Problems in Randomness

Stuart A. Kurtz

October 20, 2004

1 Preliminaries

Let φ_e denote the e-th (partial) computable function. By the Universal Turing Machine Theorem, there exists a single (partial) computable function $\psi(e, n) = \varphi_e(n)$.

Note that for the purposes of this assignment, we will often treat the set of natural numbers $\omega = \{0, 1, \ldots\}$ and the set of strings $\{0, 1\}^* = \{\varepsilon, 0, 1, 00, 01, \ldots\}$ as interchangeable.

2 Kolmogorov Complexity

For an arbitrary function $\xi : \{0, 1\}^* \to \{0, 1\}^*$, we can define $K_{\xi}(x)$ to be the length of the shortest y such that $\xi(y) = x$.

Problem 1 Give the simplest possible condition on ξ such that $K_{\xi}(x)$ is defined for all $x \in \{0, 1\}^*$.

Theorem 2.1 (Kolmogorov) There exists a partial recursive function υ such that for all partial recursive ξ, there exists a constant c_ξ such that

$$K_\upsilon(x) \leq K_{\xi}(x) + c_\xi,$$

for all $x \in \{0, 1\}^*$.

Problem 2 Prove Theorem 2.1. Be explicit about coding details.

For the subsequent discussion, we assume that we’ve picked a υ as in Theorem 2.1, and write $K(x)$ for $K_\upsilon(x)$.

Problem 3 Show that K is total, i.e., that $K(x)$ is defined for all $x \in \{0, 1\}^*$.

Problem 4 Show that there exists a constant c such that $K(x) \leq |x| + c$ for all $x \in \{0, 1\}^*$.

Problem 5 Show that for every $k \in \omega$, there must exist at least one string x of length k such that $K(x) \geq k$. Show that most strings x of length k have $K(x) \geq k - 1$.

Problem 6 Show that there are infinitely many strings $x \in \{0, 1\}^*$ such that $K(x)^2 < |x|$.

Problem 7 Problem 5 can be generalized beyond simple squaring. What is the best such theorem that you can prove?