functions) to be introduced by values and elim-
inated by expressions, with the caseN scrutinee and function ap-
plication argument restricted to be values. The caseN primitive
case-analyzes a natural number vn and branches to ez or es ac-
cording to whether it is zero or a successor number. The mk and
op primitives correspond to schematic TDT operations with an ex-
plicit continuation vk. The mk primitive creates a TDT initialized
by the seed value vmk, while the op primitive takes the a reference
vl to a TDT and argument value varg.

Since adaptivity identifies the need for recomputation, Tgt pro-
grams use an indirection through the store to manipulate TDTs and
isolate the differences between computations. We take a store σ to
be a finite map from locations ' to TDT state constructors S ; the
notation σ[' *→ S ] denotes the store σ updated with ' mapped to S .
Contexts Γ and Σ, and TDT signatures ∆ are maps from variables,
locations, and TDT commands to types, respectively.

The Tgt language is open-ended to extension by any number
of TDTs. As described in Section 3, a TDT is classified by a
type τ tdt and has a state constructor S . Furthermore, each TDT
extends the language with a creation command mk vmk vk and

3 The Tgt language may easily be extended with products, sums, recursive
types, etc.; we have omitted such constructs as they provide no additional
insight, but are supported by the implementation.
4 Previous work shows how to compile a direct-style language into this
continuation-passing style [19].

any number of manipulation (i.e., queries and updates) commands
op vl varg vk; TDT commands are formulated in CPS with an ex-
plicit continuation vk identifying the computation that follows the
command and manipulation commands take a location argument
vl.

The typing judgement Σ;Γ + e : τ (rules elided) ascribes the
type τ to the expression e in the contexts Γ and Σ. TDT commands
have type res if their arguments match the types prescribed by the
TDT signature. A creation command mk must have an argument
vmk of type τmk and a continuation vk expecting a τ tdt. A
manipulation command op must have a location argument vl of
type τ tdt, an argument varg of type τarg, and its continuation vk

should expect a τres.
Figure 6 gives the evaluation semantics of Tgt. The large-

step evaluation relation Ṫ ;σ; e ⇓E T ′; σ′; v′ (resp. Ṫ ; σ;κ ⇓K

T ′;σ′; v′) reduces the expression e (resp. the adaptive command
κ) under the store σ to the value v′ and the updated store σ′. For
the present time, we suggest that the reader ignore the Ṫ and T ′

components; we discuss them in detail in Section 4.1. The auxil-
iary evaluation relation e ⇓ v′ reduces an expression e to a value
v′; such evaluation is pure and independent of the store.

A mk vmk vk creation command (mk) generates a TDT state
S ′ with seed vmk according to the state-transformation semantics,
extends the store σ with a fresh location ' bound to S ′ , and delivers
' to the continuation vk . An op ' varg vk manipulation command
(op) fetches the TDT state S from the store σ at ', performs the
corresponding state-transformation, updates the store with ' bound
to the new state S ′, and delivers the result vres to the continua-
tion vk. For the present time vmk; Ṫ

mk !⇒ S ′; Ṫ ′ and S ; varg; Ṫ
op !⇒

S ′; vres; Ṫ ′ (discussed in detail in Section 4.1) should be read as the
state-transformation judgements vmk

mk→ S and S ; varg
op→ S ′; vres.

A memoized expression memo e simply evaluates the expres-
sion when evaluated from scratch (memo/miss), but enables the
reuse of computations across runs during change-propagation (Sec-
tion 4.1). The halt v command yields a computation’s final result
value.
4.1 Change Propagation

In order to update a program’s output in response to changes in its
input, a change-propagation mechanism is employed to re-execute
the portions of the computation affected by the changes and to reuse
the unaffected portions. The evaluation relation records information
necessary for change-propagation in a trace T , a sequence of TDT
state and memo actions terminated by a halt action:

As ::= mk
vmk↑!
vk

| op!,varg↓vres
vk !

! ::= |
A ::= As | memoe

T ::= haltv | A·T
Ṫ ::= ◦ | T

The evaluation relation Ṫ ;σ; e ⇓E T ′;σ′; v′ (resp. Ṫ ;σ;κ ⇓K

T ′;σ′; v′) may now be interpreted as reducing the expression e
(resp. the command κ) under the store σ and the (optional) reuse
trace Ṫ , yielding the value v′, the updated store σ′, and the compu-
tation trace T ′ for the current run.

The evaluation of each command extends the computation trace
with the corresponding trace action labeled by the relevant argu-
ments and results. A halt action carries the final result value and a
memo action carries the memoized expression. A creation action
records the seed value, the location allocated, and the continuation.
In order for the semantics to identify the possibility of computation
reuse, each TDT manipulation action records the location accessed,
the argument and result values, and the continuation; the action is
additionally labeled by a checkmark ! to indicate its replayabil-
ity during change-propagation. Furthermore, the dynamic seman-
tics maintains consistency of the reuse trace, i.e., the prefix trace



v ⇓ v

ez ⇓ v

caseNzero ez (x .es) ⇓ v

[vn/x ]es ⇓ v

caseN (succ vn ) ez (x .es) ⇓ v

ef ⇓ fun f .x .e [vx/x ][fun f .x .e/f ]e ⇓ v

ef vx ⇓ v

e ⇓ κ Ṫ ; σ; κ ⇓K T ′; σ′; v′

Ṫ ; σ; e ⇓E T ′; σ′; v′

" /∈ dom σ vmk ; Ṫ
mk !⇒ S ′; Ṫ ′

σl = σ[" +→ S ′] Ṫ ′; σl ; vk " ⇓E T ′; σ′; v′

Ṫ ; σ;mk vmk vk ⇓K mk
vmk↑!
vk

·T ′; σ′; v′
mk

σ(") = S S ; varg ; Ṫ
op !⇒ S ′; vres ; Ṫ ′

σl = σ[" +→ S ′] Ṫ ′; σl ; vk vres ⇓E T ′; σ′; v′

Ṫ ; σ; op " varg vk ⇓K op
!,varg↓vres

vk
·T ′; σ′; v′

op

Ṫ ; σ; e ⇓E T ′; σ′; v′

Ṫ ; σ;memo e ⇓K memoe·T ′; σ′; v′
memo/miss

σ; T ; e
m
" Te Te ; σ ! T ′; σ′; v′

T ; σ; memo e ⇓K memoe·T ′; σ′; v′
memo/hit

Ṫ ; σ;halt v ⇓K haltv; σ; v

Figure 6. Reduction e ⇓ v (top) and evaluation Ṫ ;σ; e ⇓E T ′;σ′; v′ and Ṫ ;σ;κ ⇓K T ′;σ′; v′ (bottom).

of actions with a valid checkmark are replayable by change-
propagation and the earliest (if any) manipulation action with an
invalid checkmark must be re-executed by change-propagation.
The trace reparation and operation invocation judgements (Fig-
ure 7) use the state-transformation rules to maintain trace consis-
tency.

The trace reparation judgement S ; Ṫ
rep !⇒ Ṫ ′ takes a TDT state

S at location ' and an optional reuse trace Ṫ (with possible incon-
sistencies in actions that manipulate ') to produce the consistent
optional trace Ṫ ′. Intuitively, trace reparation identifies the earliest
inconsistent action that manipulates ' and marks it with an invalid
checkmark. A halt action isn’t subject to any repair. Any action
that does not manipulate ' is preserved and the tail of the trace
is recursively repaired (rep/indep). For any action that manipu-
lates ', the state-transformation is simulated on the TDT state S .
If the state-transformation produces the same answer, the action re-
ceives a valid checkmark and the tail of the trace is recursively
repaired with the simulated new TDT state S ′ (rep/ ). Otherwise
the action receives an invalid checkmark and the resulting trace
is consistent (rep/ ).

The invocation judgements vmk; Ṫ
mk !⇒ S ′; Ṫ ′ and S ; varg; Ṫ

op !⇒
S ′; vres; Ṫ

′ use the corresponding state-transformation judgements
for creating and manipulating TDT state. Furthermore, since in-
voking the operation may affect the consistency of actions in the
reuse trace Ṫ (if any) that manipulate location ', the trace repa-
ration judgement is used to maintain the consistency of the reuse
trace (mk/invoke and op/invoke). Hence, the mk and op
evaluation rules use the invocation judgements to perform the state-
transformation and preserve trace consistency; moreover the ma-
nipulation action is labeled by a valid checkmark because it is
consistent with the rest of the execution trace.

The memo/miss rule evaluates a memoization expression
memo e and yields a trace memoe·T ′, where T ′ is the trace of the
evaluation of e. A present reuse trace T is itself a computation trace
from a previous evaluation and is supplied to change-propagation to
guide the update. In particular, evaluation may reuse computations
memoized in the previous evaluation: the memo/hit evaluation
rule uses the memoization judgement σ;T ; e

m
" Te (Figure 8) to

find a reuse trace Te that corresponds to a previous run of e (under
a (possibly) different store) and switches to change-propagating Te

under the current store. Note that while the expression e may have
free locations, the memoization judgement is independent of the
store. Hence, the rule switches to change-propagating Te under the
current store to correct any invalid actions in the reuse trace Te.

The memoization judgement σ;T ; e
m
" Te searches the reuse

trace T for a suffix trace Te that follows a memoization action
memoe; since some actions may be discarded from the reuse trace T ,
the remaining tail of the trace needs to be made consistent relative

to the current store σ. A matching memo action (hit) returns the
tail of the trace for change-propagation. Memo and TDT state
actions can be discarded by proceeding to match the tail of the
trace. Discarding a memo does not affect the consistency of the
trace because it does not touch the store. Discarding a creation
action of location ' or a manipulation action on a location ' that
is not in the store does not affect the consistency of the trace
because the location ceases to be in the store; if the location is
later re-allocated during evaluation (mk), then the reuse trace will
be made consistent by the invocation judgement. A manipulation
action op

!,varg↓vres
vk! on a location ' that is in the store (op/rev)

must be explicitly revoked because it will no longer be performed,
thus the tail of the trace must be repaired relative to the current state
S = σ(').

Turning to the change-propagation relation (Figure 8), recall
that we interpret T ;σ ! T ′;σ′; v′ as replaying the computation
trace T under the store σ, yielding the value v′, the updated store
σ′, and the updated computation trace T ′. Replaying a halt ac-
tion yields the (unchanged) computation result. Replaying a mem-
oization action recursively change-propagates the tail of the trace.
Whenever change-propagation is recursively applied, the updated
computation trace is extended with an appropriate action. A cre-
ation operation mkvmk↑!

vk is consistent with the current store if
' /∈ domσ and can thus be replayed (mk/reuse) by regener-
ating the TDT state S ′ with seed vmk , extending the store with
' bound to S ′, and recursively change-propagating the tail of the
trace. A manipulation operation op!,varg↓vres

vk! is consistent with the
current store if it has a valid checkmark and thus can be replayed
(op/reuse) by reexecuting the state-transformation to yield, by
invariant, the same result vres, updating the store with ' bound to
the new state S ′, and recursively change-propagating the tail of the
trace.

Change-propagation falls back to execution either nondetermin-
istically or because the head action is inconsistent with the current
store and thus not replayable. A creation operation is inconsistent
if the location is already in the store and a manipulation operation
is inconsistent if it has an invalid checkmark. Since actions capture
their continuation, a trace T can be reified back into an command
.T / that represents the rest of the computation:

,haltv- = halt v ,memoe·T - = memo e

,mkvmk↑!
vk ·T - = mk vmk vk ,op!,varg↓vres

vk! ·T - = op " varg vk

Thus, change-propagation can reify and re-evaluate an inconsistent
trace T (change), while keeping the trace T for possible reuse
later. Note that the reified mk (resp. op) command forgets the
(stale) location (resp. result value).

We can now sketch the use of change-propagation by a host pro-
gram that (re-)evaluates a self-adjusting computation. Suppose we
have a Tgt program e such that Σ; · + e : res and an initial store σ0

such that + σ0 : Σ 0 Σ0. Thus, we may (initially) evaluate e under



S ; ◦ rep !⇒ ◦ S ;haltv rep !⇒ haltv

A .= op
!,varg↓vres
vk ! S ; T

rep !⇒ T ′

S ; A·T rep !⇒ A·T ′
rep/indep

vmk
mk→ S ′ S ′; Ṫ

rep !⇒ Ṫ ′

vmk ; Ṫ
mk !⇒ S ′; Ṫ ′

mk/inv

S ; varg
op→ S ′; vres S ′; T

rep !⇒ T ′

S ;op
!,varg↓vres
vk! ·T rep !⇒ op

!,varg↓vres

vk
·T ′

rep/
S ; varg

op→ S ′; v′res v′res .= vres

S ;op
!,varg↓vres
vk! ·T rep !⇒ op

!,varg↓vres

vk
·T

rep/ S ; varg
op→ S ′; vres S ′; Ṫ

rep !⇒ Ṫ ′

S ; varg ; Ṫ
op !⇒ S ′; vres ; Ṫ ′

op/inv

Figure 7. Trace reparation S ; Ṫ
rep !⇒ Ṫ ′ (left) and invocation vmk ; Ṫ

mk !⇒ S ′; Ṫ ′ and S ; varg ; Ṫ
op !⇒ S ′; vres ; Ṫ ′ (right).
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Figure 8. Memoization σ; T ; e
m
" T ′ (top) and change-propagation T ;σ ! T ′;σ′; v′ (bottom).

the store σ0 and an empty reuse trace, yielding the (initial) result
v′
0 and a computation trace T ′

0: ◦; σ0; e ⇓E T ′
0;σ

′
0; v

′
0. Now, sup-

pose we have a modified store σ1 such that + σ1 : Σ 0 Σ1. We are
interested in the result v′

1 yielded by (re-)evaluating e under σ1. To
obtain v′

1, we may change-propagate the trace T ′
0 under the store

σ1: T ′
0;σ1 ! T ′

1;σ
′
1; v

′
1. The correctness of change-propagation

asserts that the v′
1, σ′

1, and T ′
1 obtained via the change-propagation

relation could also have been obtained via the evaluation relation:
◦; σ1; e ⇓E T ′

1; σ
′
1; v

′
1. Hence, change-propagation suffices to de-

termine the output of a program on changed inputs.

5. Extensions to ∆ML

We extended the ∆ML language to support TDTs and imple-
mented a number of traceable data structures (as specified in Sec-
tion 3). The ∆ML language is implemented as an extension to the
MLton compiler and a library for self-adjusting computation imple-
mented in Standard ML. Our extensions to ∆ML consist of some
small modifications to the change-propagation implementation and
a mechanism for integrating TDTs with change propagation. Like
earlier implementations of change propagation, we use a totally
ordered set of timestamps to represent trace elements, which now
include the TDT operations.

Each TDT is implemented as a Standard ML module (see Sec-
tion 3.2) but integrated with the library for self-adjusting compu-
tation through the use of boilerplate code. For each invoke opera-
tion, we create a timestamp, essentially making the operation an el-
ement of the trace. When the change-propagation algorithm deletes
a timestamp, we revoke the operation that is associated with that
timestamp. During change-propagation, trace elements that need
re-evaluation are stored in a queue prioritized by their timestamps,
including the inconsistent operations of all TDTs. Since the set of
inconsistent operations dynamically changes over time as a result
of invokes and revokes, we adjust the priority queue dynamically
to maintain the correct set of inconsistent operations.

Benchmark Data Types Used

hsort-int priority queue
dot-product accumulator
intersection dictionary
huffman priority queue
stabbing priority queue, counter
graham-scan priority queue
dijkstra priority queue, dictionary
bfs queue, dictionary
Motion Simulation modular modifiable

Table 2. Summary of data types used in our benchmarks. Every
self-adjusting program also use the modifiable data type.

6. Experiments
We empirically investigate the performance of the proposed ap-
proach. We use a set of diverse benchmarks to compare the space
usage and time performance of programs using TDTs to that of
programs using standard, modifiable-based implementations. The
results show that traceable data structures significantly help im-
prove speed and reduce memory consumption. To understand the
source of this performance improvement, we study how tracing
at the granularity of data-structuring operations affects the trace
size and stability. Our findings suggest that tracing operations on
data structures helps reduce the trace size and improve stability by
asymptotic factors. In Section 7, we demonstrate the utility of the
proposed approach to motion simulation.

6.1 Benchmarks

We developed a set of benchmark to study the performance char-
acteristics of the proposed approach. Each benchmark is speci-
fied by a static algorithm’s description. Based on this description,
we implemented three versions: (1) a static program (“static”),
(2) a self-adjusting program that does not utilize TDTs (“modref-
based”), and (3) a self-adjusting program that makes use of TDTs
whenever appropriate (“traceable”). In developing the test suite,
we first implemented the static program and transformed it into a



self-adjusting program using approaches taken in previous work.
The traceable version is identical to the modref-based version, ex-
cept the traceable version makes calls to traceable data structures
whereas the modref-based version makes calls to modref-based im-
plementations of data structures. We summarize in Table 6.1 the
data types used in each benchmark.

— Heap sort (hsort-int): sort an integer list using the standard
heap sort algorithm.

— Dot product (dot-product): compute the dot product of two
real-number vectors represented as a list of ordered pairs, by
first computing the product for each component and using an
accumulator to compute the sum.

— List intersection (intersection): compute the intersection of
lists '1 and '2, by inserting the elements of '1 into a dictionary
and selecting the elements of '2 that are present in the dictio-
nary.

— Huffman code (huffman): construct a Huffman tree for a list
of keys and frequencies using the standard Huffman algorithm.

— Interval stabbing (stabbing): take as input a list of intervals
I = {[ai, bi)}n

i=1 and a list of queries Q = {qj}m
j=1, and

report for each query qj how many intervals this query “stabs”
(i.e., the size of the set {(ai, bi) ∈ I : ai ≤ qj < bi}). We
present a plane-sweep algorithm: First, insert into a priority
queue the endpoints of all the intervals and the query values,
known as events, and set initialize a counter c to 0. Then,
to answer queries, consider the events in an increasing order
of their values, incrementing the counter on a left endpoint,
decrementing it on a right endpoint, and outputting the counter
value on a query.

— Graham Scan (graham-scan): compute the convex hull of a
set of points in 2D using the Graham’s scan algorithm (more in
Section 6.8).

— Dijkstra (dijkstra): compute the shortest-path distances in a
weighted graph from a specified source node using Dijkstra’s
algorithm and output a dictionary mapping each node to its
distance to the source.

— Breadth-First Search (bfs): perform a breadth-first search,
which computes the shortest paths in an unweighted graph from
a specified source node and outputs a dictionary mapping each
node to its distance to the source.

6.2 Modref-based Data Structures

We implemented modref-based data structures for every data type
used in the benchmarks. These implementations may not be the
best one can obtain using modifiables alone, but they are reason-
able baselines because we believe they are representative of what
a programmer with significant background in self-adjusting com-
putation would come up with after some optimization. The accu-
mulator data structure is implemented by maintaining a modifiable
list and running a self-adjusting fold operation to obtain the so-
lution. Both the dictionary and priority queue data structures are
implemented using the Treap data structure. For priority queues,
we found that Treap is more stable than common alternatives (e.g.,
leftist heap, binary heap). The queue data structure is obtained by
essentially transforming a standard purely functional implementa-
tion of a queue, one which maintains two lists; however, we are
especially careful about when the front list is reserved to enhance
stability.

6.3 Input Generation

We use randomly generated data sets for all the experiments. Let n
be the target input size. For the sorting benchmarks, we generate a
random permutation of {1, 2, . . . , n}. For dot-product, we gener-

ate random vectors by picking floating-point numbers uniformly
at random from [0.0, 10.0] (with 5 significant digits). For inter-
section, We generate a pair of lists of lengths n and m by pick-
ing integers uniformly at random from the set {0, . . . , t}, where
t = 1

4 min{n, m}; this choice of t ensures that the two lists have a
common element with high probability. For huffman, the alphabets
are simply the numbers 1 to n, and the frequencies are random in-
tegers drawn from the range [1, 10n]. For stabbing, the endpoints
and query values are random numbers in the range [0, n/10] cho-
sen uniformly at random. For convex hulls, we generate inputs by
drawing points uniformly from the circumference of a unit-radius
circle. This arrangement is known to be a challenging pattern for
many convex-hull algorithms. For our graph benchmarks, we gen-
erate random, connected graphs with approximately

√
n-separators,

mimicking the fact that many real-world graphs have small separa-
tors (e.g., n1−ε).

6.4 Metrics and Measurements

The metrics for this study are (1) the time to run a program from
scratch, denoted by Ti (2) the average update time after a modifi-
cation, denoted by Tu, and (3) the space consumption, denoted by
S. To measure the second metric, for example, in list-based experi-
ments, we apply a delete-propagate-insert-propagate step to each el-
ement (i.e., in each step, delete an element, run change-propagation,
insert the element back, and run change-propagation) and divide the
end-to-end time by 2n, where n is the list’s length. This quantity
represents the expected running time of change-propagation if a
random update to the input is performed. We can use this measure-
ment in graph experiments, where here the delete-propagate-insert-
propagate is applied to each edge in turn. All measurements were
taken on a standard Linux machine5.

We measure the space consumption by noting the maximum
amount of live data as reported by ∆ML’s garbage collector. This
is an approximation of the actual space usage because garbage
collection may miss the high-water mark.

When measuring time, we carefully break down the execution
time into application time and garbage collection (GC) time. In
these experiments, we have found that GC is at most 20% of the
execution time. For this reason, we only report the application time
to isolate the GC effects and highlight the asymptotic performance.

6.5 Modref-based Programs vs. Traceable Programs

The first set of experiments studies how TDTs provide the perfor-
mance benefits over traditional, modref-based implementations. Re-
call that Ti is the time to run a program from scratch and Tu is the
average time that change propagation takes to perform an update.
Table 3 shows the performance of our benchmark programs, com-
paring the traceable versions to their modref-based counterparts.
Note that for graham-scan, the modref-based program uses merge
sort whereas the traceable program uses heap sort; the modref-
based version of heap sort is too slow except for extremely small
inputs. We explore this in more detail in Sections 6.8 and 6.9.

We find that compared to the modref-based programs, the trace-
able versions are 3–20 times faster to run from scratch and 4–5000
times faster to perform an update. Moreover, traceable versions con-
sume 4–50 times less space than the modref-based ones. We remark
that these experiments involve relatively small input sizes because
with larger inputs our experiments with some modref-based appli-
cations require too much time to complete.

5 Technical Setup: Our experiments were conducted on a 2.0Ghz Intel
Xeon E5405 with 32 GB of memory running Ubuntu 8.04 (kernel 2.6.24-
19). Programs were compiled using the ∆ML compiler [19], a modi-
fied version of the MLton compiler version 20070826, with the option
“-runtime ram-slop 0.9 gc-summary” These options direct the run-
time system to make available 90% of the physical memory to the bench-
mark and report statistics about garbage collection (GC).



Experiment Size Traceable Modref-based Modref-based ÷ Traceable

N Ti (ms) Tu (µs) S (MB) Ti (ms) Tu (µs) S (MB) Ti Tu S

hsort-int 103 7.50 35.00 0.61 85.00 27695.00 14.04 11.33 791.28 23.02
dot-product 105 280.00 6.75 52.88 872.50 121.55 223.80 3.11 18.00 4.23
intersection 105 1372.50 82.00 382.78 11207.50 1948.45 1509.17 8.16 23.53 3.94
huffman 104 157.50 492.00 22.13 2575.00 2530000.00 707.61 16.34 5142.28 31.98
stabbing 103 17.50 115.00 1.92 240.00 98195.00 23.56 13.71 853.87 12.27
graham-scan 104 375.00 265.50 24.90 1542.50 1105.50 277.24 4.11 4.16 11.13
bfs 103 37.50 845.56 2.74 717.50 23784.07 139.39 19.13 28.12 50.82
dijkstra 103 42.50 1160.03 2.74 725.00 34528.30 72.41 17.05 29.76 26.42

Table 3. Traceable vs. modref-based implementations: Ti (in ms) is the from-scratch execution time, Tu (in µs) is the average time per
update, and S (in MB) is the maximum space usage as measured at garbage collection.

Experiment Size Traceable Static Overhead Speedup

N Ti (ms) Tu (µs) S (GB) Ti (ms) (SAC Ti)/(static Ti) ((static Ti)/SAC Tu

hsort-int 106 14390.00 59.02 1.75 2599.75 5.5 4.4 × 104

dot-product 106 2787.50 7.45 0.44 100.25 27.80 1.3 × 104

intersection 106 12820.00 74.91 2.19 1091.50 11.74 1.5 × 104

huffman 106 22975.00 1021.04 1.08 6447.25 3.56 6.3 × 103

stabbing 106 38832.50 202.11 1.70 10609.75 3.60 5.2 × 104

graham-scan 105 4307.50 297.30 0.70 547.75 7.86 1.8 × 103

bfs 104 445.00 1310.59 0.12 47.50 9.36 36.2
dijkstra 104 490.00 1783.68 0.12 52.50 9.33 29.4

Table 4. Traceable SAC versus static: Ti (in ms) is the from-scratch execution time, and Tu (in µs) is the average time per update. Update
times are reported in microseconds (µs).

6.6 Traceable Programs vs. Static Programs

Our second set of experiments, shown in Table 4, draws a com-
parison between traceable programs and static programs, quantify-
ing the effectiveness of the approach in more absolute terms. First,
consider the overhead column, calculated as the ratio of the from-
scratch run of the traceable implementation to that of the static
implementation. This quantity represents the overhead of the pro-
posed approach (e.g., due to dependence tracing, runtime system).
We find the overhead to relatively small: the traceable versions are
about a factor of 10 slower than their static counterparts, except
for dot-product, which is about 30 time slower. We believe this is
because the benchmark dot-product is relatively lightweight com-
putationally.

Second, consider the speedup column, calculated as the ratio of
the static from-scratch run time to the update time. Results show
that the traceable versions can perform updates many orders of
magnitude faster. One exception is our graph algorithms, which
are output-sensitive and may need to update the results at many
nodes even after a small modification, e.g., deleting a single edge
can change the shortest distance of many nodes. We discuss this in
greater depth next.

6.7 Graph Algorithms

Graph algorithms can be challenging with previous approaches to
SAC. We discuss how TDTs can help overcome some of these
challenges. While previous SAC approaches worked well on prob-
lems with structured data (e.g., lists and trees), computations involv-
ing unstructured data (e.g., graphs) often require use dynamic data
structures whose traditional self-adjusting versions can require the
tracing and updating of large amount of dependencies. Traceable
data types address this problem by reducing the amount of required
tracing and exploiting problem-specific structures, thereby dramat-
ically decreasing the update time.
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Figure 9. From-scratch runs with our graph benchmarks: timing
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as input size is varied: trace size of traceable heap sort (left), trace size of quick sort and modref-based heap sort as normalized by the trace
size of traceable heap sort (center), and average trace difference (right).

We consider two algorithms: the Dijkstra’s single-source short-
est path algorithm (dijkstra) and the classic breath-first-search al-
gorithm (bfs). Our implementations follow the standard textbook
descriptions (Figure 5 shows the pseudo-code for dijkstra). Both
algorithms use a dictionary to represent a graph.

Figures 9 and 10 contrast the performance of traceable versions
of shortest-path algorithms with that of the traditional, modref-
based versions. Figure 9 shows from-scratch execution times of
dijkstra and bfs. Both perform similarly, and their traceable ver-
sions are significantly faster than their traditional versions, by more
than an order of magnitude at peak. Figure 9 shows the average up-
date times for an edge deletion/insertion. Again, both benchmarks
perform similarly and the traceable versions are significantly faster
than the traditional, by approximately an order of magnitude at
N = 1, 000.

We note that both dijkstra and bfs are highly output sensitive al-
gorithms. Since inserting/deleting an edge can change the shortest-
path distances on a large number of nodes, these benchmarks are
highly output sensitive. Specifically, if the shortest-path distances
change on t nodes, both benchmarks will need to update all t nodes,
requiring at least Ω(t) time.

6.8 Sorting and Convex Hulls

Another noteworthy feature of the TDT framework is modularity,
specifically the fact that we can often enjoy substantial performance
improvements by simply replacing the modref-based implementa-
tions of data structures with the compatible traceable versions. As
an example, consider the problem of computing the convex hull of
2D data points. Given a set of 2D points, Graham’s scan algorithm
first orders the points by the x coordinates and computes the con-
vex hull by scanning the sorted points. Here we compare the trace-
able version of our heap sort (hsort) and graham-scan benchmarks
with other modref-based algorithms considered in previous work.
The fastest version turns out to be identical to the old graham-scan
code, except the sort routine is now a traceable heap sort.

As shown in Figure 11 (left and center plots), traceable heap sort
outperforms the quick-sort and merge-sort algorithms by nearly an
order of magnitude for both from-scratch runs and updates. Since
graham-scan uses sorting as a substep, it shows the same perfor-
mance trends (rightmost plot). Compared to the previous modref-
based implementation of the quick-hull algorithm [8], graham-
scan is extremely fast.

6.9 Trace Size and Stability

Our empirical measurements thus far illustrate the performance
benefits of TDTs, both in running time and space consumption.
Here we investigate the question of whether these improvements
are related to potential constant factor improvements in the run-
time systems or to the benefits of TDTs as we expect them to be.
Our measurements suggest the latter and indicate asymptotic im-
provements in performance. To this end we consider two abstract
measures: trace size and trace stability. Trace size measures the size
of the memory consumed. Trace stability measures how much the
trace changes as a result of an input modification—this ultimately
determines how fast the program can respond to modifications. In
our experiments, we measure the trace size by the number of trace
elements, and the trace stability by counting the average number
of trace elements created and deleted during change propagation
after a single insertion/deletion. These measures are independent
of the specifics of the hardware as well as the specifics of the data
structures used for change propagation—they only depend on the
abstract representation of the trace. They are, however, specific to
the particular self-adjusting program and the class of input changes
considered. As an example, we consider here sorting with inte-
gers, specifically hsort-int, with traceable and modref-based pri-
ority queues, and a self-adjusting implementation of quicksort.

Figure 12 (leftmost) shows the trace size for traceable heap sort
as the input size increases. Regression analysis shows a perfect fit
with 10n + 12 (n is the input size), providing strong evidence that
the trace size of traceable heap sort is O(n). This is consistent with
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a simple analytical reasoning on traces: since we record dependen-
cies at the level of priority-queue operations and since heap-sort
performs linear number of such operations, the trace has linear size.

Figure 12 (center) shows the trace size of hsort-int using both
traceable and modref-based priority queues normalized to the trace
size of the traceable heap sort. The figure suggests that the traces
of traceable heap sort are by a factor of Θ(log n) smaller than
those of the modref-based. This explains why traceable heap sort
has a significantly smaller memory footprint than the modref-based
counterpart.

Figure 12 (right) shows our measurements of average trace
difference on a vertical log scale for a single insertion/deletion.
Trace difference is constant for traceable heap sort, because a single
insertion/deletion requires inserting/deleting a single priority queue
operation from the trace. The modref-based implementation heap
sort appears to have super-logarithmically larger trace difference.
The reason for this is the internal comparisons traced by the modref-
based priority queues. This finding explains the difference in the
runtime performance between the two implementations of heap
sort.

Figure 12 also compares the traceable heap sort to our self-
adjusting quicksort implementation, which, until now, has been
the most efficient self-adjusting sorter. Traceable heap sort appears
faster by at least a moderate constant factor.

7. Motion Simulation

With traceable data types, programs can natively and safely handle
continuous-domain input, so that the output may be updated effi-
ciently when the input changes. We consider motion simulation as
an interesting application of this capability. Consider a program P
that computes a geometric property (e.g., convex hull) of a given
set of static objects (e.g., points). In motion simulation, we want
to compute the output of P as the objects move continuously, i.e.,
when each coordinate is a function of “time”. Motion simulation
can be performed by time slicing and recomputing the output at
fixed intervals. This approach, however, is inaccurate because it
only approximates the times at which the output changes, and inef-
ficient because it cannot take advantage of the similarity of output
at consecutive intervals. With no advance knowledge of how points
move, time slicing can be the only option. In some cases, however,
we can represent the coordinates of moving objects with polynomi-
als of time and compute exactly the times at which the output can
change by finding the roots of certain polynomials (e.g., [7]). We
call this an event-based simulation.

We implement a library for motion simulation by using both
event-based and time-slicing simulation techniques while taking
advantage of self-adjusting computation to update the output. The
library allows the “time” to be set arbitrarily and uses change-
propagation to update the output. We use modular modifiables (Sec-
tion 3) to represent outcomes of geometric tests. The library consist

of 3, 200 lines of ∆ML code supplying primitives for polynomi-
als, geometric operations, and performing motion simulation. As
benchmarks, we implement self-adjusting versions of several 2D
convex hulls algorithms and one 3D convex hull algorithm called
incremental-hull algorithm. We also implement a visualizer that
helps us observe motion simulations in real time by simultaneously
running the visualizer and the self-adjusting program performing
the simulation. Some example movies can be found on the web site
http://sites.google.com/site/sacmotion/.

Figure 13 shows some experimental results with 3D hulls using
event-based approach. For both figures the horizontal axis is the
input size consisting of points (up to 15000). The plot on the left
shows the average time to update the output by change propagation
after changing the time in an event-based simulation (average taken
over n updates for each input size n). The update time appears to
grow slowly (poly-logarithmically) with the input size. The plot on
the right shows that updates are nearly three orders of magnitude
faster for larger inputs; speedups are computed by comparing to
static from-scratch execution.

Imagine performing motion simulation by recomputing the con-
vex hull periodically every δ milliseconds, i.e., by time slicing. If δ
is reasonably small, we expect the output computed at consecutive
intervals to be similar. Self-adjusting computation allows us to take
advantage of this similarity. Figure 13 (right) shows the total simu-
lation time for varying interval sizes with 5000 moving points. The
horizontal axis represents δ in milliseconds and the vertical axis
represents the total simulation time. As the interval size increases
the total simulation time decreases quite dramatically especially ini-
tially, because as the interval size increases, more events can be
processed simultaneously and fewer events occur in total.

Finally, although we do not discuss here in detail, the ability to
handle continuous-domain inputs makes a range of modifications
possible. For example, our approach allows the time to be set to
any value, even in the past and update the output efficiently.

8. Related Work
The problem of having computation respond to slowly changing
data has been studied extensively. Early work in the programming
languages community, broadly called incremental computation, fo-
cused on developing techniques for translating static/conventional
programs into incremental programs that can respond automatically
to input modifications. Recent advances on self-adjusting computa-
tion have generalized these approaches and dramatically improved
their effectiveness. The algorithms community devised dynamic
and kinetic data structures to address these same problems. This
section is a brief survey of related work in these two areas; detailed
information can be found elsewhere [7, 11, 14, 24].

Incremental Computation. The most effective incremental com-
putation techniques are based on dependence graphs, memoization,
and partial evaluation. Dependence graph techniques record the de-



pendencies between data in a computation and rely on a change-
propagation algorithm to update the computation when the input
is modified (e.g., [12, 18]). These techniques have been shown
to be effective in some applications, e.g., syntax-directed computa-
tions. They are not general-purpose because they do not allow the
change-propagation algorithm to update the dependence structure.
For example, the INC language [27], which uses static dependence
graphs, does not permit recursion. As an alternative to dependence
graphs, memoization (also called function caching) has been inves-
tigated (e.g., [1, 17, 23]). This classic idea dating back to the late
1950’s [9, 21, 22] applies to any purely functional program and
therefore is more broadly applicable than static dependence graphs.
In incremental computation, memoization can improve efficiency
when executions of a program with similar inputs perform similar
function calls. This turns out to be relatively rare: it is often the case
that small input modifications can prevent reuse via memoization
as the arguments to many functions are modified. Partial incremen-
tal computation with partial evaluation [15, 26] requires the user to
fix the partition of the input that the program will be specialized
on and can then process modification faster by partially evaluating
the program with respect to the fixed part of the input. The main
limitation of this approach is that it allows input modifications only
within a predetermined partition.
Self-Adjusting Computation. Self-adjusting computation com-
bines dynamic dependence graphs [2] and a form of computa-
tion memoization [5] to achieve efficient updates. Variants of self-
adjusting computation have been implemented in several host lan-
guages such as C [16], Java [25], Haskell [10], and SML [19]. The
approach has been shown to be effective for a reasonably broad
range of problems (e.g., [4, 5]. Recently, techniques inspired by
self-adjusting computation have resulted in an efficient algorithm
for dynamic maintenance of well-spaced point sets, settling an open
problem [6].

9. Conclusion
We present an approach to tracing dependencies in computations
at the level of (abstract) data types operations. Since the number
of accesses to an abstract data type can be asymptotically less than
the number of accesses to memory, our approach can asymptoti-
cally reduce the number of dependencies to be traced. For exam-
ple in heapsort there are only O(n) accesses to the heap (priority
queue) instead of O(n log n) total operations, and indeed our exper-
iments show an order of magnitude improvement. In the context of
self-adjusting computation, these techniques translate to dramatic
improvements in space and time. Furthermore in some cases the
trace with respect to the data type operations can be stable even
if at the memory cell level it is not. This can greatly improve the
performance of change propagation, as seen in the Huffman code
benchmark.

References
[1] M. Abadi, B. W. Lampson, and J.-J. Lévy. Analysis and Caching
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