The following people have independently proved that $P = NP$. Here are the titles of their papers.

A. Selman. SAT is P-selective.
R. Beigel. $PP^{\text{NP}} = PP$.
L. Hemaspaandra. The weak exponential hierarchy collapses.
S. Toda. $\text{PH} \subseteq \text{PP}$.
M. Kummer. The bounded query hierarchy over NP collapses.
R. Solovay. $\text{Con}(\text{PA}) \rightarrow \text{Con}(\text{PA} + \text{"$P = NP$"})$.
S. Homer. The m-complete degree for NEXP is a 1-li degree.
L. Berman. All EXP-complete sets are isomorphic.
R. Ladner. There are no NP-intermediate sets.
J. Feigenbaum. SAT is random-self-reducible.
E. Allender and R. Rubinstein. Every sparse set in P is P-printable.
J. Toran. GI is in co-NP.
S. Arora. A $(1 + \epsilon)$-approximation scheme for general TSP.
A. Razborov. A generalization of monotone lower bounds.
W. Gasarch. SAT is not P-supertense.
M. Sipser. Clique has uniform polynomial-size nonmonotone circuits.
J. Goldsmith. Limited nondeterminism does not help.
J. Hartmanis. Berman’s conjecture fails.
J. Lutz. NP has measure 0 in E.
S. Fenner. The NP-jump is not invertible.
N. Nisan. BPP can be simulated in polynomial deterministic time.
U. Schöning. Vertex cover is in the low hierarchy.
J. Köbler. Vertex cover is in the extended low hierarchy.
N. Immerman. $\text{SO} = \text{FO} \circ + \text{LFP}$.
L. Fortnow. $P = NP$ with respect to a finite oracle.
S. Mahaney. SAT many-one reduces to a sparse set.
M. Ogihara and O. Watanabe. SAT btt reduces to a sparse set.
M. Kearns. Circuits are PAC-learnable.

*Department of Computer Science, University of Southern Maine, 96 Falmouth St., Portland, ME 04103, USA. E-mail: fenner@cs.usm.maine.edu. The authors are somewhat coy about acknowledging any financial support for this.
†Department of Computer Science, University of Chicago, 1100 E. 58th St., Chicago, IL 60637, USA. E-mail: fortnow@cs.uchicago.edu.
‡Department of Computer Science, University of Maryland, College Park, MD, 20742, USA. E-mail: gasarch@cs.umd.edu.
M. Sudan. NP = PCP(0, 0).
C. Lund. The constant is 0.
S. Kurtz, S. Mahaney, and J. Royer. Even further results on collapsing degrees.
A. Condon. Every NP set has an interactive proof with a prover in P.
L. Longpré. Some new results on time-bounded Kolmogorov complexity.