DT-MRI Inspection and Visualization

Gordon Kindlmann

Scientific Computing and Imaging Institute, School of Computing, University of Utah

PhD (finishing) Computer Science, University of Utah

Interested in methods for “looking at” DT-MRI data and visually communicating its structure

Idea: two aspects of what’s called “visualization”

• Acquisition: get the data
• Inspection: “Show me the data”
 verify data integrity, coordinates, and layout
• Visualization: “Show me the structures”
 depict the form and character of features in the data
• Analysis: extract and quantify features
Fractional anisotropy (FA) RGB(1st eigenvector v_1)

1 glyph = 1 mm3
Gordon Kindlmann
PhD (finishing) Computer Science, University of Utah

Interested in methods for “looking at” DT-MRI data and visually communicating its structure

Idea: two aspects of what’s called “visualization”

- Acquisition: get the data
- Inspection: “Show me the data”
 verify data integrity, coordinates, and layout
- Visualization: “Show me the structures”
 depict the form and character of features in the data
- Analysis: extract and quantify features

Inspection saves the day

Sagittal slice: cingulum bundle, corpus callosum
Inspection saves the day

Scalar shape metrics (anisotropy)
 • Barycentric shape space

Glyphs
 • Boxes, spheres, cylinders, superquads
 • Culling based on anisotropy

Volume visualization
 • Isosurfaces of shape metrics
 • Transfer functions of shape
Space of tensor shape

\[\lambda_1 + \lambda_2 + \lambda_3 = T \]

Scalar shape metrics

Westin, 1997
Scalar shape metrics

Basser + Pierpaoli, 1996

1 - VR
1 - volume ratio

FA
fractional anisotropy

RA
relative anisotropy

Glyph shapes
Volume Rendering

Simple algorithm

• Cast rays through volume
• Measure tensor, tensor properties
• Assign colors and opacities
• Composite

\[DT \Rightarrow FA, c_l, c_p \]

\[R, G, B, \alpha \]

Transfer function
Volume Rendering