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My research has been profoundly affected by two stints outside of academia: (1) working in the national interest at MIT
Lincoln Laboratory and (2) starting Tilera (an early multicore company, founded before the term multicore was in popular
use) with my then PhD advisor, Anant Agarwal, and my fellow students. While each experience was unique, I encountered
the same common frustrations and the last 15 years of my research has been inspired by the challenges I faced in these jobs.

Lessons Learned at MIT Lincoln Laboratory and Tilera Corporation
Specifically, every system I have deployed in the ”real-world” has required that my team and I find ways to meet multiple,

conflicting goals. And ensure those goals are met despite unpredictable operating environments. For example, at Lincoln
Lab we prototyped radar signal processing systems that demanded the performance of a supercomputer, with size and power
constraints defined by what was effectively an unventilated utility closet on a US Navy cruiser. At Tilera, I had to help a
customer concurrently transcode 20 HD video streams in a 30 Watt power envelope while minimizing their material cost.

Deploying computer systems that meet goals across multiple, conflicting metrics requires overcoming two core challenges.
The first is complexity: hardware and software expose diverse, configurable parameters whose complicated interactions have
non-linear effects on mission-critical metrics like latency, energy, accuracy, and security. The second is dynamics: computing
systems must reliably adapt to unpredictable changes in operating environment, input workload, and even user needs.

Addressing Complexity and Dynamics with Self-aware Computing
To address these challenges, I have defined and developed the principle of self-aware computing systems [23,24,59]. The

software and hardware systems I build are aware of their quantifiable goals—defined in terms of metrics like throughput,
latency, power, energy, and accuracy. They continuously monitor critical metrics and adapt their internal behavior to ensure
their goals are maintained in complex, dynamic environments. My self-aware systems combine machine learning—to ad-
dress complexity [5–8, 16, 38, 56, 57, 60, 61, 81, 83]—and control theory—to handle dynamics [9, 11–13, 20, 26, 28, 37, 39–
41, 48–50, 64, 76, 77, 80]. One of my work’s most significant benefits is combining learning with control so that deployed
computing systems can learn at runtime, while still providing many of the formal guarantees of traditional control systems,
making control theoretic benefits available to a wide range of computing systems [21, 55, 59, 63, 84]. We recently designed
a programming framework to make this functionality accessible to users who are not learning and control experts [2, 59].
Given the work’s potential to fundamentally change users’ interaction with computing systems, Scientific American named
my self-aware computing model one of ten World-Changing Ideas.1 Additionally, this work was honored with a Presidential
Early Career Award for Scientists and Engineers (PECASE) in 2019.2

As a new graduate student I was told to pick one subfield and only publish there. As a (perhaps unhealthily) stubborn
person, I ignored that well-intentioned advice. I felt the best way to show the value of self-aware computing was to apply it
to as many different problems as possible. So my publications cover many subfields: I have used self-awareness to improve
computing at the circuit-level [68], the architecture-level [5, 63, 65], the OS-level [11, 16, 26, 39, 55], the application-level
[7, 12, 13, 28, 50, 76, 77, 80], and by coordinating across multiple layers of the system stack [9, 13, 20, 21, 50, 59, 84]. We
have applied these techniques to manage energy on embedded micro-controllers [41], in collaboration with Argonne National
Laboratory to manage power for the Theta supercomputer [52], and even for quantum computers [60].3

The Next Step: Controlling AI
The CS community and the world at large has been transformed by advances in AI. And of course, like all computing

systems, deployed AI inference systems also must meet quantifiable goals including latency and energy, but also inference
accuracy. I believe my prior research on approximate computing and loop perforation [11, 20,21, 27, 28,54, 62, 67] makes
me well suited to study similar problems of dynamically managing AI inference to meet latency, energy, and accuracy goals
in dynamic environments.4 While this research is still in its early days, we have begun addressing two fundamental questions:
• First how can we design and train neural networks that support dynamic (inference-time) tradeoffs between resource usage

and accuracy? The answer so far has been to structure the networks to maximize internal data reuse and use a novel
orthoganlized stochastic gradient descent to balance accuracy across multiple network configurations [41, 74].

• Second, how do we dynamically control these networks to create better computing systems? Here the answer has been
to combine the novel network structure from the first problem with novel control theoretic techniques designed for these
adaptable neural networks [41, 75, 80].

The initial results are exciting. Working with scientists at Argonne National Laboratory, we have developed techniques that
use control theory to guarantee the accuracy of ML inference in the context of material science simulations [80]. We have
also used these techniques on embedded systems that harvest energy from the environment to maximize inference accuracy
given a dynamically changing energy budget [41]. I am excited to find more uses for controllable AI going forward.

1Editors et al. “World-Changing Ideas: 10 new technologies that will make a difference”. In: Scientific American 305.6 (Dec. 2011)
2The award citation was for ”exceptionally innovative research on programming systems of power-constrained, complex exascale platforms, which will

greatly increase user productivity, performance of High Performance Computing applications, and the rate of new scientific insights.”
3Because so many computing systems are confronted with complexity, dynamics, or both, self-awareness naturally leads to many collaborations, and I

am proud to have accumulated 300 co-authors in my pursuit of this work (as of January 2023 according to DBLP).
4Our work on Loop Perforation received an FSE Test of Time Honorable Mention in 2021.
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The Rest of This Statement
The remainder of this statement describes my research on self-aware computing systems, including: (1) learning system

models, (2) controlling system dynamics, and (3) combining learning and control to enable new capabilities. After describing
these goals, I briefly review some earlier research projects and then elaborate my future plans.

Self-aware Computing Systems
Self-aware computing systems (1) monitor high-level quantifiable goals (like energy, latency, and accuracy), (2) have

dynamically configurable parameters that affect those goals (e.g., clockspeed or alternative algorithms for accomplishing
some task), and (3) automatically adapt those configurations so that their goals are met despite the challenges of complexity
and dynamics [23, 24, 58]. To make this work widely accessible, I have developed programming frameworks that support the
design and implementation of self-aware systems without requiring developers to be experts in learning or control [2, 59]

Learning Models of Complex Computer System Behavior
Until the mid-2000s software developers relied on computer architects to turn increasing transistor counts into increasing
performance with no software changes. Due do the end of Dennard scaling and the physical limitations of power and energy
dissipation, computer architects can no longer provide this “free ride.” While additional hardware resources are available,
they come at the cost of increased software complexity for determining how best to use those resources. Software systems
are also increasingly configurable and require users to directly manage performance related parameters [45]. The interaction
of these software and hardware parameters becomes incredibly complex and difficult to model.

My research has explored many ways to integrate machine learning into systems (a field now called ML for Systems).
I mostly focus on resource management and scheduling, especially for power and energy [5–8, 16, 38, 56, 57, 60, 61, 81, 83].
However, there in one particular result that I would like to highlight: Improving learning accuracy does not necessarily
improve the system outcome [6]. This was a somewhat counter intuitive result: we were using learned models to estimate
a job’s latency and energy for different resource assignments and then scheduling those resources to meet a job’s target
latency with minimal energy. We assumed that improving the learning accuracy would improve the energy efficiency, but
even fairly large accuracy improvements did not reduce energy. After exploration, we determined the reason: this is a
constrained optimization problem (meet a target latency with minimal energy) and, of course, only the resource configurations
on the optimal frontier of power and performance are useful to solve this problem [18, 44]. Empirically, however, most
resource configurations are not on the optimal frontier (typically we found about 90% are not optimal for any given task).
Unfortunately, when the learning model is optimized for accuracy, it gets the biggest win by improving accuracy for these
non-optimal configurations (since they are the majority), which does not improve the systems result (which only concerns
optimal configurations, which are a small minority). Once we accounted for this structure, we designed a learning approach
that was less accurate overall, but better for predicting the optimal configurations. Our less accurate learner gets 26% closer
to optimal energy than the most accurate learner we studied. I believe this is an important observation for the emerging field
of ML for systems: the learning approaches should account for the structure of the systems problem they are deployed
to solve rather than strictly optimize for accuracy.
Controlling Computing Systems Through Dynamic Fluctuations
Control theory is a powerful branch of engineering for ensuring that systems meet goals in dynamic environments. Control
theory represents a general set of techniques, but its implementations are almost always system-specific [47,51]. While there
is a rich history of applying control solutions to meet latency and throughput goals in computer systems, these solutions
require laborious profiling and tuning and must be reimplemented or redesigned wholesale when ported to a new computer
system. Essentially, the great bulk of control theory applied to computing requires engineers to be experts in both control and
computing. Unlike this prior work, my research has preserved the generality of control through into implementation,
allowing developers with no control background to build systems with formal guarantees that their goals will be met.

Specifically, I have generalized control solutions in two ways:
• Automatically synthesizing controllers to manage computer system goals. These include techniques for building com-

putationally efficient single-input, single-output controllers [12], to techniques for creating hierarchies of controllers that
can meet multiple goals with multiple configuration parameters [13,20], to techniques that automatically synthesize model
predictive control solutions [50]. Together, this work makes a range of control solutions available to non-experts, automat-
ing much of the most tedious and error-prone process of control design. These synthesis techniques, however, still require
users to set some control-specific parameters.

• Embedding control systems into existing computer systems. As an alternative, I have explored techniques that hide
control parameters from users by embedding them into systems below the user interface. As examples, I have embedded
controllers into larger systems to manage approximate computing applications [28], to create portable, energy efficient em-
bedded software [26, 37, 39], guarantee accuracy for machine learning inference in scientific simulations [80], meet energy
budgets for embedded systems [41], manage bandwidth in network protocols for video analytics [9], and to automatically
configure large scale software systems like HDFS, HBASE, and Hadoop MapReduce [77]. I have even built controllers
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that control other control systems [64, 76] In all these examples we have replaced existing static configuration parameters
or heuristics with control-based solutions that dynamically adjust parameters based on runtime conditions. We repeatedly
find that the control-based approach keeps the system up and meeting its goals in scenarios where even patches
posted by expert developers fail.

Combining Machine Learning and Control Theory
As noted above, learning techniques are well-suited to build models of complex, configurable computing systems and control
techniques are ideal for configuring those systems to meet goals despite dynamic fluctuations. It makes intuitive sense to
combine both, and that has been a core piece of my work on self-aware computing.

Initially, I felt stymied trying to bridge the gap between learned, non-linear models of discrete computing systems and
the continuous, linear models used by many common control systems. I initially explored this space through several specific
problems: (1) learning models of system resource efficiency and combining those with control of application alternatives
to maximize application quality for a given energy budget [21], (2) learning application resource requirements and then
combining that with control to meet quality-of-service guarantees for minimal cost in infrastructure-as-a-service platforms
[84], (3) and learning application resource needs to control latency with minimal energy for GPUs [63].

The key lesson learned from this work was the interface needed to combine the learned model with the control system. In
short, we have the learners produce piece-wise linear models representing tradeoffs (for example the tradeoff between energy
and latency for a given application and system) and pass these to the controller, which uses this linear model to make efficient
resource allocation decisions in response to dynamics. One additional insight was that results improved if the learner could
also communicate its uncertainty to the control system. The result is a general methodology where an abstract control
system is customized at runtime by a learner. We find that it enables: 1) fast reaction to dynamic changes, 2) error tolerance
based on runtime feedback, and 3) robust design that guarantees that operat- ing requirements will be respected when possible
or the ability to report when those requirements cannot be met [55].

Prior Research Projects
Multicore Architectures: Raw and Tilera As a graduate student at MIT, I had the fortunate opportunity to turn academic
research (the Raw processor [22, 70–73]) into a commercial product (the Tilera TILE family of processors [29, 78]). In
addition, I have several other papers on multicore and GPU support for signal processing [17, 30–35, 46, 65, 79].
Approximate Computing and Loop Perforation Approximation increases application flexibility; e.g., when resources are
scarce, rather than stop computing, an approximate application produces a slightly less accurate result [15,19,27,43,54,62,67].
Controlling such approximate computations was often a motivation for the self-aware computing techniques listed above
[11, 20, 21, 28, 75]. Of these, loop perforation is probably the most well-know, perhaps because it is the easiest to apply.
Distributed System Power Management Power management has been a major focus for me, often as a motivator for
self-aware systems [10, 25, 52, 81, 83] and sometimes as a goal to itself [3, 4, 53, 69, 82].

Summary and Future Work
My research studies self-awareness as a fundamental property of computing systems. Self-aware systems automatically

adapt behavior to meet user-specified goals in complex, dynamic computing systems. While I am primarily a systems builder,
I base my work on sound mathematical models which permit some reasoning and assurance about when they will meet user
goals, and—perhaps more importantly—providing understanding of when those goals are unreachable.

In the future I plan to extend self-aware computing in several ways:
• Controlling AI Inference. This is the direction I am most excited about. The goal and preliminary results are listed on the

front page of this statement (as I thought some readers might not make it this far—if you did, I appreciate it!).
• Security and Privacy of Self-aware Systems. In my ideal self-aware world, a computer system would consume exactly

the energy required for its current task. Unfortunately, this would also amplify side channels. I would love to make security
and privacy another quantifiable goal managed alongside energy and latency. We have started preliminary work in this
direction looking at the energy cost of encrypted storage [36] and how adaptive sensor systems leak information [42].

• Self-awareness and Quantum Computing. I have begun looking into quantum computing with my colleague, Fred
Chong. So far, this has mostly consisted of adapting scheduling algorithms for parallel computing (e.g., [3, 4]) to quantum
systems [1, 14, 61, 66]. However, one of my favorite results so far is the use of Bayesian optimization to improve hybrid
classical-quantum systems, sometimes by as much as 50× the state-of-the-art [60].

• Creating Modular Self-aware Systems. Self-aware systems adapt based on feedback. In some of my early work, I realized
that deploying two independent self-aware systems that act on the same feedback signal can cause destructive interference.
One way to fix that is to assemble a large self-aware system from many small ones and propagate the decisions through
each [13,20,21]. The drawback of this approach (and similar approaches by others) is that it requires design time knowledge
and does not support dynamic composition of self-aware systems. Thus, a truly modular approach is an important part of
future work—I want to independent developers to run their self-aware systems at the same time and know they will work.
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