Some of the main points from Jan 5 lecture can be summarized as:

$$\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}; \mathbf{b}_i \cdot \mathbf{b}_j = 1 \text{ if } i = j \text{ else } 0$$

 $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \cdot \mathbf{x} \\ \mathbf{b}_2 \cdot \mathbf{x} \\ \mathbf{b}_3 \cdot \mathbf{x} \end{bmatrix}$

let \mathcal{B} in an orthonormal basis

representation of \mathbf{x} in \mathcal{B}

 $\mathbf{x} = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + x_3 \mathbf{b}_3$ decomposition of \mathbf{x} along basis vectors

$$\begin{split} [\mathbf{x} + \mathbf{y}]_{\mathcal{B}} &= [\mathbf{x}]_{\mathcal{B}} + [\mathbf{y}]_{\mathcal{B}} \\ [\mathbf{x}]_{\mathcal{C}} &= \begin{bmatrix} \mathbf{b}_1 \cdot \mathbf{c}_1 & \mathbf{b}_2 \cdot \mathbf{c}_1 & \mathbf{b}_3 \cdot \mathbf{c}_1 \\ \mathbf{b}_1 \cdot \mathbf{c}_2 & \mathbf{b}_2 \cdot \mathbf{c}_2 & \mathbf{b}_3 \cdot \mathbf{c}_2 \\ \mathbf{b}_1 \cdot \mathbf{c}_3 & \mathbf{b}_2 \cdot \mathbf{c}_3 & \mathbf{b}_3 \cdot \mathbf{c}_3 \end{bmatrix} [\mathbf{x}]_{\mathcal{B}}; \\ \mathbf{x} \cdot \mathbf{y} &= |\mathbf{x}| |\mathbf{y}| \cos(\theta) \end{split}$$

$$|\mathbf{x}| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$$

$$\mathbf{I}\mathbf{x}=\mathbf{x}$$

$$(\mathbf{x} \otimes \mathbf{y})\mathbf{v} = \mathbf{x}(\mathbf{y} \cdot \mathbf{v})$$

$$\mathbf{x} \cdot \mathbf{y} = [\mathbf{x}]_{\mathcal{B}}^T [\mathbf{y}]_{\mathcal{B}}$$

$$[\mathbf{x} \otimes \mathbf{y}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{B}} [\mathbf{y}]_{\mathcal{B}}^T$$

$$[\mathbf{T}]_{\mathcal{B}} = \begin{bmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \end{bmatrix}; T_{ij} = \mathbf{b}_i \cdot \mathbf{T} \mathbf{b}_j$$

$$\mathbf{T}_{\text{scale}} = \mathbf{I} + (\alpha - 1)(\hat{\mathbf{x}} \otimes \hat{\mathbf{x}})$$

$$\mathbf{T}_{\mathrm{scale}} = \mathbf{I} + (\alpha - 1)(\mathbf{x} \otimes \mathbf{x})$$

$$\mathbf{T}_{\mathrm{shear}} = \mathbf{I} + \beta \hat{\mathbf{x}} \otimes \hat{\mathbf{y}}$$

$$\mathbf{T}_{\mathrm{shear}} = \mathbf{I} + \beta \mathbf{x} \otimes \mathbf{y}$$

linearity of coordinate representation

coord. transform between two orthonormal bases

def. of dot product; θ is angle between \mathbf{x} and \mathbf{y}

vector length in terms of ·

def. of identity tensor

definition of tensor product \otimes

computing dot products with components in \mathcal{B}

computing tensor products with components in \mathcal{B}

representation of T in \mathcal{B}

scales by α along \hat{x}

shears \mathbf{v} along $\hat{\mathbf{x}}$ by $\beta\hat{\mathbf{y}}\cdot\mathbf{v}$

Feb 3: the LHS of "computing tensor products" was incorrectly $\mathbf{x} \otimes \mathbf{y}$ instead of $[\mathbf{x} \otimes \mathbf{y}]_{\mathcal{B}}$ in the original HW

- **1)** Consider a 2-dimensional space with orthonormal basis $\mathcal{B} = \{\mathbf{x}, \mathbf{y}\}$.
 - 1. What is $[\mathbf{I} + (\alpha 1)\mathbf{x} \otimes \mathbf{x}]_{\mathcal{B}}$? (What are the components of this 2-by-2 matrix?)
 - 2. Show that the same scaling transform could also have been written $\alpha \mathbf{x} \otimes \mathbf{x} + \mathbf{y} \otimes \mathbf{y}$.
 - 3. What is a simpler way to write $\mathbf{x} \otimes \mathbf{x} + \mathbf{y} \otimes \mathbf{y}$? (hint: a single letter!) Why is this?
 - 4. Let $\mathbf{v} = \mathbf{x} + \mathbf{y}$ and $\hat{\mathbf{v}} = \mathbf{v}/|\mathbf{v}|$. What is $[\hat{\mathbf{v}}]_{\mathcal{B}}$? (That is, what are the components of this 2-vector?)
 - 5. What is $[\mathbf{I} + (\alpha 1)\hat{\mathbf{v}} \otimes \hat{\mathbf{v}}]_{\mathcal{B}}$?
- **2)** Consider a 3-dimensional space with orthonormal basis $\mathcal{B} = \{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$.
 - 1. Describe geometrically what the transform $\mathbf{T}_1 = \mathbf{I} + \mathbf{z} \otimes (\alpha \mathbf{x} + \beta \mathbf{y})$ does.
 - 2. What is $[\mathbf{T}_1]_{\mathcal{B}}$? (What will this 3x3 matrix look like?)

- 3. Let $\mathbf{T}_2 = \mathbf{I} + \alpha \mathbf{y} \otimes \mathbf{v}$, for an arbitrary vector \mathbf{v} . What is $[\mathbf{T}_2]_{\mathcal{B}}$? The answer should involve the v_i components of $[\mathbf{v}]_{\mathcal{B}}$.
- **3)** The Real-Time Rendering book (Table 1.2 page 7) uses the symbol \otimes to represent component-wise multiplication of two vectors $\mathbf{u} = (u_1 \ u_2)^T$ and $\mathbf{v} = (v_1 \ v_2)^T$ as

$$\mathbf{u}^{"}\otimes^{"}\mathbf{v} = (u_1v_1 \ u_2v_2)^T, \tag{1}$$

where we're using two-dimensional vectors for simplicity. The book doesn't follow the same practice as above in notationally distinguising between geometric vectors and their representation in some basis, but given some orthonormal basis $\mathcal B$ we could interpret this " \otimes " as a multiplication of two geometric vectors $\mathbf u$ and $\mathbf v$ that gives back a new geometric vector $\mathbf u$ " \otimes " $\mathbf v$, with a product that happens to depend on the components of $\mathbf u$ and $\mathbf v$ in $\mathcal B$:

$$[\mathbf{u}]_{\mathcal{B}} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}; [\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \Rightarrow [\mathbf{u} " \otimes " \mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} u_1 v_1 \\ u_2 v_2 \end{bmatrix}$$
(2)

$$\Rightarrow \mathbf{u} "\otimes" \mathbf{v} = u_1 v_1 \mathbf{b}_1 + u_2 v_2 \mathbf{b}_2 \tag{3}$$

If you had chosen a different orthonormal basis, would the vector \mathbf{u} " \otimes " \mathbf{v} always be the same? Find a two-dimensional counter-example: two orthonormal bases \mathcal{B} and \mathcal{C} , and two vectors \mathbf{u} and \mathbf{v} , so that the product \mathbf{u} " \otimes " \mathbf{v} can produce two very different (coordinate-free, geometric) answers, depending on the basis used. You can draw a picture, or symbolically define \mathcal{C} in terms of \mathcal{B} , and the two vectors in terms of \mathcal{B} . This is a question that take much less space answer, than to ask, and don't over-think it!