Separability and One-way Functions

Lance Fortnow*
John Rogers†

July 21, 2000

Abstract
We settle all relativized questions of the relationships between the following five propositions:

- $P = NP$
- $P = UP$
- $P = NP \cap \text{coNP}$
- All disjoint pairs of NP sets are P-separable.
- All disjoint pairs of coNP sets are P-separable.

We make the first widespread use of variations of generic oracles to arrive the necessary relativized worlds.

1 Introduction

In order to understand better the relationship between P and NP, it is useful to study the structure of languages within NP. In this paper we study the inseparability of NP and coNP sets and relate that to other important propositions in complexity theory.

Consider the following five propositions:

(P1) $P = NP$
(P2) $P = UP$
(P3) $P = NP \cap \text{coNP}$
(P4) All disjoint pairs of NP sets are P-separable.
(P5) All disjoint pairs of coNP sets are P-separable.

At present, we do not know whether or not any of these propositions is true. In fact, for each one there is one oracle relative to which the proposition is true and another relative to which it is false so proving or refuting any of them will require nonrelativizing proof techniques.

However, we do know something about the logical relationships among them. It is relatively easy to show that (P1) implies the rest and that (P4) and (P5) each imply (P3). Grollmann and Selman [GS88] showed that (P4) also implies (P2).

*Department of Computer Science, University of Chicago, Chicago IL 60637 USA; Email: fortnow@cs.uchicago.edu. Partially supported by NSF grant CCR 92-53582.
†School of CTI, DePaul University, Chicago IL 60604. Email: rogers@cs.depaul.edu. Work done while at the University of Chicago and while being partially supported by NSF grant CCR 92-53582.
Can we demonstrate any other relationships consistent with these? Our main result is that the known implications are the only ones to hold in every relativized world. That is, we demonstrate an oracle realizing each of the other consistent logical relationships.

We also look at a proposition we call Proposition Q, which states that one can easily find an accepting path of any NP machine that accepts Σ^*. We show a close relationship between this and (P5).

1.1 Generic oracles

When we have a proposition that we are unable to refute, we might attempt to construct an oracle relative to which it is true. An approach that often works is to begin by defining an infinite set of requirements so that, if each requirement is satisfied, the proposition is true. This is followed by a construction of the oracle in stages. At stage 0, we let the oracle be the empty set. At each succeeding stage, we select a requirement and add to the oracle a finite amount of information that causes the requirement to be satisfied while guaranteeing that the previously satisfied requirements stay satisfied. For example, this sort of construction can be used to build an oracle relative to which $\text{P} \neq \text{NP}$. For obvious reasons, such a construction is called a finite extension construction.

Defining the requirements is usually very easy but carrying out the construction and demonstrating that it works is often difficult. But this obscures what we are trying to accomplish. We are far more interested in whether there exists an oracle relative to which a proposition is true and far less interested in the particular form of the oracle. This is where generic oracles, which were first considered in complexity theory by Mehlhorn [Meh73] and later by Blum and Impagliazzo [BI87], become useful.

As above, we first define a set of requirements so that if each requirement is satisfied, some proposition will be true. We then define a generic condition, which is usually a finite function on strings. An important contribution of this paper, following the lead of Fenner, Fortnow, Kurtz, and Li [FFKL93], is that we often can impose a special form on the conditions that makes it easier to satisfy some class of requirements. This technique played a pivotal role when Fenner, Fortnow, and Kurtz [FFK94] demonstrated an oracle relative to which the Isomorphism Conjecture holds.

We then show that, given any condition σ and any requirement, we can find another condition τ that extends σ and that satisfies the requirement. This demonstrates that the set of conditions that satisfy this requirement is dense. We then use a simple argument to show that there is an oracle that simultaneously, for every requirement, extends some condition that satisfies that requirement and so the oracle satisfies all of the requirements.

The advantage of this approach is that it focuses the proof on how to meet an individual requirement rather than on technical details about the oracle. It also usually results in a shorter and easier to understand proof.

1.2 Related Results

The history of oracle results in complexity theory begins with the paper by Baker, Gill and Solovay [BGS75]. They constructed oracles A, B, C, and D such that

\[\text{P}^A = \text{NP}^A \]

\[\text{P}^B \neq \text{NP}^B = \text{coNP}^B \]

\[\text{P}^C \neq \text{NP}^C \text{ and } \text{P}^C = \text{NP}^C \cap \text{coNP}^C \]

\[\text{P}^D \neq \text{NP}^D \cap \text{coNP}^D \text{ and } \text{NP}^D \neq \text{coNP}^D \]
Notice that, relative to A, (P1) holds so (P2) through (P5) also hold.

Rackoff [Rac82] was the first to look at relativized UP. He created oracles A and B such that

$$P^A \neq \text{coNP}^A = \text{NP}^A = \text{UP}^A$$

$$P^B = \text{NP}^B \cap \text{coNP}^B = \text{UP}^B \neq \text{NP}^B$$

Geske and Grollman [GG86] created an oracle C such that

$$P^C \neq \text{UP}^C \neq \text{NP}^C$$

Homer and Selman [HS92] devised an oracle A such that $P^A \neq \text{NP}^A$ but all disjoint pairs of NP^A sets are P^A-separable. We show that this is so relative to a Cohen generic oracle. They also constructed an oracle B such that $P^B = \text{UP}^B \neq \text{NP}^B \cap \text{coNP}^B$. Grollmann and Selman [GS88] showed that $P = \text{UP}$ iff one-way functions do not exist and that all disjoint pairs of NP are P-separable iff weak one-way function do not exist. Thus, because the negation of (P3) implies the negation of (P4), relative to B there are weak one-way functions but no one-way functions. This result also follows as an immediate corollary of our work.

Mehlhorn was the first to consider the effect of a Cohen generic oracle G on propositions in complexity theory when he showed that $P^G \neq \text{NP}^G$ [Meh73]. Blum and Impagliazzo [BI87] proved, using techniques of Rackoff [Rac82] and Hartmanis and Hemachandra [HH87], that if $P = \text{PSPACE}$ then

$$P^G = \text{UP}^G = \text{NP}^G \cap \text{coNP}^G \neq \text{NP}^G$$

We will use some of their techniques here.

Impagliazzo and Naor [IN88] and Crescenzi and Silvestri [CS93] showed that there exists a nondeterministic Turing machine M^G accepting Σ^* for which Proposition Q fails. That is, there is no function $f^G \in \text{FP}^G$ such that, for every $x \in \Sigma^*$, $f^G(x)$ is an accepting path of $M^G(x)$. This paper gives a simpler proof of that fact.

When we consider what happens relative to a random oracle R, we find that the following statements hold: $P^R \neq \text{NP}^R$ [BG81], $P^R \neq \text{UP}^R$ [KMR95, IR89], there are disjoint pairs of NP sets that are not P-separable [GS88, KMR95, IR89, Ver93] and there are disjoint pairs of coNP sets that are not P-separable [Ver93]. It is open whether $P^R = \text{NP}^R \cap \text{coNP}^R$, although this is generally believed to be false.

Muchnik and Vereshchgin [MV96] have also proved various results on the relativizable relationships between separability and other propositions.

2 Definitions and Preliminaries

We define here notions that may not be widely known in complexity theory. For notions not defined here, please consult a text on formal language and complexity theory, like Hopcroft and Ullman [HU79].

2.1 Languages, oracles, and computations

Let Σ^* denote the set of all finite length binary strings and Σ^n the set of strings of length exactly n. Languages and oracles are subsets of Σ^*. Let A be an oracle and let A_n be $A \cap \Sigma^n$, that is, A_n is the set of strings of length n in A. We will sometimes abuse notation and use the name of the oracle for its characteristic function, that is, writing $A(x) = 1$ if $x \in A$ and $A(x) = 0$ otherwise.
An oracle A is *sparse* iff there is a polynomial p such that, for all n, $|A_n| \leq p(n)$. The *join* of two oracles A and B, denoted $A \oplus B$, is the oracle $\{x0 : x \in A\} \cup \{x1 : x \in B\}$.

Many of the oracles we work with here will be *gappy*. This is defined by letting *tower* be the function from integers to integers with the following recursive definition: $\text{tower}(0) = 2$, $\text{tower}(n + 1) = 2^{\text{tower}(n)}$, i.e., $\text{tower}(n)$ is an exponential tower of $n + 1$ 2's. An oracle A is *gappy* iff, whenever $A(x) = 1$, $|x| = \text{tower}(n)$, for some $n \in \omega$. (A notion very similar to this was used by Rackoff [Rac82].) We will call *allowed lengths* those lengths equal to $\text{tower}(n)$ for some n.

Fix a particular polynomial time computation and input. Intuitively, we make oracles gappy so that the only strings that can affect that computation are those at one allowed length. The computation does not have enough time to query any string at longer lengths, whereas it does have enough time to query all of the strings at shorter lengths, which we assume it does.

Let A be an oracle. The *zero-side* of A_n is the set of strings in A_n that end in 0. The *one-side* is the set of strings that end in 1. We say that A_n is *zero-empty* if it contains no strings ending in 0 and *one-empty* if it contains no strings ending in 1.

Fix an input x to a nondeterministic, polynomial-time oracle Turing machine M. This input generates a tree of computation paths in M. Associated with every one of these paths is a *query set*: A list of pairs of the form (q, r), where each q is an oracle query and each r a one-bit oracle response. We say that a path *expects* a string q to be in an oracle A if $(q, 1)$ is in its query set. It expects q not to be in the oracle if $(q, 0)$ is in its query set.

Two computation paths *conflict* iff, for some string q, one has the pair $(q, 0)$ in its query set and the other has $(q, 1)$ in its. In other words, one path expects q to be in the oracle and the other expects q not to be in the oracle. A computation path of a nondeterministic TM accepts x relative to an oracle A iff it ends in an accepting state and, for every (q, r) in its query set, $q \in A \iff r = 1$. A path is *zero-empty* iff, for every q ending in 0, $r = 0$. It is *one-empty* iff, for every q ending in 1, $r = 0$.

2.2 Language classes

In addition to the well-known language classes \mathbf{P}, \mathbf{NP}, \mathbf{coNP}, and \mathbf{PSPACE}, we will work with the function class \mathbf{FP} and the language class \mathbf{UP}, which we define here.

A function f is computable by a deterministic Turing machine M with a distinguished output tape if $f(x) = y$ and M, when presented with an input string x, halts with the string y on its output tape. \mathbf{FP} is the class of functions computed by polynomial-time bounded deterministic Turing machines.

A function $f \in \mathbf{FP}$ is *honest* iff there is a polynomial p such that, for all x, $|x| \leq p(|f(x)|)$. That is, f does not map very long inputs to very short outputs.

A language L is in \mathbf{UP} iff there is a polynomial-time bounded nondeterministic Turing machine M such that $L = L(M)$ and, for all x, if $x \in L$, the computation $M(x)$ has exactly one accepting path. Grollmann and Selman [GS88] showed that $\mathbf{P} \neq \mathbf{UP}$ iff one-way functions exist. A one-way function is a one-to-one, honest function in \mathbf{FP} whose inverse is not in \mathbf{FP}.

Let L_0 and L_1 be two languages in \mathbf{NP} or in \mathbf{coNP} that are disjoint, that is, $L_0 \cap L_1 = \emptyset$. We say that they are \mathbf{P}-*separable* if there is a language $L \in \mathbf{P}$ such that $L_0 \subseteq L \subseteq \overline{L}_1$.

2.3 Generic conditions and oracles

Most of our oracles are *generic* oracles. These are defined in terms of some kind of generic condition, whose definition is usually designed to meet a particular set of requirements.
A Cohen condition is a partial function from Σ^* to $\{0,1\}$ whose domain is finite. A condition σ extends another condition τ ($\sigma \supseteq \tau$) when, for all $x \in \text{dom}(\tau)$, $\sigma(x) = \tau(x)$. An oracle A extends a condition τ when, for all $x \in \text{dom}(\tau)$, $A(x) = \tau(x)$. Two conditions σ and τ are consistent when, for all $x \in \text{dom}(\sigma) \cap \text{dom}(\tau)$, $\sigma(x) = \tau(x)$. They conflict otherwise.

Informally, a set of conditions S is definable if they are described in a formal logical model powerful enough to express any of the definitions in this paper. Formally we say a set of conditions S is definable if they consists of exactly the τ that make $\Psi(\tau)$ true where $\Psi(\tau)$ is a Π^1_1 predicate (see Rogers [Rog87]).

A set of conditions S is dense iff, for every Cohen condition τ, there is a condition $\sigma \in S$ that extends τ. An oracle S if it extends at least one condition in S. A Cohen generic oracle is one that meets at least one condition in every dense, definable set of Cohen conditions.

A condition σ is gappy iff, whenever $\sigma(x) = 1$, $x = \text{tower}(n)$, for some $n \in \omega$. The tower function is defined above.

A size-bounded condition is a pair (σ,k) where $k \in \omega$ and σ is a gappy Cohen condition. Let n be an allowed length. The integer k indicates that any condition extending σ must not allow more than $n/2^k$ strings of length n to be in the oracle beyond σ. Thus, a size-bounded condition (σ,j) extends another size-bounded condition (τ,k) $(\sigma,j) \supseteq (\tau,k)$ iff $\sigma \supseteq \tau$ and $j \geq k$ and, if $x \in \text{dom}(\sigma) - \text{dom}(\tau)$ then $|\{y : \sigma(y) = 1 \& |y| = |x|\}| \leq |x|/2^j$.

In the definitions of the remaining conditions, let n be a variable that ranges only over allowed lengths.

A UP condition σ is a Cohen condition whose domain is gappy and such that, for all n, $|\{y \in \Sigma^n : \sigma(y) = 1\}| \leq 1$. That is, there is at most one string in a condition at allowed lengths. A one-sided-UP condition σ is a Cohen condition whose domain is gappy and such that, for all n, $|\{y \in \Sigma^n : \sigma(y0) = 1\}| \leq 1$. That is, it is a UP condition on its zero-side and a Cohen condition on its one-side.

An NP \cap coNP condition σ is a Cohen condition whose domain is gappy. Furthermore, if σ is defined for some string z of length n then there is an x of length $n - 1$ such that, for all y of length $n - 1$, either:

1. $\sigma(x0) = 1$ and $\sigma(y1) = 0$, or
2. $\sigma(x1) = 1$ and $\sigma(y0) = 0$.

In other words, either the zero-side or the one-side of an allowed length (but never both) is empty.

An NP P-inseparable condition σ is a Cohen condition whose domain is gappy. As with NP \cap coNP conditions, if σ is defined for some string z of length n then either the zero-side or the one-side is empty. Unlike NP \cap coNP conditions, however, both sides may be empty.

A UP NP \cap coNP condition σ is a Cohen condition whose domain is gappy and such that, at every length n, if there is a $z \in \Sigma^n$ such that $z \in \text{dom}(\sigma)$, then

1. $|\{y : y \in \Sigma^n \& \sigma(y0) = 1\}| \leq 1$, and
2. there is an $x \in \Sigma^n$ such that, for all $y \in \Sigma^n$, either:
 (a) $\sigma(x01) = 1$ and $\sigma(y11) = 0$, or
 (b) $\sigma(x11) = 1$ and $\sigma(y01) = 0$.

Simply stated, these conditions are UP conditions on the zero-side and NP \cap coNP conditions on the one-side.

For each generic condition of type X, a corresponding X-generic oracle is one that meets every dense, definable set of X-conditions.
Lemma 2.1 For each of the types of conditions described above, there exists a X-generic oracle.

Proof. One can argue this result on purely topological grounds but for clarity we give a constructive argument here.

Fix a type of condition X. Let S_1, S_2, \ldots be an enumeration of the dense, definable sets of X-conditions. The “definable” means there are only a countable number of such sets. This is the only reason we require definability.

Let σ_0 be the everywhere undefined function. For size-bounded generics, let $\sigma_0 = (\lambda, 0)$.

For $i = 1, 2, \ldots$ do the following: By the density of S_i there is a τ in S_i that extends σ_{i+1}. Let $\sigma_i = \tau$.

Let $G = \lim_{i \to \infty} \sigma_i$. G meets every S_i and is thus an X-generic. ■

A relativized language L^X possesses a property P categorically with respect to some type of genericity if, for all oracles G of that type, L^G possesses P. For example, the language $L^X = \{0^n : \exists x|x| = n \land x \in X\}$ is in UP categorically with respect to a UP-generic G because G contains at most one string at every length.

An oracle Turing machine M^X may also possess a property P categorically with respect to some notion of genericity. For example, to say that a machine is categorically UP with respect to Cohen generic oracles means that the machine has at most one accepting path on every input when computing relative to a Cohen generic oracle. In many of the proofs below, we use the fact that if a machine categorically possesses some property then its power is in some way restricted.

2.4 Propositions Q and Q'

Now we introduce two notions closely related to P-separability in NP and coNP which we call Propositions Q and Q'. They were first looked at by Borodin and Demers [BD76] and extensively studied by Fenner, Fortnow, Naik and Rogers [FFNR96]. Generalizations and proofs of the results mentioned in this section can be found in the later paper.

Proposition Q.

Lemma 2.2 (see [FFNR96]) The following are equivalent:

Q1. For all NP machines M such that $L(M) = \Sigma^*$, there is a function $f \in FP$ such that, for all $x \in \Sigma^*$, $f(x)$ is an accepting path of M.

Q2. For all NP machines M such that $L(M) \in \textbf{P}$, there is a function $f \in FP$ such that, for all $x \in L(M)$, $f(x)$ is an accepting path of M.

Q3. For all sets S of CNF propositional formulae such that $S \subseteq \text{SAT}$ and $S \in \textbf{P}$, there is a function $f \in FP$ such that, for all $\varphi \in S$, $f(\varphi)$ is a satisfying assignment of φ.

Q4. For every honest onto function $f \in FP$, there is a function $g \in FP$ such that, for all x, $f \circ g(x) = x$.

We define the proposition Q to be the truth of any and all of the statements in Lemma 2.2.

Proposition Q'.

Lemma 2.3 (see [FFNR96]) The following are equivalent:

1. All disjoint coNP sets are P-separable.

2. For every onto, honest $f \in FP$, there is a $g \in FP$ whose range is Σ and such that, for all x, $g(x)$ is the first bit of a y such that $f(y) = x$.

6
3. For every onto, honest \(f \in \text{FP} \) and every constant \(k \), and every \(p : \Sigma^* \rightarrow \Sigma^k \in \text{FP} \), there is a
\(g : \Sigma^* \rightarrow \Sigma^k \in \text{FP} \) such that, for all \(x \in \Sigma^* \), \(g(x) = p(y) \), for a \(y \) such that \(f(y) = x \).

4. For every two NP sets \(L_1 \) and \(L_2 \) such that \(L_1 \cup L_2 = \Sigma^* \), there is a function \(g : \Sigma^* \rightarrow \{1,2\} \in \text{FP} \) such that \(g(x) = i \) implies that \(x \in L_i \) for all \(x \in \Sigma^* \).

5. For every k NP sets \(L_1, \ldots, L_k \) such that \(\cup_{i=1}^{k} L_i = \Sigma^* \), there is a function \(g : \Sigma^* \rightarrow \{1, \ldots, k\} \in \text{FP} \) such that \(g(x) = i \) implies that \(x \in L_i \) for all \(x \in \Sigma^* \).

We define the proposition \(Q' \) to be the truth of any and all of the statements in Lemma 2.3. Finally, we tie Propositions \(Q \) and \(Q' \) together.

Corollary 2.4 Proposition \(Q \) implies Proposition \(Q' \) (and so implies that all disjoint coNP sets are \(\text{P}-\text{separable} \)).

It is open whether \(Q' \) implies \(Q \).

Because \(Q \) implies \(Q' \), we will use the following lemma, with corollary 2.4, to show that all disjoint coNP sets are \(\text{P}-\text{separable} \), relative to certain oracles.

Lemma 2.5 Assume \(\text{P} = \text{PSPACE} \) and let \(S \) be a sparse oracle. If \(M^S \) is an NP^S machine such that, for all \(T \subseteq S \), \(L(M^T) = \Sigma^* \), then, relative to \(S \), Proposition \(Q \) holds, i.e., there is a function \(f^S \in \text{FP}^S \) such that, for all \(x \), \(f^S(x) \) is an accepting path of \(M^S(x) \).

Proof. Let \(f(x) \) be the function defined by the algorithm in figure 1. The algorithm uses the \(\text{P} = \text{PSPACE} \) assumption to find accepting paths of \(M^\alpha(x) \) and uses \(S \) to determine when it has found strings in \(S \).

We need to show that the algorithm runs correctly in polynomial time. By our assumption that, for all \(T \subseteq S \), \(L(M^T) = \Sigma^* \), it is easy to see that \(L(M^\alpha) \) is always \(\Sigma^* \) in the algorithm. If an accepting path \(p \) found by the algorithm is not an accepting path in \(M^S(x) \), then there is some \(z \) in \(S \) such that \((z,0)\) is in \(p \)'s query set. Because \(S \) is sparse, this can happen at most a polynomial number of times before the algorithm determines every string in the oracle at the lengths that can be queried for input \(x \). But then, the while-loop terminates because the algorithm will find an accepting path of \(M^S(x) \).

So \(f \in \text{FP}^S \) and, given an input \(x \), it finds an accepting path of \(M^S \) on \(x \). \(\blacksquare \)

| Let \(\alpha = \emptyset \). |
| While there is an accepting path \(p \) of \(M^\alpha(x) \) do |
| If \(p \) is an accepting path of \(M^S(x) \) then |
| \(\text{Output} \ p \) and halt |
| Else |
| Let \(z \in S - \alpha \) be a string queried by \(M^S(x) \) on path \(p \); |
| Let \(\alpha := \alpha \cup \{z\} \); |
| Endif |
| Endwhile |

Figure 1: Algorithm used in lemma 2.5 to compute \(f^S(x) \)

Every sparse oracle \(S \) in this paper fulfills the requirements of lemma 2.5.
2.5 A pair of disjoint languages in coNP

We will now define a pair of categorically disjoint languages in coNP that, relative to certain oracles we use below, will be P-inseparable. This proof simplifies similar results by Impagliazzo and Naor [IN88] and Crescenzi and Silvestri [CS93].

We begin by defining the following two relativized functions:

\[f^X(x) = X(x0^{|x|} 11)X(x0^{|x|} 211) \ldots X(x1^{|x|}) \]

\[h^X(x,y,z) = \begin{cases}
0^{|x|+|y|+|z|} & \text{if } x, y, z \text{ are not all the same length} \\
 f^X(x) & \text{if } f(y) = f(z) \Rightarrow y = z \\
x & \text{if } y \neq z \text{ and } f(y) = f(z)
\end{cases} \]

For all \(X \), \(f^X \) is length preserving and all the strings it depends on in \(X \) are the same length and end in 1. Also, for all \(X \), \(h^X \) is honest. We also have:

Lemma 2.6 For all oracles \(X \), \(\text{rng } h^X = \Sigma^* \).

Proof. It is enough to show that, for all \(n, \Sigma^n \subseteq \text{rng } h^X \). Fix an \(n \).

Case 1. On length \(n \), \(f^X \) is a permutation. So, for every \(w \in \Sigma^n \), there is an \(x \in \Sigma^n \) such that \(f^X(x) = w \). Thus \(h^X(x,0^n,0^n) = w \).

Case 2. On length \(n \), \(f^X \) is not a permutation. Then there are \(y_0, z_0 \in \Sigma^n \) such that \(y_0 \neq z_0 \) and \(f^X(y_0) = f^X(z_0) \). So, for every \(w, h^X(w, y_0, z_0) = w \). ■

We next define the following two languages:

\[L_0^X = \{ w : (\exists x, y, z) h^X(x, y, z) = w \text{ and } x \text{ begins with 0} \} \]

\[L_1^X = \{ w : (\exists x, y, z) h^X(x, y, z) = w \text{ and } x \text{ begins with 1} \} \]

Because \(h \) is honest, we can bound the lengths of \(x, y, \) and \(z \) by a polynomial in the length of \(w \) so these languages are in \(\text{NP}^X \). Their union contains \(\text{rng } h^X \) and so, by lemma 2.6, their union is \(\Sigma^* \) relative to all oracles \(X \). Let \(C_0^X = \overline{L_0^X} \) and \(C_1^X = \overline{L_1^X} \). The \(C_i \) form a pair of \(\text{coNP}^X \) languages that are disjoint for all oracles \(X \).

To make it easier to refer to these languages, here are their explicit definitions:

\[C_0^X = \{ w : (\forall x, y, z) h^X(x, y, z) = w \Rightarrow x \text{ begins with 1} \} \]

\[C_1^X = \{ w : (\forall x, y, z) h^X(x, y, z) = w \Rightarrow x \text{ begins with 0} \} \]

The following lemma summarizes the known relationships among Propositions (P2) through (P5).

Lemma 2.7

1. If there are no \(P \)-inseparable sets in \(\text{coNP} \) then \(P = \text{NP} \cap \text{coNP} \).

2. If there are no \(P \)-inseparable sets in \(\text{NP} \) then

 (a) \(P = \text{NP} \cap \text{coNP} \);

 (b) \(P = \text{UP} \).

Proof. Items 1 and 2a are easy to see. The proof of item 2b is found in Grollmann and Selman [GS88]. ■

We end this section by mentioning that, relative to all the oracles we construct, \(P \not= \text{NP} \). This is true because each of these oracles allows us to use the same diagonalization used by Baker, Gill, and Solovay [BG75] to create a language in \(\text{NP} \) but not in \(P \).
3 Results

Throughout this section, we assume that all statements are made relative to an oracle \(H \) such that \(P^H = \text{PSPACE}^H \). For example, we can let \(H \) be the characteristic function for the \(\text{PSPACE}- \) complete language Quantified Boolean Formulae. We can make this assumption because all of the proofs in this section relativize, that is, if there is an oracle relative to which a theorem’s hypotheses are true then the proof given here is sufficient to establish the truth of the conclusion relative to that oracle. So a theorem stated as:

Let \(G \) be an \(X \)-generic oracle. Then the following propositions are true:

should be interpreted as:

Let \(H \) be an oracle relative to which \(P = \text{PSPACE} \). Let \(G \) be an oracle that is \(X \)-generic with respect to \(H \). Then the following propositions are true:

Among the four propositions (P2) through (P5), there are sixteen possible combinations for which ones are true and which are false. We call a combination consistent if it is logically consistent with the implications we presently know. This leaves eight consistent combinations. Our contribution is to show that, for each of these eight, there is an oracle relative to which it holds. This is important because it demonstrates that any relationship not already known among propositions (P2) to (P5) will require techniques that do not relativize. This is summarized in table 1 which lists, for every consistent combination, a type of generic oracle and a theorem number. Let \(G \) denote one of these generic oracles. The theorem indicated proves that the corresponding combination holds relative to an oracle \(H \oplus G \), where \(H \) is as above.

To separate a class from \(P \), we usually define a language \(L \) that depends on the generic oracle and that gives us, for any polynomial time deterministic oracle Turing machine \(M \), an infinite number of chances to prevent \(M \) from accepting \(L \). That is, we have an infinite number of opportunities to diagonalize against \(M \).

To make a class equal to \(P \), we demonstrate for each language \(L \) in the class a Turing machine algorithm that accepts \(L \) and runs in deterministic polynomial time relative to a particular kind of generic oracle. This algorithm will, to some degree, be a variation on what we call the “usual algorithm.” Let \(C = H \oplus G \), where \(G \) is Cohen generic. The “usual algorithm” refers either to the algorithm in Blum and Impagliazzo [BI87] used to show that \(P^C = NP^C \cap coNP^C \) and that all pairs of disjoint \(NP^C \) sets are \(P^C \)-separable or to the algorithm there and in Hartmanis and Hemachandra [HH87, BI87] used to show that \(P^C = UP^C \).

Theorem 3.2 demonstrates what happens to the propositions relative to a Cohen generic oracle. The remaining theorems demonstrate what happens relative to oracles that are generic with respect to a wide variety of conditions. In the proofs of each of those theorems, we will define the condition that gives rise to the oracle needed.

Theorem 3.1 Let \(G \) be a size-bounded generic oracle. Then

1. \(P^G = UP^G \);
2. \(P^G = NP^G \cap coNP^G \);
3. there are no \(P^G \)-inseparable sets in \(NP^G \);
4. there are no \(P^G \)-inseparable sets in \(coNP^G \).
<table>
<thead>
<tr>
<th>$P = \text{UP}$</th>
<th>$P = \text{NP} \cap \text{coNP}$</th>
<th>No NP P-insep</th>
<th>No coNP P-insep</th>
<th>Generic oracle</th>
<th>Thm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>size-bound (sb)</td>
<td>3.1</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Cohen</td>
<td>3.2</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>sb-NP P-insep</td>
<td>3.4</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>NP P-insep</td>
<td>3.3</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>inconsistent</td>
<td>–</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>inconsistent</td>
<td>–</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>NP \cap coNP</td>
<td>3.5</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>UP</td>
<td>3.6</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>one-sided-UP</td>
<td>3.7</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>inconsistent</td>
<td>–</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>inconsistent</td>
<td>–</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>inconsistent</td>
<td>–</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>UP NP \cap coNP</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Table 1: Summary of results

Proof. A size-bounded generic oracle fulfills the hypotheses of lemma 2.5 so Proposition Q holds with respect to G. By this and corollary 2.4, all disjoint pairs of coNPG sets are P^G-separable.

To see that there are no P^G-inseparable sets in NP^G, let M_0 and M_1 be a pair of categorical NP machines whose languages are categorically disjoint with respect to size-bounded conditions. Let (τ, k) be a size-bounded condition. Extend it with the condition (σ, j) where $\sigma = \tau$ and $j = k + 1$. For all but a finite number of inputs x, an accepting path in either machine must require that there be no more than $|x|/2^j$ strings in the oracle. So we can use the usual algorithm but ignore any accepting path requiring G to have more than $|x|/2^j$ strings in it. The algorithm works because, if there is a σ such that there are accepting paths in both $M_0^G(x)$ and $M_1^G(x)$, these paths must conflict. If they were consistent with one another, (τ, k) could have been extended by a condition (τ', k) that would force both machines to accept x. But this violates the assumption of categorical disjointness.

Because there are no P^G-inseparable sets in NP^G, $P^G = \text{UP}^G$ and $P^G = \text{NP}^G \cap \text{coNP}^G$ by lemma 2.7. ■

Theorem 3.2 Let G be a Cohen generic oracle. Then

1. $P^G = \text{UP}^G$;
2. $P = \text{NP}^G \cap \text{coNP}^G$;
3. there are no P^G-inseparable sets in NP^G;
4. there are P^G-inseparable sets in coNP^G.

Proof. The first two propositions are shown in [BI87] and [HH87]. The third follows by using essentially the same technique as that used to show that $P^G = \text{NP}^G \cap \text{coNP}^G$.

To see that there are P^G-inseparable sets in coNP^G, let C^X_0 and C^X_1 be the languages and f^X the function defined in section 2.5. We now show that C^X_0 and C^X_1 are not P^G-separable. Let τ be a Cohen
condition and let M be a deterministic polynomial-time oracle machine running in time $p(|x|)$. Fix an even length n at which τ is not yet defined and $p(n) < 2^n$. Select two strings w_0 and w_1 of length $n/2$. Run M^τ on w_0 and then on w_1, answering queries outside of τ's domain in such a way as to allow f^τ to realize a partial permutation on the strings of length $n/2$ that maps no string to either w_0 or w_1. Call the resulting extension τ'. Such an extension exists because M^τ can only query a polynomial number of strings.

If M^τ' accepts or rejects both strings, extend τ' to a σ that makes f^σ a permutation mapping a string starting with 0 to w_0, which puts w_0 into C^G_0, and a string starting with 1 to w_1, which puts w_1 into C^G_1. If M^τ' accepts one and rejects the other, extend τ' to a σ that makes f^σ a permutation mapping two different strings, both starting with 0, to w_0 and w_1, thus forcing $w_0, w_1 \in C^G_0$. In either case, we force $L(M^G)$ not to be a P^G-separator of C^G_0 and C^G_1.

Theorem 3.3 Let G be an NP P-inseparable generic oracle. Then

1. $P^G = UP^G$;
2. $P^G = NP^G \cap coNP^G$;
3. there are P^G-inseparable sets in NP^G;
4. there are P^G-inseparable sets in $coNP^G$.

Proof. We first show that $P^G = NP^G \cap coNP^G$. Let M_0 and M_1 be NP^G machines that accept languages that are categorically complementary with respect to NP P-inseparable conditions. Fix an input x and let n be the only relevant allowed length. We will demonstrate an algorithm that accepts x if $x \in L(M^G_0)$.

If we knew whether there were any strings of length n in G and, if so, whether they all ended in 0 or 1, we could run the usual algorithm under this assumption and get the correct result.

Because *a priori* we do not know, the algorithm must make some assumptions. It assumes first that the allowed length is empty and so checks whether there is an accepting path P in $M^G_0(x)$ that expects no strings in the oracle at the allowed length. There are two cases:

- Case 1. There is such a P. Make all queries along P to G. If these queries do not find a string at the allowed length then P is a valid accepting path relative to G so accept. If some query finds a string ending in 0 then run the usual algorithm under the correct assumption that every string in the oracle at the allowed length ends in 0. Do likewise if a string ending in 1 is found.

- Case 2. There is no such P. Then there must be a path P' in $M^G_1(x)$ that expects no strings in the oracle at the allowed length. If there were not, the machines could have both been forced to reject x by the oracle having no strings at the allowed length, which violates their categorical complementariness. Make all queries along P' to G. If P' is indeed an accepting path then reject. If it is not an accepting path then, as above, the algorithm finds a string in G at the allowed length and uses that to run the usual algorithm under the correct assumption.

Next we show that $P^G = UP^G$. Let M be a machine that is categorically UP with respect to NP P-inseparable conditions. Fix an input x. Run the usual algorithm under the assumption that the allowed length is one-empty, that is, only consider one-empty accepting paths in $M^G(x)$. If an accepting path is found, accept. If not, instead of outright rejecting, run the usual algorithm again but this time under the assumption that the allowed length is zero-empty so only consider zero-empty accepting paths. If an accepting path is found, accept, otherwise reject. This works because the allowed
length is either zero-empty or one-empty so if \(M^G(x) \) has an accepting path, it will be either zero-empty or one-empty.

Now we show that there is a pair of \(P^G \)-inseparable languages in \(NP^G \). Let \(L_i^X = \{0^n : (\exists y)[|y| = n - 1 & y \in X]\}, \) for \(i \in \{0, 1\} \). Relative to \(G \), \(L_0^G \) and \(L_1^G \) are a pair of disjoint \(NP^G \) sets. Let \(\tau \) be an \(NP \) \(P \)-inseparable condition and let \(M \) be a deterministic polynomial time oracle machine running in time \(p(|x|) \). Let \(n \) be an allowed length on which \(\tau \) is undefined and such that \(p(n) < 2^{n-1} \). Let \(m \) be an allowed length such that \(m > n \), \(\tau \) is undefined on length \(m \), and \(p(m) < 2^{m-1} \).

Run the computation \(M^\tau(0^n) \). Let \(\sigma \) be an extension of \(\tau \) for which strings not queried by the computation are set so that \(0^n \) is in \(L_0^G \). There are two cases:

Case 1. The computation accepts. Run the computation \(M^{\sigma}(0^m) \). If it accepts, extend \(\sigma \) to a condition \(\rho \) by setting unqueried strings of length \(m \) so that \(0^m \) is in \(L_\rho \). If it rejects, set them so that \(0^m \) is in \(L_\rho \).

Case 2. The computation rejects. Run the computation \(M^{\sigma}(0^m) \). If it accepts, extend \(\sigma \) to a condition \(\rho \) so that \(0^m \) is in \(L_\rho \). If it rejects, set them so that \(0^m \) is in \(L_\rho \).

Either way, we can force \(L(M) \) not to be a \(P^G \)-separator of \(L_0^G \) and \(L_1^G \).

Finally, we show that there are \(P^G \)-inseparable languages in \(coNP^G \). Let \(C_0^X \) and \(C_1^X \) be the languages and \(f^X \) the function defined in section 2.5. The definition of \(f^X \) allows us, using the same argument as in theorem 3.2, to extend one \(NP \) \(P \)-inseparable condition by another that forces a particular polynomial-time deterministic oracle machine not to be a \(P^G \)-separator of \(C_0^G \) and \(C_1^G \).

Theorem 3.4 Let \(G \) be a size-bounded \(NP \) \(P \)-inseparable generic oracle. Then

1. \(P^G = UP^G \);
2. \(P^G = NP^G \cap coNP^G \);
3. there are \(P^G \)-inseparable sets in \(NP^G \);
4. there are no \(P^G \)-inseparable sets in \(coNP^G \).

Proof. First we show that there are no \(P^G \)-inseparable sets in \(coNP^G \). Because a size-bounded generic fits the hypotheses of lemma 2.5, proposition Q holds with respect to \(G \) so, by corollary 2.4, all disjoint pairs of \(coNP^G \) sets are \(P^G \)-separable. By this and lemma 2.7, \(P^G = NP^G \cap coNP^G \).

Next we show that there is a pair of \(P^G \)-inseparable sets in \(NP^G \). Let \(L_0^X \) and \(L_1^X \) be the languages defined in theorem 3.3. We can use the argument there to show that \(L_0^G \) and \(L_1^G \) are in \(NP^G \) and \(P^G \)-inseparable.

Finally we show that \(P^G = UP^G \). Let \(M \) be an \(NP \) machine that is categorically \(UP \) with respect to size-bounded \(NP \) \(P \)-inseparable conditions. Let \((\tau, k) \) be a size-bounded condition. Extend it with the condition \((\sigma, j) \) where \(\sigma = \tau \) and \(j = k + 1 \). For all but a finite number of \(x \), an accepting path in \(M^G(x) \) must require that there be no more than \(|x|/2^j \) strings in the oracle. So we can use the usual algorithm but ignore any accepting path requiring \(G \) to have more than \(|x|/2^j \) strings in it. The algorithm works because, if there is a \(\sigma \) such that there are two such accepting paths in \(M^\sigma(x) \), these paths must conflict. If they were consistent with one another, \((\tau', k) \) could have been extended by a condition \((\tau', k) \) that would force \(M(x) \) to have two accepting paths, violating the assumption that it is categorically \(UP \).

Theorem 3.5 Let \(G \) be an \(NP \cap coNP \)-generic oracle. Then

1. \(P^G = UP^G \);
2. $P^G \neq \text{NP}^G \cap \text{coNP}^G$;

3. there are P^G-inseparable sets in NP^G.

4. there are P^G-inseparable sets in coNP^G.

Hemer and Selman [HS92] created an oracle that made the consequences of theorem 3.5 true. We will give a simple proof using generics.

Proof of theorem 3.5. Because an allowed length in G is either zero-empty or one-empty, we can show that $P^G = \text{UP}^G$ in exactly the same way we showed it in theorem 3.3.

Next we show that $P^G \neq \text{NP}^G \cap \text{coNP}^G$. Let $L_e^X = \{0^n : (\exists y)[[y] = n - 1 \& y \in X]\}$ and $L_i^X = \{0^n : (\forall y)[[y] = n - 1 \Rightarrow y \not\in X]\}$. L_e^X is categorically in NP^X and L_i^X is categorically in coNP^X. By the definition of G, $L_e^G = L_i^G$ so $L_e^G \in P^G \cap \text{coNP}^G$. Let τ be an $\text{NP} \cap \text{coNP}$ condition τ and M a deterministic polynomial-time oracle machine running in time $p(|x|)$. Let n be an allowed length on which τ is not defined and such that $p(n) < 2^n$. Run M on input 0^n. There is a string x of length n ending in 0 not queried by $M(0^n)$ and a string y of length n ending in 1 not queried.

If M accepts 0^n, let σ be $\tau \cup \{y\}$. If M rejects 0^n, let σ be $\tau \cup \{x\}$. In both cases, let x or y be the only string in σ of length n. We now have that $M^\sigma(0^n)$ accepts $0^n \not\in L_e^G$.

That there are P^G-inseparable pairs of sets in both NP^G and coNP^G follows from lemma 2.7. ■

Theorem 3.6 Let G be a UP-generic oracle. Then

1. $P^G \neq \text{UP}^G$;

2. $P^G = \text{NP}^G \cap \text{coNP}^G$;

3. there are P^G-inseparable sets in NP^G;

4. there are no P^G-inseparable sets in coNP^G.

Proof. First we show that $P^G \neq \text{UP}^G$. Let $L_e^X = \{0^n : (\exists y)[[y] = n \& y \in X]\}$. By the definition of G, $L_e^G \in \text{UP}^G$. Let τ be a UP-condition and let M be a deterministic polynomial-time oracle machine running in time $p(|x|)$. Let n be a length on which τ is not defined and such that $p(n) < 2^n$. Run M on input 0^n, responding 0 to any queries of strings of length n. There will be some x of length n that is not queried. If M accepts, let σ be τ with every string at length n left out. If M rejects, let σ be $\tau \cup \{x\}$ with every other string of length n left out. We then have that $M^\sigma(0^n)$ accepts $0^n \not\in L_e^G$.

By lemma 2.7, there is a pair of P^G-inseparable sets in NP^G.

The hypotheses of lemma 2.5 hold for a UP-generic so proposition Q holds with respect to G. By corollary 2.4, all disjoint pairs of coNP^G sets are P^G-separable. By lemma 2.7, $P^G = \text{NP}^G \cap \text{coNP}^G$. ■

Theorem 3.7 Let G be a one-sided UP-generic oracle. Then

1. $P^G \neq \text{UP}^G$;

2. $P^G = \text{NP}^G \cap \text{coNP}^G$;

3. there are P^G-inseparable sets in NP^G;

4. there are P^G-inseparable sets in coNP^G.
Proof. First we show that $P^G = NP^G \cap coNP^G$. Let M_0 and M_1 be NP^G-machines whose languages, with respect to one-sided UP-generic conditions, are categorically complementary. Fix an input x. We will demonstrate that the following polynomial time algorithm accepts x iff $x \in L(M_0^G)$.

As before, G is gappy so at most one allowed length can affect the computations $M_0^G(x)$ and $M_1^G(x)$. The algorithm may ignore any accepting path expecting more than one string in the oracle on the zero-side. If there is a string on the zero-side of the allowed length and the algorithm finds it, we can run the usual algorithm using this information and get a correct answer.

Let γ be the set of the strings whose membership or nonmembership in G has been determined. Initialize γ to \emptyset.

Step 1. In this step, we try to determine which machine has a zero-empty accepting path P that is consistent with the one-side of the allowed length. Now P must exist. If it did not, every accepting path in both machines expects at least one string in the oracle on the zero-side of the allowed length. Then G could force both machines to reject x by leaving that zero-side empty. But this contradicts the assumption that the languages are categorically complementary.

Run the usual algorithm under the assumption that the zero-side of the allowed length is empty, that is, only consider zero-empty accepting paths in $M_0^G(x)$. If there is a zero-empty accepting path in $M_0^G(x)$, the algorithm will find it in polynomial time. If we run out of zero-empty accepting paths in $M_0^G(x)$ then P must be in $M_1^G(x)$. Go to step 2.

If we do not run out of accepting paths in $M_0^G(x)$ upon exiting the loop, we check whether there is an accepting path P' in $M_1^G(x)$ that, on the one-side, is compatible with γ and requires no other queries.

If so, query the oracle on those strings P' queries on the zero-side. Then either we find a string there, so we run the usual algorithm with this assumption, or we do not find a string, in which case this is an accepting path in $M_1^G(x)$ so reject.

If P' does not exist then P is not in $M_1^G(x)$. If it were, we would have found it because every zero-empty path in $M_0^G(x)$ must conflict with P and we would have queried enough of the oracle to find everything P' queries on the one-side. So P must be in $M_0^G(x)$. Go to step 2.

Step 2. We now know which computation has P. Without loss of generality, assume that it is $M_1^G(x)$. Let $M_0^G(x)$ be $M_0^G(x)$ with any accepting paths expecting a string on the zero-side removed. Note that $M_0^G(x)$ still has P.

Run the usual algorithm on $M_0^G(x)$ and $M_1^G(x)$ with no assumptions, extending the γ from step 1. Each accepting path in $M_0^G(x)$ must conflict with P in $M_1^G(x)$ so, as usual, γ acquires the strings queried along P (or a similar path). If this were not true, there would be a zero-empty accepting path P in $M_0^G(x)$ (and hence $M_0^G(x)$) and some accepting path P_1 in $M_1^G(x)$ that expects at most one string on the zero-side of the allowed length such that P and P_1 are compatible. But then their union forms a one-sided UP-condition so G could have forced both to accept x, contradicting their categorical disjointness.

If we run out of accepting paths in $M_1^G(x)$ then reject. Otherwise, check whether there is a zero-empty accepting path in $M_0^G(x)$. If so, accept because $M_0^G(x)$, and so $M_0^G(x)$, accepts. If not, then P, which has all of its queries on the one-side in γ, must conflict with the oracle on the zero-side. But then, because it is zero-empty, the conflict must be because one of the strings it queries on the zero-side is in the oracle. We can then use this to run the usual algorithm.

Now we show that $P^G \neq UP^G$. Let $L^X = \{0^n : (\exists y)[|y| = n-1 \land y \in X]\}$. Using virtually the same argument as in theorem 3.6, we can show that $L^G \in UP^G - P^G$. By lemma 2.7, there are
P^G-inseparable sets in NP^G.

Finally, we show that there are P^G-inseparable languages in $coNP^G$. Let C_0^X and C_1^X be the languages and f^X the function defined in section 2.5. We can use the same argument as in theorem 3.2 to show that we can always extend one one-sided UP condition by another that forces a particular polynomial time deterministic machine M not to be a P^G-separator of C_0^G and C_1^G.

Theorem 3.8 Let G be a UP NP ∩ coNP-generic oracle. Then

1. $P^G \neq UP^G$;
2. $P^G \neq NP^G \cap coNP^G$;
3. there are P^G-inseparable sets in NP^G;
4. there are P^G-inseparable sets in $coNP^G$.

Proof. First we show that $P^G \neq UP^G$. Let $L^X = \{0^n : (\exists y)[|y| = n - 1 \& y0 \in X]\}$. By the same argument as in theorem 3.7, $L^G \in UP^G - P^G$.

Next we show that $P^G \neq NP^G \cap coNP^G$. Let $L^X_0 = \{0^n : (\exists y)[|y| = n - 2 \& y01 \in X]\}$ and $L^X_1 = \{0^n : (\forall y)[|y| = n - 2 \rightarrow y11 \notin X]\}$. Using essentially the same argument as in theorem 3.5, $L^G \in (NP^G \cap coNP^G) - P^G$.

By lemma 2.7, there are P^G-inseparable sets in either NP^G or $coNP^G$.

Acknowledgments

We would like to thank Stuart Kurtz, Sanjeev Saluja and Richard Beigel for helpful discussion on these questions and Sophie Laplante for helping to make the exposition clearer.

Some of this material appeared as part of [Rog95].

References

