Diffusion Tensor MRI
Beyond Tractography

Gordon L. Kindlmann
glk@uchicago.edu

Outline

Pictorial overview of DT-MRI data
Geomtric intuition for commonly studied tensor invariants

Three (non-tractography) methods of DTI analysis:
 • Tract-based Spatial Statistics (Smith et al.)
 • Tract-Specific Framework (Yushkevich, Zhang, Gee et al.)
 • Anisotropy Creases (Kindlmann at al.)

Discussion & Conclusions
Diffusion & Diffusion weighting

Diffusion: Brownian motion of one material through another

Anisotropy: diffusion rate depends on direction

Magnetic gradients create spatial planar waves of proton phase

Destructive interference creates signal attenuation (diffusion-weighting) only along gradient direction

Indirect imaging of microstructure

Microstructure of bundles directionally constrains water diffusion along fiber direction (LeBihan et al. 1985)

Intra- vs. extra-cellular diffusion

Diffusion lengths with the time-scale of MR measurement on order of 10μm

Apparent diffusion coefficient (ADC) measured for each gradient

Voxels on the order of 1mm

⇒ **Two to three orders of magnitude** away from measuring axons
Diffusion-Weighted to Diffusion-Tensor

Diffusion-weighted MR data

Single Tensor Model (Basser et al. 1994)

\[S_i(b, g_i) = S_0 e^{-b g_i^T D g_i} \]

Linear regression

Single Tensor Model: only six degrees of freedom

Eigenvectors & eigenvalues

\[D = R \Lambda R^{-1} \]

\[= \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \]

Eigenvectors: orientation

Eigenvalues: shape
Tensor invariants describe shape

Can be understood as cylindrical or spherical coordinate system

\[\lambda_3 \]
\[\lambda_1 = \lambda_2 = \lambda_3 \]

\[\text{tr}(D) = D_{xx} + D_{yy} + D_{zz} \]
\[|D| = \sqrt{\text{tr}(D^T D)} \]
\[E = \text{deviatoric}(D) = D - \text{trace}(D)^* I/3 \]

\[\text{mode}(E) \]
\[\frac{|E|}{|D|} \sim FA \]
\[FA = \text{Fractional Anisotropy} \]

Biological meaning of tensor shape

Size: bulk mean diffusivity MD (“ADC”)
- (ADC strictly speaking diffusivity along one direction)
- Roughly same across gray+white matter, high in CSF
- Indicator of acute ischemic stroke

Anisotropy (e.g. FA): directional microstructure
- High in white matter, low in gray matter and CSF
- Increases with myelination, tends to decrease in diseases that damage white matter

Much diffusion-MRI-based neuroscience is about MD & FA

Mode: linear versus planar
- Partial voluming of adjacent orthogonal structures
- Fine-scale mixing of diverse fiber directions
- Tensor fitting error increases with planarity (Tuch 2002)
Principal eigenvector \(\approx\) axon direction

Standard RGB colormap

\[
\begin{align*}
R &= |e_1 \cdot x| \\
G &= |e_1 \cdot y| \\
B &= |e_1 \cdot z|
\end{align*}
\]

(Pajevic & Pierpaoli, 1999)
Superquadric Tensor Glyphs, Kindlmann '04
Superquadric Tensor Glyphs,
Kindlmann '04

Superquadric Tensor Glyphs,
Kindlmann '04
Superquadric Tensor Glyphs, Kindlmann '04

Tractography (deterministic) Basser et al. 1998

Compute path that is everywhere tangent to principal eigenvector

Idea: can compute paths of axons

- Data too coarse
- Single-tensor model can’t represent crossing or branching
- Selecting individual tracts requires manual editing or alignment with atlas
- Still used for large bundles

Probabilistic tractography and non-tensor models capture more complex architecture
Summarizing intro

Diffusion MRI measures **anisotropy**

Anisotropy is a meaningful tissue property
Anisotropy implies directionality

Tractography/Connectivity methods attempt to trace spatial patterns of directionality

Can also study anisotropy (FA) and other invariants themselves

Outline

Pictorial overview of DT-MRI data
 Geometric intuition for commonly studied tensor invariants

Three (non-tractography) methods of DTI analysis:
 • Tract-based Spatial Statistics (Smith et al.)
 • Tract-Specific Framework (Yushkevich, Zhang, Gee et al.)
 • Anisotropy Creases (Kindlmann at al.)

Discussion & Conclusions
Tract-based Spatial Statistics (TBSS)

- For doing statistical tests on tensor invariants
- Conceptually close to Voxel-Based Morphometry (voxel-based, whole brain, automated)
- Computes a “skeleton” of group-mean FA image
- Voxel-based (raster) representation of skeleton
- Skeleton is reference manifold for projecting and doing statistics on registered single-subject FA

TBSS compared to VBM

VBM: automated, simple, whole brain analysis
(Ashburner & Friston NeuroImage 2006)

VBM of FA sensitive to:
- Changes in WM alignment from registration
- Amount of smoothing (changes in FA levels vs volume of WM region, esp with thin tracts)

TBSS aims for robustness by using **skeleton**: avoids regions of low mean FA or high inter-subject variability

Steps in TBSS

- Single-subject FA maps non-linear registered
- Mean FA image skeletonized by non-maximal suppression (using either first or second derivatives)
- Single-subject FA maps projected into skeleton (with limit on distance of projection)
- GLM statistics on projected FA

Example of TBSS applied

DTI for TBI (Traumatic Brain Injury); indicates changes that are not prominent with structural imaging

Red: FA(cntl) > FA(TBI)
Blue: MD(cntl) < MD(TBI)
Yellow: $D_{ax}(cntl) < D_{ax}(TBI)$
(Blue: $D_{rad}(cntl) < D_{rad}(TBI)$)

Outline

Pictorial overview of DT-MRI data
 Geometric intuition for commonly studied tensor invariants

Three (non-tractography) methods of DTI analysis:
 • Tract-based Spatial Statistics (Smith et al.)
 • Tract-Specific Framework (Yushkevich, Zhang, Gee et al.)
 • Anisotropy Creases (Kindlmann et al.)

Discussion & Conclusions

Tract-specific framework ("TSF")

• Uses medial representations in continuous domain to parameterize representations of specific sheet-like tracts of interest
• Aims to increase sensitivity at cost of specificity
• Uses rasterizations of tractography to delineate tracts, then medial axis transform
• http://www.picsl.upenn.edu/Research/Research
 http://picsl.upenn.edu/Theme/DiffusionImaging
Steps in Tract-Specific Framework

- Spatial normalization of all subjects’ tensor images (including tensor reorientation)
- Tractography in tracts of interest according to Wakana et al.
- Rasterization processed by Voronoi pruning & manifold learning (Maximum Variance Unfolding) to recover low-DOF parameterization of underlying sheet
- Inverse Skeletonization optimizes fit of continuous medial representation of tractography (explicitly recovers tract thickness)

Using parametric representations

- Compute invariants and then project (like TBSS)
- Or average tensors and then compute invariants
- Leverage connection to known tract thickness

Out of image space, a real manifold: can connect to literature on cortical surface analysis

DT-MRI - Beyond Tractography ISMRM'11 "Functional & Anatomic Data Analysis: Principles & Practicalities"
Outline

Pictorial overview of DT-MRI data
 Geometric intuition for commonly studied tensor invariants

Three (non-tractography) methods of DTI analysis:
 • Tract-based Spatial Statistics (Smith et al.)
 • Tract-Specific Framework (Yushkevich, Zhang, Gee et al.)
 • Anisotropy Creases (Kindlmann at al.)

Discussion & Conclusions

Anisotropy Creases

• Computes ridges of FA (like TBSS), but in the continuous domain (like TSF)
• Draws on basic Computer Vision
 • Ridge/valley feature definition
 • Scale-space for scale (blurring) selection
• Unlike TBSS & TSF: extracts features from single-subject scans, not group means
• Not (yet) used for group studies or available in tool
Differential Structure of image

Ridges & Valleys (“Creases”) of **continuous** anisotropy map

“Ridges in Image and Data Analysis”
Eberly ’96

Constrained extremum

Gradient \mathbf{g}

Hessian eigensystem \mathbf{e}_i, λ_i

Crease: \mathbf{g} orthogonal to one or more \mathbf{e}_i

Eigenvalue gives **strength**

Ridge surface: $\mathbf{g} \cdot \mathbf{e}_3 = 0$; $\lambda_3 < \text{thresh}$

Ridge line: $\mathbf{g} \cdot \mathbf{e}_3 = \mathbf{g} \cdot \mathbf{e}_2 = 0$; $\lambda_3, \lambda_2 < \text{thresh}$

Valley surface: $\mathbf{g} \cdot \mathbf{e}_1 = 0$; $\lambda_1 > \text{thresh}$

TBSS is a raster representation of the ridge surfaces of FA

Coronal slab: tractography
Coronal slab: ridge surfaces

Coronal slab: valley surfaces
Coronal slab: tractography + valleys

How to choose scale (amount of blurring)?

Computer vision notion of “Scale-Space”: analyze image and all blurrings simultaneously

Features exist as manifolds in (N+1)-dimensional space

DT-MRI - Beyond Tractography
ISMRRM'11 “Functional & Anatomic Data Analysis: Principles & Practicalities”
Brain DTI Results

FA ridge surfaces

Without Scale-Space With Scale-Space

FA ridge lines
Outline

Pictorial overview of DT-MRI data
 Geometric intuition for commonly studied tensor invariants

Three (non-tractography) methods of DTI analysis:
 • Tract-based Spatial Statistics (Smith et al.)
 • Tract-Specific Framework (Yushkevich, Zhang, Gee et al.)
 • Anisotropy Creases (Kindlmann et al.)

Discussion & Conclusions

Discussion & Conclusions

Can use these examples to ponder space of DTI analysis ...
 Role of Raster vs Continuous Representation
 Represent “middle” only, or both middle and boundary
 Exploratory vs Model-based Analysis
 Interaction with Tractography
 Role of Anisotropy (FA) Thresholding
 Role of scale (blurring), and setting of scale
 Role of Non-rigid Registration as means of learning correspondence (necessary?)
 Basic question: How should we assess the correlation between mathematical features and anatomical features? (given reservations about single tensor model)
Thank you

Follow-up: glk@uchicago.edu