
JouleGuard: Energy Guarantees for Approximate Applications
Henry Hoffmann

Department of Computer Science, University of Chicago
hankhoffmann@cs.uchicago.edu

Abstract
Energy consumption has become a major constraint in computing
systems as it limits battery life in mobile devices and increases
costs for servers and data centers. Recently, researchers have pro-
posed creating approximate applications that can trade accuracy
for decreased energy consumption. These approaches can guaran-
tee accuracy or performance and generally try to minimize energy;
however, they provide limited guarantees of energy consumption.
In this paper, we build on prior work in approximate computing to
create JouleGuard: a runtime control system that coordinates ap-
plication and system to provide control theoretic formal guarantees
of energy consumption, while maximizing accuracy. These energy
guarantees will aid any user who has an energy budget (e.g., bat-
tery lifetime or operating cost) and must achieve the most accu-
rate result on that budget. We implement JouleGuard and test it on
a Linux/x86 server with eight different approximate applications
created from two different frameworks. We find that JouleGuard re-
spects energy budgets, provides near optimal accuracy, and adapts
to phases in application workload. JouleGuard is designed to be
general with respect to the applications and systems it controls,
making it a suitable runtime for a number of approximate com-
puting frameworks and languages.

1. Introduction
Energy consumption is crucial to the full spectrum of computing
systems from mobile, where it determines battery life, to supercom-
puting, where it increases costs. To address energy use, a number
of approaches create approximate applications that reduce the ac-
curacy of their results in exchange for other benefits, particularly
reduced energy consumption (see Sec. 2.1). At the same time,
system-level approaches create energy-aware systems, which trade
delivered performance for reduced energy (see Sec. 2.2).

The combination of approximate applications and energy-aware
systems creates a rich optimization space. Several cross-layer ap-
proaches coordinate application and system to take advantage
of the opportunities that arise in the larger tradeoff space (see
Sec. 2.3). Examples include GRACE-2 [43] and Agilos [25], both
of which guarantee performance, while minimizing energy con-
sumption.

Minimizing energy, however, usually coincides with running
as fast as possible – thus, operating at the extreme end of the
application’s performance/accuracy tradeoff space. This situation
creates a dilemma for users who have an energy budget – they do
not want minimum energy consumption, but rather the maximum
accuracy possible within the budget. For example, a mobile user on
an important video conference needs the battery to last the duration
of the call while maximizing quality.

This paper extends existing cross-layer management approaches
to create JouleGuard, a runtime framework that coordinates ap-
proximate applications and energy-aware systems to provide en-
ergy guarantees while maximizing application accuracy. Joule-
Guard’s runtime takes an energy goal and dynamically configures
application and system to ensure that the goal is met and appli-
cation accuracy is near optimal for that energy consumption. The
key insight in the JouleGuard approach is that this complicated

multidimensional optimization problem can be split into two sub-
problems: maximizing system energy efficiency and dynamically
managing application accuracy/performance tradeoffs. These sub-
problems are dependent, but JouleGuard is provably robust de-
spite the dependences. This robustness comes from a combination
of machine learning and control theoretic techniques. JouleGuard
is general with respect to both the approximate applications and
energy-aware systems it coordinates, making it compatible with
multiple frameworks supporting approximate programming.

We implement JouleGuard in C and test it on three hardware
platforms (a mobile, desktop, and server system – each with differ-
ent performance/power tradeoffs) running eight different approx-
imate applications (four built with PowerDial [17] and four built
with Loop Perforation [39]). Our results show:
• Stability and Convergence: JouleGuard quickly converges to

a given energy goal with low error. On average, across all appli-
cations, all machines, and a number of energy goals JouleGuard
achieves an average error of less than 3%.

• Optimality: JouleGuard converges to the energy goals with
near optimal accuracy. On average, for all applications, systems
and goals, JouleGuard is within 97% of true optimal accuracy.

2. Background and Related Work
2.1 Approximate Applications
Approximate applications trade accuracy for performance, power,
energy, or other benefits. Approaches include both static, compile-
time tradeoff analysis [37, 39, 1, 8, 7] and dynamic, runtime support
for tradeoff management [19, 20, 9, 17, 4, 2, 40, 35]. Static
analysis guarantees that accuracy bounds are never violated, but
it is conservative and may miss chances for additional savings
through dynamic customization.

Dynamic management systems tailor runtime behavior to spe-
cific inputs. For example, Green maintains accuracy goals while
minimizing energy [4], and Eon extends battery life in exchange
for accuracy [40]. Both Green and Eon use heuristic techniques for
managing the tradeoff space. PowerDial [17], uses control theoretic
techniques to provide performance guarantees while maximizing
accuracy. Each supports a single constraint. For example, Green
uses heuristics to ensure accuracy bounds are not violated, but it
does not guarantee energy consumption. PowerDial formally guar-
antees performance (so it can meet real-time or quality-of-service
goals), but does not manage energy. Eon uses heuristics to prevent
embedded devices from running out of energy, but does not sup-
port maximizing accuracy on energy budgets. Furthermore, these
approaches are designed to work at the application-level only.

2.2 Energy-aware Systems
Many system-level approaches coordinate the use of multiple re-
sources to provide performance guarantees with reduced power or
energy consumption. For example, Li et al. manage memory and
processor speed [26], Dubach et al. coordinate several microar-
chitectural features [10], and Maggio et al. coordinate core allo-
cation and clock speed [29]. Meisner et al. propose coordinating
CPU power states, memories, and disks to meet performance goals
while minimizing power consumption [30]. Bitirgen et al. coordi-
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nate clockspeed, cache, and memory bandwidth in a multicore [5].
The METE system controls cache, processor speed, and memory
bandwidth to meet performance requirements [38]. Still other ap-
proaches manage arbitrary sets of system-level components [41, 44,
18, 34]; however, none of these approaches can coordinate system
resource usage with application-level adaptation or ensure energy
budgets are met.

2.3 Cross-layer Approaches
Cross-layer approaches work with both application and system.
Static approaches coordinate by marking application regions as
candidates for accuracy loss and then statically determining when
the system can turn that loss into performance or energy savings.
The Truffle architecture [11] supports applications which explic-
itly mark some computations and data as “approximate.” Parrot re-
places approximate regions of an application with a neural network
implementation, which is then executed on a special hardware neu-
ral processing unit [12]. Flikker, allows applications to mark some
data as “non-critical,” and store it in a DRAM that trades accuracy
for energy savings [27]. The co-design of application with inexact
hardware has been proposed to reduce energy consumption dramat-
ically in exchange for reduced application accuracy [32, 3, 33].

JouleGuard is inspired by prior work that dynamically coor-
dinates across application and system layers. Flinn and Satya-
narayanan coordinate operating systems and applications to meet
user defined energy goals [13]. This system trades application qual-
ity for reduced energy consumption. GRACE-2 employs hierarchy
to provide predictable performance for multimedia applications,
making system-level adaptations first and then application-level
adaptations [43]. Like GRACE-2, Agilos uses hierarchy, combined
with fuzzy control, to coordinate multimedia applications and sys-
tems to meet a performance goal [25]. Maggio et al. propose a
game-theoretic approach for a decentralized coordination of ap-
plication and system adaptation which provides real-time guaran-
tees [28]. xTune uses static analysis to build a model of application
and system interaction and then refines that model with dynamic
feedback [22]. The CoAdapt system uses a control theoretic ap-
proach to meet a performance, power, or accuracy constraint [15].

Two key features distinguish JouleGuard from prior cross-layer
approaches. First, prior work does not provide energy guarantees,
most instead guarantees performance while minimizing energy
consumption. Second, prior work splits the system and application
into two linear problems, which is possible because of the focus on
performance [43, 25, 15]. Providing energy guarantees, however, is
a non-linear problem (see Sec. 3). JouleGuard also splits the prob-
lem into two subproblems, but acknowledges that these problems
are not independent. A key contribution of JouleGuard is to for-
mulate a solution that is provably robust despite the dependence
between the subproblems. JouleGuard’s approach requires novel
solutions for both subproblems rather than repurposing existing
work to target energy.

3. Optimization Model
This section formalizes what it means to maximize an approximate
application’s accuracy for an energy budget. We first formalize the
problem as a mathematical optimization. We then reason about 1)
application-only, 2) system-only, and 3) cross-layer solutions.

We assume the application must perform some set amount of
work W . The work cannot change, but the application can do this
work faster or slower by changing its accuracy. For example, a
video encoder must encode an entire video, but can use different
algorithms that change the encoding time and the noise in the
output. We assume an energy budget E representing the energy a
user is willing to spend doing work W . Therefore, we must ensure

the work is completed within the energy budget and accuracy is
maximized.

We assume an approximate application with a set of configura-
tions CA, where each configuration k ∈ CA represents a unique
performance rk and accuracy ak. We assume that ac is a relative
metric rather than absolute – many standard metrics for represent-
ing how far approximate applications are from a nominal behav-
ior apply [35, 33]. An energy-aware system has configurations CS ,
where each configuration k ∈ CS has performance rk and power
consumption pk.

We do not assume that the application and system are indepen-
dent. Instead we assume that changing either application or sys-
tem may have unmodeled affects on the other. For example, chang-
ing application accuracy may change system power consumption.
Similarly, changing system performance may have an unknown af-
fect on the performance of different application configurations. The
goal is to create a solution that is robust despite these unmodeled
dependences.

3.1 The Model
The following maximizes accuracy given an energy budget:

maximize
∑

c
t〈app,sys〉 · a〈app,sys〉 (1)

subject to ∑
c
t〈app,sys〉 · p(app, sys) ≤ E (2)∑

c
t〈app,sys〉 · r(app, sys) = W (3)

t〈app,sys〉 ≥ 0 (4)

Here a(app, sys), p(app, sys), and r(app, sys) are (possibly)
non-linear functions representing the accuracy, power, and perfor-
mance of the combination of application configuration app ∈ CA
and sys ∈ CS . Eqns. 1–4 schedule times t〈app,sys〉 to spend in
the configuration 〈app, sys〉. Eqn. 1 maximizes accuracy, the re-
maining equations ensure that the energy budget is not exceeded
(Eqn. 2), that the work is completed (Eqn. 3), and that the times are
non-negative (Eqn. 4).

Eqns. 1–4 represent a non-linear optimization problem. This
non-linearity distinguishes the energy guarantee problem from
prior work that provides performance guarantees, formulated as a
linear program [43, 17, 29]. While JouleGuard adopts a similar ap-
proach to prior work – namely, splitting the optimization problem
into application and system components – it adopts novel solutions
to these subproblems to provide energy guarantees.

This section, presents several possible solutions to Eqns. 1–4.
The first considers only application-level configurations, the second
considers only system-level configurations, and the third considers
cross-layer approaches coordinating application and system.

3.2 Application-Only Optimization
Considering only application-level optimization, we have a single
system configuration with a single power consumption ps. Thus, it
is trivial to solve Eqns. 1–4. Since power cannot change, energy
will be reduced by completing the work in the shortest amount
of time possible. Therefore, the optimal accuracy solution will be
the one that lets t〈app,s〉 · ps = E. Therefore, rapp = ps ·W/E.
So, the solution is to set the application in the highest accuracy
configuration that achieves a computation rate of at least ps ·W/E.

3.3 System-Only Optimization
In contrast, system-only solutions cannot alter application behavior.
Instead, they work on performance and power tradeoffs. In this
case, accuracy is not a variable, so every feasible solution to the
constraints (Eqns. 2–4) is equivalent. Thus, a system-only approach
can solve this problem as long as there is a system configuration s
such that rs/ps ≥ W/E. In other words, a system-only approach
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Figure 1. The JouleGuard runtime system.

works if there is a configuration whose energy efficiency is greater
than or equal to W/E. Without such a configuration, then the
problem has no feasible solution.

3.4 Coordinated Cross-layer Optimization
A coordinated, cross-layer approach selects both application and
system configuration. The true optimal solution requires knowledge
of all combinations of application and system performance, power,
and accuracy as well as a solution to the non-linear optimization
problem. In this section we imagine what a solution would look
like if application and system were independent.

As shown above, the system does the most work for an energy
budget when running in its single most energy efficient state:

sys = argmax
c
{rc/pc|c ∈ S}. (5)

By the theory of mathematical optimization, an optimal solution
to Eqns. 1–4 lies on the polytope of feasible solutions [6]. For
Eqns. 1–4, this property implies that the optimal solution occurs
when there is strict equality in Eqn. 2; i.e., when:∑

c

tc · pc = E (6)

Combining Eqns. 5 and 6, tsys = 1.0, tc = 0∀c 6= sys and

tsys = E/psys (7)

To satisfy Eqn. 3, the application and system must work at a
combined performance of r. If we denote the approximate applica-
tion’s speedup as sapp, then we can write r = sapp · rsys; i.e., the
work rate is the product of the system’s computation rate and the
speedup provided by adapting the application. We now solve for
an sapp that both ensures the work gets done and that accuracy is
maximized. We find this by substituting r and tsys into Eqn. 3:

tsys · r = W
E/psys · sapp · rsys = W

sapp =
W · psys
E · rsys

(8)

Therefore, the application must be configured to respect Eqn. 8 and
maximize accuracy:

app = argmax
c
{ac|sc ≥

W · psys
E · rsys

∧ c ∈ A} (9)

Thus, we solve the problem of coordinating application and
system to maximize accuracy on an energy budget by putting the
system in its most energy efficient configuration (determined by
Eqn. 5) and then configuring the application to achieve the neces-
sary additional speedup (as in Eqn. 9).

4. JouleGuard
This section presents the JouleGuard runtime system, illustrated in
Fig. 1. Following the analysis of the previous section, we split the
optimization problem into two components. The first, labeled Sys-
tem Energy Optimizer (SEO) in the figure, is responsible for putting
the system into sys, the most energy efficient system configura-
tion (found according to Eqn. 5). The expected speed and power of

this configuration are passed to the Application Accuracy Optimizer
(AAO), which determines the highest accuracy application config-
uration that will meet the energy budget (according to Eqn. 9).

If the performance, power, and accuracy of all combinations of
application and system configuration are known ahead of time and
do not change, then the application and system configuration need
only be configured once. In general, however, we expect unpre-
dictable dynamic fluctuations making it impossible to predict the
highest energy efficiency system configuration ahead of time. Fur-
thermore, this configuration may be both application and input de-
pendent [31, 23]. Therefore, we solve the optimization at runtime
using dynamic feedback. Both the SEO and AAO adapt to changes
in the other, yet still converge to a reliable steady-state behavior.
This section first describes SEO and AAO. It then formally ana-
lyzes JouleGuard’s stability and robustness.

4.1 System Energy Optimization
JouleGuard uses reinforcement learning to identify the most energy
efficient system configuration, employing a bandit-based approach
[21]. We model system configurations as arms in a multi-armed
bandit (essentially levers in different slot machines). The reward
for pulling an arm is the energy efficiency of that configuration.
Our goal is to quickly determine which arm (configuration) has
the highest energy efficiency. Specifically, JouleGuard estimates
configuration c’s energy efficiency by estimating performance and
power r̂c and p̂c using exponentially weighted moving averages:

p̂c = (1− α) · p̂c + α · pm
r̂c = (1− α) · r̂c + α · rm (10)

Where pm and rm represent the measured power consumption and
performance respectively and α is a parameter between 0 and 1
that represents the sensitivity to noise. For our experiments, we use
α = .85, which provides the best outcomes on average across all
applications and systems.

In a typical bandit problem, the initial estimates might be ran-
dom values. This is not a good choice for estimating performance
and power as we know a general trend: power and performance will
increase with increasing resources. Therefore, JouleGuard initial-
izes its performance and power estimates so that the performance
and power increase linearly with increasing resources. This is an
overestimate for all applications, but it is not a gross overestimate.
Such an initialization performs exceedingly well in practice.

The final component of a bandit solution is balancing explo-
ration (i.e., trying different configurations) and exploitation (i.e.,
making use of the best configuration found so far). In addition,
JouleGuard must be reactive to changes caused by application-level
adaptation. Therefore, JouleGuard explores the system configura-
tion space using Value-Difference Based Exploration (VDBE) [42].
VDBE balances exploration and exploitation by dynamically com-
puting a threshold, ε (0 ≤ ε ≤ 1). When selecting a system con-
figuration, JouleGuard generates a random number r (0 ≤ r < 1).
If r < ε, JouleGuard selects a random system configuration. Oth-
erwise, JouleGuard selects the most energy efficient configuration
found so far. ε is initialized to 1 and updated every time the run-
time is invoked. A large difference between the measured efficiency
rm/pm and the estimate r̂/p̂ results in a large ε, while a small dif-
ference makes ε small. ε is initially 1. At each iteration of the run-
time ε is updated as:

x = e
−|α(rm/pm−r̂/p̂|

5

f = 1−x
1+x

ε(t) = 1
|CS |
· f + (1− 1

|CS |
) · ε(t− 1)

(11)

If the random number is below ε(t), JouleGuard selects a random
system configuration. Otherwise, JouleGuard uses Eqn. 5 but sub-
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stituting the estimates:

sys = argmax
c
{r̂c/p̂c|c ∈ S}. (12)

JouleGuard then puts the system into this configuration and uses
the expected performance and power consumption to perform ap-
plication accuracy optimization.

This bandit-based approach has the nice property that when the
system models are correct, JouleGuard does not change configura-
tions. If the system is disturbed in anyway, or the application has an
unexpected impact on system performance and power, JouleGuard
will explore new states to find more efficient configurations.

4.2 Application Accuracy Optimization
Given the system configuration found above, JouleGuard deter-
mines the application configuration that satisfies Eqn. 9 while max-
imizing accuracy. Recall from Sec. 3.4, that this configuration must
have a particular performance given by Eqn. 8. Substituting r̂c and
p̂c into Eqn. 8, JouleGuard must find the application configuration
that provides speedup:

sapp =
W · p̂sys
E · r̂sys

(13)

The difficulty is that ensuring energy requires that JouleGuard
maintains this performance despite unpredictable events (e.g., ap-
plication workload fluctuations), temporary disturbances (e.g., page
faults), or unmodeled dependences between application configura-
tion and system power consumption. Therefore, JouleGuard mod-
els the problem of meeting speedup sapp as a control problem and
minimizes the error error(t) between r = sapp · rsys and the mea-
sured performance rm(t) at time t; i.e., error(t) = r − rm(t).

Maintaining performance despite dynamic environmental changes
is a classical control problem and many cross-layer approaches in-
corporate control for this reason [14, 41, 44, 43, 25, 15]. Joule-
Guard builds on these examples by formulating a proportional in-
tegral (PI) controller for eliminating error(t):

s(t) = s(t− 1) +
(1− p) · error(t)

r̂sys
(14)

Where s(t) is the speedup required beyond r̂sys (i.e., r = s(t) · r̂sys),
and p is the pole of the control system, a constant that determines
the largest possible error that JouleGuard can tolerate while main-
taining stability and ensuring that the energy goal is met. While
many systems use control, JouleGuard’s approach is unique in that
the controller constantly adjusts to the changing system configura-
tion by setting its pole to maintain robust behavior (see Sec. 4.3).

JouleGuard determines the application configuration by 1) mea-
suring the performance at time t, computing the error between the
required performance and the measured performance, then comput-
ing a speedup s(t). JouleGuard then searches application configu-
rations on the Pareto-optimal frontier of performance and accuracy
tradeoffs to select the highest accuracy configuration delivering that
speedup:

app = argmax
c
ac|sc > s(t) ∧ c ∈ A (15)

4.3 Control Theoretic Formal Guarantees
JouleGuard’s control system provides formal guarantees of energy
consumption. We first show that the the control system converges
to the desired speedup. This can be done through standard analysis
in the Z-domain [24].

4.3.1 Stable and Convergent
We want to analyze the behavior of the closed loop system that
maps the performance goal r into measured performance rm(t).
The Z-transform of the application is simply A(z) =

r̂sys
z

. While

the transfer function of the control system is C(z) = (1−p)z
(z−1)

.
Therefore, the transfer function of the closed loop system is:

F (z) = C(z) ·A(z)
1+C(z) ·A(z)

=
(1−p)z
(z−1)

· r̂sys
z

1+
(1−p)z
(z−1)

· r̂sys
z

= 1−p
z−p

(16)

Thus, JouleGuard is stable and converges to the desired perfor-
mance if 0 ≤ p < 1.

4.3.2 Robust to Estimation Error
Recall that r̂sys used in the controller is an estimate of the applica-
tion’s true performance in that system configuration. We can deter-
mine the controller’s robustness in the face of errors in this estimate
by analyzing Eqn. 16. Suppose the estimate is incorrect and the true
value is r̄sys = δr̂sys where δ is a multiplicative error in the esti-
mation. For example, δ = 5 indicates that model is off by a factor
of 5. We determine JouleGuard’s robustness to errors by substitut-
ing δr̂sys into F (z):

F (z) = C(z) ·A(z)
1+C(z) ·A(z)

=
(1−p)z
(z−1)

· δr̂sys
z

1+
(1−p)z
(z−1)

· δr̂sys
z

= (1−p)δ
z+(1−p)δ−1

(17)

The controller represented by Eqn. 17 is stable if and only if the
poles are between 0 and 1. Thus, for a stable system

0 < δ <
2

1− p . (18)

So, the value of p determines how robust JouleGuard is to errors in
performance estimates. For example, p = 0.1 implies that r̂sys can
be off by a factor of 2.2 and JouleGuard will still converge.

To provide a guarantee of convergence, JouleGuard must set
the pole to provide stability. JouleGuard has a bound on error as
it is constantly updating its estimates of system performance using
Eqn. 10. Thus, the runtime computes the error bound as:

δ(t) = rm(t)/r̂sys(t− 1)− 1 (19)

and computes the pole as:

p(t) =

{
δ(t) > 2 : 1− 2/δ(t)
δ(t) ≤ 2 : 0

(20)

JouleGuard automatically adapts the pole so that controller is ro-
bust to error in the system performance estimates. In practice, the
pole is large when the learner is unsure and likely to randomly
explore the space. This means that the controller will be slow to
change configurations when the learner is aggressive. In contrast,
when the learner converges the error is low (by definition) and the
controller can be more aggressive. This adaptive pole combined
with machine learning are unique features of JouleGuard which
distinguish it from prior approaches and allow JouleGuard to split
the energy guarantee problem into two subproblems yet still pro-
vide robust energy guarantees.

4.3.3 Impossible Goals
A user may request an energy goal that is impossible to meet given
the application and the system. In this case, JouleGuard reports that
the goal is infeasible and then configures application and system to
provide the smallest possible energy consumption.

4.4 Implementation
The JouleGuard runtime is summarized in Algorithm 1. We imple-
ment this algorithm through a straightforward coding of the math
described above and summarized in the algorithm listing. The two
key challenges are measuring feedback and configuring the appli-
cation and system. These are really interface issues rather than tech-
nical issues. JouleGuard needs to be supplied a function that reads
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Algorithm 1 The JouleGuard Runtime.
Require: W . Workload provided by user
Require: E . Energy budget provided by user

loop
Measure work done W (t) and energy consumed E(t).
Measure performance rm(t) and power pm(t) in configuration c.
Update performance and power estimates r̂c and p̂c (Eqn. 10).
Update ε(t) (Eqn. 11).
Select energy optimal system configuration sys (Eqn. 12).
Put the system in configuration sys.
Compute the controller’s pole (Eqns. 19 and 20)
Compute remaining energy and work.
Use those values to compute speedup target (Eqn. 13).
Compute speedup control signal (Eqn. 14).
Select the application configuration to deliver speedup (Eqn. 15).

end loop

App Configs Speedup Acc. Loss (%) Acc. Metric
x264 560 4.26 6.2 encoding quality [17]
swaptions 100 100.35 1.5 swaption price [17]
bodytrack 200 7.38 14.4 track quality [17]
swish++ 6 1.52 83.4 precision & recall [17]
jacobi 18 9.99 0.19 residual error [39]
canneal 3 1.93 7.1 wire length [39]
ferret 8 1.24 18.2 similarity [39]
streamcluster 7 5.52 0.55 cluster quality [39]

Table 1. Approximate Application configurations.

performance and power. Any performance metric can be used as
long as it increases with increasing performance. Similarly, power
can be read from an external power monitor or from modern hard-
ware devices that support on-board power measurement. Prior work
defined a general interface for specifying system-level configura-
tions [18]. A straightforward extension of this interface allows it to
support application configuration changes as well. Given these in-
terfaces, we implement JouleGuard as a C runtime that can be com-
piled directly into an application. It can replace existing runtime
systems for approximate applications, or it can convert a statically
configured approximate application into one dynamically config-
urable to meet energy goals.

JouleGuard does not require quantification of application ac-
curacy. Many frameworks provide this (e.g., [4, 17, 16, 35]), but
others do not (e.g., [40, 9]). Approaches that do not quantify accu-
racy still order configurations, but the order represents preferences
rather than numerical differences. JouleGuard never needs a numer-
ical value for accuracy. The only place it reasons about accuracy at
all is in Eqn. 15 when selecting an application configuration. This
equation does not actually require a numerical comparison, it sim-
ply requires a total order on available configurations. Thus, Joule-
Guard is compatible with a wide range of approximate approaches
including those that do not specifically quantify accuracy.

5. Experimental Setup
To demonstrate generality, we test JouleGuard with eight different
applications on three different hardware platforms.

We draw on existing approximate applications from two sources.
The first is PowerDial, which automatically turns static command
line parameters into a data structure which alters runtime perfor-
mance and accuracy tradeoffs [17]. The second is Loop Perforation,
which eliminates some loop iterations to trade accuracy for perfor-
mance [39]. We build x264, swaptions, bodytrack, and swish++
with PowerDial. We build jacobi, canneal, ferret, and streamcluster
with Loop Perforation. Table 1 summarizes the available applica-
tion configurations, showing the total available configurations, the
maximum speedup, maximum accuracy loss (as a percentage of the
default value), and the accuracy metric.

Configuration Settings Max Speedup Max Powerup
clock speed 16 3.23 2.05
core usage 16 15.99 2.03
hyperthreading 2 1.92 1.11
idle n/a 1.00 1.00
mem controllers 2 1.84 1.11

Table 2. System configurations.

These applications represent several different workloads. x264
is a video encoder, which can trade increased noise in the out-
put video for increased frame rate. swaptions is a financial anal-
ysis benchmark that trades accuracy of price for speed of pricing.
bodytrack does image analysis to follow a person moving through a
scene. It trades the precision of the track for increased throughput.
The swish++ search engine is a webserver which supports docu-
ment search and can trade the precision and recall of the search
results for decreased search time. jacobi is an iterative application
that solves partial differential equations and can trade the floating
point precision of its computation for decreased runtime. canneal
is an engineering application that performs place-and-route on a
netlist; it can trade increased wire length for decreased routing time.
ferret is a image similarity search that can decrease the similar-
ity of the results it returns in exchange for decreased search time.
Finally, streamcluster is a clustering algorithm that can decrease
the quality of its clustering for increased performance. Each ap-
plication supports a different accuracy metric. To standardize the
presentation, we report accuracy as a proportion of the accuracy
achieved when running in the application’s default configuration;
i.e., without PowerDial or Loop Perforation.

We evaluate JouleGuard on a dual socket system with two eight-
core Intel Xeon E5-2690 processors. It supports hyperthreading and
TurboBoost. It allows power and energy consumption to be read di-
rectly from registers at runtime in millisecond intervals [36]. The
processor supports 16 different DVFS settings and a low power
idle state where it consumes approximately 12 Watts. The maxi-
mum power consumption is 270 Watts. We run Linux 3.2.0 with the
cpufrequtils package to change clock speeds. We use process
affinity masks to assign an application to cores and hyperthreads.
We use the numalib package to assign memory controllers to an
application on the server. The available system configurations are
summarized in Table 2, which shows the total number of available
configurations and the maximum increase in speed and power mea-
sured. There are effectively an unlimited number of idle settings, as
any application could be stalled arbitrarily.

6. Evaluation
For each application and platform, we first measure accuracy and
energy consumption in the default configuration; i.e., we run out-
of-the-box on our platforms with no changes. Having established a
baseline energy consumption, we then deploy each application with
JouleGuard for a several energy goals which decrease energy by
some factor f where f ∈ {1.1, 1.2, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0}.
For example, f = 2.0 reduces energy consumption by 2× com-
pared to the default. For each goal we measure both the achieved
energy and accuracy.

To quantify JouleGuard’s ability to meet energy goals, we com-
pute relative error:

Relative Error =
em(t)− egoal
egoal(t)

· 100% (21)

between the measured energy and the goal. Where n is the number
of measured samples, em(t) is the measured energy at time t
and egoal is the target. Low relative error indicates the energy
consumption is close to the target, while high error represents
a lack of convergence. Relative error is a percentage, allowing
comparisons across different targets.
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Figure 2. JouleGuard’s low relative error (top) shows it is within a few % of the desired energy, with near near optimal accuracy (bottom).

To quantify optimality, we construct an oracle representing the
best possible accuracy for an application, system, and energy target.
We exhaustively profile the application and system in every possi-
ble configuration to determine the optimal accuracy for different
energy targets. We then calculate the best system and application
state for every application iteration. The oracle thus represents the
best accuracy that could be accomplished by dynamically manag-
ing application and system with perfect knowledge of the future
and no overhead. We quantify optimality as effective accuracy:

effective acc = accm/accoracle(goal) (22)

Where accm is the measured accuracy for the application running
with JouleGuard and accoracle(goal) represents the accuracy our
oracle returns for the given energy goal.
Stability: One of JouleGuard’s essential properties is convergence
to desired energy targets. To demonstrate the stability and conver-
gence in general we compute relative error for all applications and
energy targets. These results are shown in the top of Fig. 2 with
benchmark name on the x-axis and relative error (as a percentage)
on the y-axis. There is a bar for each energy target if the target is
feasible (e.g., given the available application configurations ferret
can only achieve reductions up to 1.2×). In general, relative error
is low – under 3% – demonstrating that JouleGuard meets energy
guarantees on a number of platforms for a number of applications.
Optimality: We now quantify accuracy for all benchmarks and
energy targets by presenting the effective accuracy calculated ac-
cording to Eqn. 22. The bottom chart of Fig. 2 demonstrates Joule-
Guard’s optimality. This chart shows the benchmark name on the
x-axis and the effective accuracy on the y-axis. An effective accu-
racy of 1 represents the optimal achievable accuracy for that energy
target as determined by our oracle. The effective accuracy for these
benchmarks is close to unity, representing accuracy very close to
the oracle. This accuracy is achieved despite JouleGuard’s over-
head and the inherent noise in the benchmarks.

7. Conclusion
This paper has proposed JouleGuard, an optimizing runtime sys-
tem that coordinates approximate applications and energy-aware
systems to meet energy goals while maximizing accuracy. Joule-
Guard is based on the key insight that we can solve this particular
optimization by dividing the problem into two sub-problems, each
of which can be solved efficiently. The first sub-problem moves
the system to the most energy efficient configuration, while the
second dynamically manages performance. JouleGuard proposes
a machine learning approach to the first problem and a control the-
oretic solution to the second. We have implemented JouleGuard
and tested it with a number of applications and systems. We find
that – both empirically and analytically – JouleGuard meets en-
ergy budgets with near optimal accuracy, while adapting to appli-

cation phases and consistently outperforming approaches that con-
sider only application or system configurations.
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