
THE UNIVERSITY OF CHICAGO

MAXIMIZING PERFORMANCE UNDER A POWER CAP

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE THE PHYSICIAL SCIENCE

IN CANDIDACY FOR THE DEGREE OF

MASTER’S

DEPARTMENT OF COMPUTER SCIENCE

BY

HUAZHE ZHANG

CHICAGO, ILLINOIS

2014

Copyright c© 2015 by HUAZHE ZHANG

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . v

LIST OF TABLES . vi

ACKNOWLEDGMENTS . vii

ABSTRACT . viii

1 INTRODUCTION . 1

2 MOTIVATIONAL EXAMPLE . 5

3 POWER CAPPING METHODOLOGIES . 8
3.1 Software Power Capping . 8

3.1.1 Observe . 8
3.1.2 Decide . 11
3.1.3 Act . 13

3.2 Hardware Power Capping . 14
3.3 PUPiL’s Hybrid Power Capping . 15

3.3.1 Timeliness . 15
3.3.2 Efficiency . 15

4 EXPERIMENTAL SETUP . 17
4.1 Benchmarks . 17
4.2 Platform . 17
4.3 Evaluation Metrics . 18

4.3.1 Timeliness . 19
4.3.2 Efficiency . 19

5 EXPERIMENTAL EVALUATION . 20
5.1 Single Application . 20
5.2 Performance . 20
5.3 Settling Time . 21
5.4 Multi-Application Workloads . 22

5.4.1 Cooperative Performance . 23
5.4.2 Oblivious Performance . 24
5.4.3 Detailed Multiapp Data . 25

5.5 Sensitivity and Overhead Analysis . 26

6 RELATED WORK . 30

7 FUTURE WORK . 33

iii

8 CONCLUSION . 35

iv

LIST OF FIGURES

2.1 Example of the tradeoff between timeliness and efficiency from hardware and software
power capping. 6

3.1 Generic decision tree for software power capping. 9
3.2 PUPiL’s approach to hybrid hardware/software power capping. 10

5.1 Performance of several power control techniques normalized to optimal. 28
5.2 Settling times for several power control techniques. 28
5.3 Ratio of PUPiL to RAPL performance in cooperative (left) and oblivious (right) mul-

tiapp scenarios. 29

v

LIST OF TABLES

2.1 Server resources. 5

4.1 System configurations. 18

5.1 Comparison of Average Performance. 21
5.2 Multi-application Workloads. 23
5.3 Ratio of PUPiL to RAPL Average Performance. 24
5.4 Ratio of PUPiL to RAPL Average Performance. 25

vi

ACKNOWLEDGMENTS

First, I would like to thank my advisor Hank Hoffmann, without whom this work cannot be done. I

have learned almost everything of how to do research from Hank. Whenever I had a problem with

my research or even with my personal stuffs, he is there to help. I have been having a great time

working with Hank and really looking forward to many times ahead of us.

Second, I would like to thank my family. My father and mother are always there giving me the

biggest support. Whenever life treats me not so well, they are always there to talk to, give me wise

advice and comfort me with the warmth of family.

Third, I would like to thank my girlfriend. My decision to study in US makes us more than

10000km away and 10 hours different from each other. Not only had she never blamed me on this,

but unconditionally supported my study and shared happiness in life through countless phone calls

and video chats.

Last but not the least, I would like to thank Andrew Chien and Haryadi Gunawi to be on my

defense committee. I have learnt many valuable things from both of you from courses, system

seminars and so much more. It’s an honor to have you on my committee.

vii

ABSTRACT

Power and thermal dissipation constrain multicore performance scaling. Modern processors are

built such that they could sustain damaging levels of power dissipation, creating a need for sys-

tems that can implement processor power caps. A particular challenge is developing systems that

can maximize performance within a power cap, and approaches have been proposed in both soft-

ware and hardware. Software approaches are flexible, allowing multiple hardware resources to be

coordinated for maximum performance, but software is slow, requiring a long time to converge to

the power target. In contrast, hardware power capping quickly converges to the the power cap, but

only manages voltage and frequency, limiting its potential performance.

In this work we propose PUPiL, a hybrid software/hardware power capping system. Unlike

previous approaches, PUPiL combines hardware’s fast reaction time with software’s flexibility.

We implement PUPiL on real Linux/x86 platform and compare it to Intel’s commercial hardware

power capping system for both single and multi-application workloads. We find PUPiL provides

the same reaction time as Intel’s hardware with significantly higher performance. On average,

PUPiL outperforms hardware by from 1.10–2.4× depending on workload and power target. Thus,

PUPiL provides a promising way to enforce power caps with greater performance than current

state-of-the-art hardware approaches.

viii

CHAPTER 1

INTRODUCTION

Modern processors are constrained by dark silicon – their abundance of transistors enables them

to draw more power than they can safely sustain [8, 42]. For example, the Exynos 5 processor

(in the Samsung Galaxy S4 phone) has a 5.5W peak power that is nearly 2× its sustainable heat

dissipation, limiting peak speed to less than 1 second [36]. At the other end of the spectrum, the

next generation of exascale supercomputers is predicted to be constrained by an operating budget

of approximately 20 MW [1]. Managing power constraints has thus been identified as one of the

central challenges facing the design of next-generation supercomputers [40].

These physical constraints create a need for power control systems which guarantee the proces-

sor operates within a strict power cap. Power capping systems have been implemented in software

[4, 5, 10, 24, 30–32, 47]. In addition, the need for power capping has become so great that Intel

processors now implement power capping in hardware with their Running Average Power Limit

(RAPL) interface [6].

Whether implemented in hardware or software, there are two essential properties for a suc-

cessful power capping system. The first is timeliness – the speed with which a new cap can be

implemented. The second is efficiency – the performance delivered under the power cap. Without

timeliness, critical operating bounds can be violated, damaging the hardware. Without efficiency,

application performance suffers unnecessarily. It is, in fact, trivial to implement a power cap if we

do not care about performance – simply turn the machine off.

In general, hardware approaches provide superior timeliness – hardware reacts much faster than

software – while software approaches have superior efficiency – they find the highest performance

set of resources to activate within the power cap. Hardware’s timeliness comes from the fact

that relatively simple circuits can be used to control key power indicators like processor voltage

and frequency, providing a very efficient mechanism for enforcing the power limit. Software’s

efficiency comes from the fact that it can consider the complexity of interactions between multiple

1

resources, allowing it to solve the constrained optimization problem of scheduling the highest

performance resource configuration which obeys the power cap.

This paper explores the tradeoffs between timeliness and efficiency in power capping ap-

proaches. Specifically, we advocate a hybrid approach that includes both software and hardware

components, using each to address the challenge to which it is best suited. We instantiate this

hybrid approach in PUPiL – for Performance Under Power Limits – a power capping system based

on a novel decision tree approach. To ensure a power cap, PUPiL navigates nodes in a decision

tree. Each node represents a choice about how to use a particular resource. For example, one node

will select how many cores to use in a multicore. After making a decision, PUPiL measures power

and performance and uses that feedback to drive the decision at the next node in the tree.

We implement PUPiL and test it on a Linux/x86 server with 20 different multithreaded bench-

marks under 5 different power caps. We compare PUPiL to both RAPL (Intel’s state-of-the-art

hardware power capping system) and a software-only approach. We evaluate the timeliness and

efficiency of all three approaches for both single and multi-application workloads. Our results

show:

• Efficiency: For single application workloads, the software only approach achieves higher

performance than RAPL, and PUPiL achieves the highest performance. Specifically, PUPiL

outperforms RAPL by 1.25–1.10× on average depending on the power cap. (See Sec-

tion 5.2.)

• Timeliness: RAPL’s speed enforcing the power caps greatly exceeds the software only ap-

proach by orders of magnitude. PUPiL is equivalent to RAPL. (See Section 5.3.)

• Multi-application Efficiency: We test two types of multi-application workloads: 1) co-

operative workloads where each application requests a subset of available resources and

2) oblivious workloads where each application requests all resources. In the cooperative

case, PUPiL outperforms RAPL by 1.43–1.18× on average depending on the power cap. In

the oblivious case, PUPiL outperforms RAPL by 2.56–2.43× on average depending on the

2

power cap.

These results indicate that PUPiL’s hybrid approach provides the timeliness of hardware with sig-

nificantly greater efficiency. The performance gains are particularly high when enforcing power

caps in the oblivious multi-application scenario. The large number of threads and resulting con-

tention in the oblivious multi-application scenario creates a situation where the applications de-

structively interfere with each other. RAPL’s only mechanism for power enforcement is processor

voltage and frequency, which does nothing to limit contention. PUPiL, in contrast, manipulates

DVFS as well as core allocation, sockets usage, memory usage, and hyperthreading. This diversity

allows PUPiL to throttle back multiple resources and reduce overall contention, resulting in large

performance gains for the same power cap.

This paper makes the following contributions:

• Develops a decision tree based approach to maximize performance under a power cap.

• Releases an open source implementation of this approach for Linux/x86 servers.

• Evaluates this implementation on a real system in multiple usage scenarios.

• Makes all scripts and data collection tools from this evaluation available as open source,

making it easy for other to test these results on different platforms or with different bench-

marks1.

• Identifies workload characteristics where Intel’s state-of-the-art RAPL power capping sys-

tem will fail to deliver best performance.

The fundamental contribution of this paper is an empirical demonstration of the need for software

and hardware to work together to maximize performance under power caps. The combined soft-

ware/hardware approach proposed in this paper demonstrates it is possible to achieve significant

performance gains over Intel’s state-of-the-art, commercial hardware approach – especially for

multi-application workloads.

The rest of this paper is organized as follows. Section 2 presents a motivational example high-

1. All source code, scripts, inputs, and patches are available at: https://github.com/PUPiL2015/PUPIL.git.

3

lighting the tradeoffs between software and hardware power control systems. Section 3 describes

the generalized decision tree approach. Section 4 details the benchmarks and hardware used to

evaluate PUPiL. Section 5 presents the results of this empirical evaluation. Section 6 describes

related work in power capping and energy management. The paper concludes in Section 8.

4

CHAPTER 2

MOTIVATIONAL EXAMPLE

Table 2.1: Server resources.
Processor Cores Sockets Speeds (GHz) TurboBoost

Xeon E5-2690 8 2 1.2–2.9 yes
HyperThreads Memory Controllers Socket TDP (W) Configurations

yes 2 135 1024

This example highlights the different tradeoffs in hardware and software power capping ap-

proaches and motivates the need for a hybrid design. We run the x264 video encoder on an Intel

Linux/x86 system. We compare the timeliness and efficiency of both Intel’s RAPL hardware and

a software-only power capper.

Our system is a dual socket server with two Intel SandyBridge Xeon E5-2690 processors and

64GB of RAM. These processors support RAPL, but also have a number of configurable resources

which affect power and performance tradeoffs, listed in Table 2.1. Each processor supports 15

frequency settings plus TurboBoost. Each is 8 cores, with hyperthreading, giving a total of 32

virtual cores across both sockets. These processors have a thermal design power (TDP) of 135

Watts, but experimentally we find it is extremely rare for any application to sustain that power

consumption.

To illustrate the difference between hardware and software power capping approaches, we set

a power cap of 140 Watts for both sockets. RAPL must achieve this power consumption by driving

each socket to 70 Watts. The software approach selects 1) how many sockets to use, 2) how many

cores to use on each socket, 3) whether to use hyperthreads or not, 4) how many memory controllers

to use, and 5) the frequency of each socket. For both the hardware and software approaches we

measure power and performance (in frames encoded per second) as a function of time.

Fig. 2.1 illustrates the results of this experiment, with power shown in the top chart and per-

formance shown on the bottom. Each chart shows time on the x-axis. The hardware approach is

represented by the solid line, and the dashed line represents the software approach. Clearly, both
5

60

100

140

180
Po

w
er

(W
at

ts
)

RAPL Software

0 25 50 75 100 125 150
6

12
18
24
30
36
42

time (s)

Pe
rf

or
m

an
ce

(f
ra

m
es

/s
)

Figure 2.1: Example of the tradeoff between timeliness and efficiency from hardware and software
power capping.

approaches meet the power cap – RAPL hits the cap quickly while the software approach operates

below the cap for approximately 20 seconds, briefly exceeds it, and finally settles at 140 Watts.

The performance results, however, show that once the software approach converges, it exceeds

the performance delivered by RAPL. Specifically, after convergence, the software approach aver-

ages approximately 41 frames per second while RAPL averages approximately 33.5 frames per

second. Once the system converges, the software-based approach achieves over 20% better perfor-

mance.

Software outperforms hardware because it is able to recognize that using hyperthreads does not

help this application on this system. Using hyperthreads results in greater power consumption, and

a small performance loss. The software approach recognizes that it should not make use of hyper-

threads and instead it can slightly increase the speed of the cores it is using without hyperthreads.

Of course, it takes software a long time to recognize this and adjust.

These results clearly indicate the tradeoffs between hardware and software based power cap-

ping. Hardware is fast – it reaches the power cap very quickly, whereas the software approach does

not. Software is flexible – it recognizes that x264 cannot use hyperthreading and adjusts, whereas

hardware cannot. These results demonstrate the need for a hybrid approach that enforces power

caps with hardware’s speed, but has software’s flexibility to adapt resource usage to the particular

application (or applications) running on the system.

6

The remainder of the paper presents a decision tree based approach for combining hardware

and software power control. We then describe how to implement this decision tree for Linux/x86

servers and present the results of our empirical evaluation for both single and multi-application

workloads.

7

CHAPTER 3

POWER CAPPING METHODOLOGIES

This section introduces the different power capping approaches we explore in this paper. It first

discusses a software power approach based on decision trees. It then describes RAPL, a state-of-

the-art hardware power capping system. Finally, it introduces PUPiL, a hybrid of software and

hardware approaches.

We assume that a computer system is configurable; i.e., it has resources or other parameters

whose usage can be tuned to navigate performance/power tradeoffs. For each approach, the goal

is to configure these resources to meet a power cap in a timely and efficient manner. Timeliness

means the cap is quickly enforced. Efficiency means the system delivers maximum performance

under the cap.

All three power capping approaches (software, hardware, and PUPiL) operate based on feed-

back. These approaches observe their environment, decide on a response, and then act to imple-

ment these decisions. This feedback loop is then repeated continually, allowing the power capping

system to react to application phase changes or other environmental fluctuations. In this section,

we use this observe-decide-act framework as a basis for understanding the methodologies of the

three different power capping approaches addressed in this paper.

3.1 Software Power Capping

This section discusses how the software system implements observation, decision, and action.

3.1.1 Observe

In the observation phase, the software collects power and performance feedback.

Power feedback can come from any number of power monitoring mechanisms. For example,

external power meters such as a WattsUp device can be used. Other alternatives include on-board

8

Figure 3.1: Generic decision tree for software power capping.

power monitoring devices, such as the INA231 [21], or on-chip power monitoring, which is avail-

able commercially from Intel [6] and through research prototypes [37].

Performance feedback can also come from a number of sources. For example, high-level per-

formance feedback can come directly from appropriately instrumented applications [16]. It could

also come from any number of other sources, including hardware counters that measure floating

point computation rate or simply instructions per second [39, 41]. While the methodologies in this

paper will work with any metric, the authors personally advocate the use of high-level application-

specific feedback, if available as such allows a power capping system to ensure efficiency in terms

of real application progress.

One issue with feedback is that real systems are noisy. To meet the efficiency challenge, a

power capping system should ensure that it is reacting to persistent phenomena and not some tran-

sient effect that momentarily disturbed performance. For example, the system should distinguish

9

Figure 3.2: PUPiL’s approach to hybrid hardware/software power capping.

between a fundamental change in application workload and a temporary timing fluctuation that

occurs due to a page fault. We want the system to adjust in the first case, but ignore the second

case.

To address noise and ensure that the system acts on meaningful feedback, the software approach

employs a deviation based filter to remove outliers. Specifically, the software approach measures

performance over a window, filters any data that falls more than 3-standard deviations from the

mean, and averages the rest. Assuming, X is the list of performance measurements collected, µ

is the average of unfiltered X , σ is the standard deviation of unfiltered X , then X f eedback is the

performance feedback used by the system to make decisions:

µ =
∑i Xi

N
(3.1)

10

σ =

√
∑i
(
X i−µ2

)
N

(3.2)

X f eedback =
∑ j∈A X j

size(A)
(3.3)

A =
{

j | |X j−µ|< 3σ
}

(3.4)

3.1.2 Decide

In the decide phase, the software controller uses the filtered feedback to select a resource configu-

ration. One way to select the best configuration would be to simply walk through all configurations

until we find the highest performance configuration that respects the power cap. This approach has

the twin drawbacks that it fails to meet the timeliness challenge and it may fail to respect the power

cap.

Instead, the software approach must find a more intelligent way to explore the configuration

space. In this paper, we propose the use of decision trees. Fig. 3.1 illustrates a generic decision

tree based approach. To begin, the system orders the available resources (the ordering process is

described below). It then starts in the lowest resource configuration. Proceeding through resources

in order, the approach puts the next resource into its highest setting. Feedback is measured in

this new configuration. The software compares the performance feedback of current configuration

to that of last configuration to decide whether 1) performance has improved by using this new

resource and 2) the resource usage respects the power cap. Algorithm 1 specifies the decision

making process.

Algorithm 1 requires an ordered set of resources. The order is determined by Order() (de-

tailed in Algorithm 2). The algorithm first sets the system to the smallest resource configuration.

It then puts the resources into a set of untested resources. While this ordered set of untested re-

sources is non-empty, the algorithm measures power and performance (using the helper function

GetFeedback()). It then takes the next resource in order and sets it to its highest configuration set-

ting (using the Set() helper function), waits a resource-specific amount of time, and then measures

11

Algorithm 1 Walking the decision tree.
Require: Set of ordered resources R
Require: Power cap P

Put system in minimal resource configuration
U ← R . the set of untested resources
while U , /0 do . While untested resources
〈per fold , powold〉 ← GetFeedback()
r← RemoveNext(U) . next resource in order
set r to highest setting
wait r.d time units . Account for resource delay
〈per fcur, powcur〉 ← GetFeedback()
if per fcur < per fold then

return r to lowest setting
else

if powcur > P then
s← BinarySearchResourceSettings(r)
set r to s

. This may return the resource to its lowest setting.
end if

end if
end while

the feedback again. If this resource provided higher performance, then the algorithm fine tunes the

resource setting, otherwise it returns to the lowest setting for this resource. The fine tuning process

involves performing a binary search on resource settings to find the highest performance setting

that is under the power cap (the BinarySearchResourceSettings() helper function).

There are four helper functions for this approach. Three are straightforward and their detailed

descriptions are omitted for space. We provide a brief overview here. The GetFeedback() function

simply measures and returns power and performance data. The Set() function is used to configure

the resource. The BinarySearchResourceSettings() function simply does a binary search on the

available configurations for a resource. Its goal is to find the highest performance setting that

respects the power cap. The ordering function is the fourth helper and it is described below.

The ordering function is essential to Algorithm 1. The software approach establishes the or-

dering based on the potential impact of each resource. Higher impact resources appear earlier than

lower impact resources in the order. Algorithm 2 shows the algorithm used for establishing this

12

order. The general idea is to allocate power first to higher impact resources. We evaluate impact of

each resource by the performance improvement that each resource can deliver when activated in-

dividually. The one exception is DVFS, which is used at the end to fine-tune power within the cap.

To determine impact, we calibrate the system using a well-understood, embarrassingly parallel

application. The detailed process for establishing the order is shown in Algorithm 2.

Algorithm 2 Ordering Resources in Calibration.
Require: Set of resources R excluding DVFS
Require: a calibration benchmark without inter-thread communication

Put system in minimal resource configuration
U ← R . the set of disordered resources
while U , /0 do . While disordered resources

r← RemoveNext(U) . next resource in random order
set r to highest setting
wait r.d time units . Account for resource delay
per fr← GetFeedback()
return r to lowest setting
add r to O

end while
Sort r in O by per fr
Add DVFS to the last in O return O . The set of ordered resources

3.1.3 Act

In the act phase, the software implements the resource allocation proposed by the decision phase.

For example, if the decision phase decides to test a resource, the act phase is responsible for

actually assigning that resource to the active applications. To implement the act phase, the software

requires two pieces of external information. The first is a timing information about how long to

expect from when the resource is allocated to when its effects can be observed. This information is

required so that the software does not take a new observation before the resources have actually had

an effect. The second piece of information is a function that implements the resource allocation.

As most resources are allocated in system-specific ways, this function is necessary to maintain the

generality of the approach and let it work on multiple systems.

13

Given this information, the action phase simply consists of setting the resource configuration

to that specified by the decision phase and then putting the decision tree to sleep for the time it will

take to see the resource effects. To increase efficiency, the software keeps track of the previous

resource allocation and only changes those resource setting which changed since the last decision.

3.2 Hardware Power Capping

We briefly outline the approach taken by Intel’s RAPL system [6], in terms of observation, de-

cision, and action. RAPL receives a power cap and a time interval through a machine specific

register (MSR). RAPL observes various low-level hardware events and uses a model to estimate

power consumption from those event counts. RAPL determines an energy budget that would meet

the desired power cap during the specified time interval. For example, if the time interval is 0.5

seconds and the power cap is 100 Watts, the energy budget is 50 Joules.

RAPL, then sub-divides the user-specified time interval into a set of finer-granularity intervals.

For each of the fine-grained intervals, RAPL calculates the remaining energy budget for the rest of

the time in the user-specified time interval and decides the best possible state of processor speed

and voltage. Given this decision, RAPL acts to tune DVFS to the decided state and wait for the

next fine-grained interval. More detail on RAPL operation is available in the literature [6].

It is instructive at this point to compare the hardware and software approaches. Software is

clearly flexible, the approach in Algorithm 1 will work with any set of available resources – the

only requirement is that we must be able to establish an order on these resources. The drawback

of software is that configuring the system requires executing Algorithm 1, which can be costly (as

shown in Fig. 2.1). In contrast, RAPL observes only power feedback (not performance), makes

decisions by solving a linear equation, and acts by only tuning voltage and frequency only. All

three steps can be done within milliseconds and this ensures the timeliness of hardware approach.

However, because RAPL lacks performance feedback and considers only DVFS, this hardware

approach cannot deliver the highest performance for many applications.

14

3.3 PUPiL’s Hybrid Power Capping

Our goal is to obtain the efficiency of the software approach and the timeliness of hardware ap-

proach. Thus, we propose PUPiL, a hybrid power capping system that incorporates software and

hardware. In the following sections, we describe how we combine them to achieve both timeliness

and efficiency.

3.3.1 Timeliness

We need the system to respect the power cap as soon as the cap is set. To achieve this timeliness,

hardware power capping approach has to be in charge of capping the power instead of the much

slower control loop of software approach. Thus, we set the power cap in hardware first, before ex-

ploring other resources. Meanwhile, to avoid interference with the hardware approach, we remove

processor speed and voltage from the set of resources controlled by software. Leaving hardware

in charge of voltage and speed ensures timeliness and reduces the configuration space over which

software much search.

The hybrid decision tree is illustrated in Fig. 3.2. The major difference between Fig. 3.1’s

software approach and Fig. 3.2’s hybrid approach is that the hybrid approach explicitly sets RAPL

before exploring the configuration space determined by the non-DVFS resources. To achieve this

in practice, we modify Algorithm 1 so that its first line sets the RAPL power cap.

3.3.2 Efficiency

We need to find the optimal configuration for the running application to achieve high efficiency.

This requires two modifications to the decision tree algorithm shown in Algorithm 1.

First, the power cap has now been taken care of by the hardware approach and PUPiL need

only focus on performance. Thus, the hybrid approach excludes all the power condition checks in

Algorithm 1 – PUPiL assumes RAPL ensures the power cap.

15

Second, power distribution among different chips in a multi-socket environment has to be re-

considered. Hardware power capping caps power on a per-socket manner. However, the optimal

configuration for an application or workload is often asymmetric, so it is necessary to distribute

power accordingly instead of using a default even distribution. PUPiL, therefore, uses a core-

number based power distribution across different chips. More specifically, PUPiL distributes the

dynamic power (power cap minus static power) proportional to the core number being used by

each chip. PUPiL achieves this by setting corresponding hardware power cap to each chip. Thus,

whenever there is core number configuration adjustment, power distribution adjusts with it.

16

CHAPTER 4

EXPERIMENTAL SETUP

This section describes benchmarks, system, and metrics we use to evaluate PUPiL.

4.1 Benchmarks

We use 20 benchmark applications from three different suites including PARSEC (x264,

swaptions, vips, fluidanimate, blackscholes, bodytrack) [2], Minebench (ScalParC,

kmeans, HOP, PLSA, svmfe, btree, kmeans fuzzy) [28], and Rodinia (cfd, nn, lud,

particlefilter)[3]. We also use a partial differential equation solver (jacobi) and the

swish++ search webserver [18] and dijkstra [22]. These benchmarks test a range of impor-

tant modern multicore applications with both compute-intensive and data-intensive workloads. All

applications run with up to 32 threads (the maximum supported in hardware on our test machine).

In addition, all workloads are long running, taking at least 10 seconds to complete. This duration

gives us plenty of time to take measurements of system performance and power consumption.

4.2 Platform

We use a dual-socket Intel/Linux system with a SuperMICRO X9DRL-iF motherboard and two

Xeon E5-2690 processors (see Table 2.1). This motherboard supports setting RAPL’s power cap-

ping feature. The system runs Linux 3.2.0. We make use of the msrmodule, allowing access to the

model specific registers (MSR) used to set RAPL power caps and read energy consumption. We

use the cpufrequtils package to set the processor’s clock speed. These processors have eight

cores, fifteen DVFS settings (from 1.2 – 2.9 GHz), hyper-threading, and TurboBoost. In addition,

each chip has its own memory controller, and we use the numactl library to control access to

memory controllers. In total, the system supports 1024 user-accessible configurations, each with

17

Table 4.1: System configurations.

Configuration Settings Max Speedup Max Powerup
cores per socket 8 7.9 2.1
sockets 2 2.0 1.7
hyperthreading 2 1.9 1.2
mem controllers 2 1.8 1.1
clock speeds 16 3.2 3.4

its own power/performance tradeoffs1. According to Intel’s documentation, the thermal design

power for these processors is 135 Watts.

Given those specifications, the following resources are configurable on our system: the clock

speed of each socket, the cores in use per socket, hyperthreading, the number of sockets in use,

and the number of memory controllers in use. Manipulating thread affinities allows us to change

the cores per socket, the active sockets and the use of hyperthreading. Clock speeds are adjusted

with the cpufrequtils and numactl controls access to memory.

As described in Section 3, implementing the software decision tree requires establishing an

order on the set of resources under consideration. Table 4.1 lists these resources in the order

established by Algorithm 2. For each resource in the table, it lists the speedup and power up

(increase in power, analogous to speedup) measured during the ordering process.

4.3 Evaluation Metrics

Our goal is to evaluate the timeliness and efficiency of various power capping approaches. To

compare approaches, we must quantify these properties. We evaluate timeliness by measuring

settling time. We evaluate efficiency by measuring the performance achieved by a workload under

a power cap.

1. 16 cores, 2 hyperthreads, 2 memory controllers, and 16 speed settings (15 DVFS settings plus TurboBoost)

18

4.3.1 Timeliness

Settling time is a standard metric for a control system [14]. Given a power cap, it may take some

amount of time for the controller to stabilize the system at that power. We call the period after

which the system stabilizes the steady state and we denote the time at which the system enters

steady state as tss. If the controller begins work at time t0, then the settling time is simply:

settle = tss− t0 (4.1)

Low settling times indicate the desired power is reached quickly. High settling times indicate that

convergence is a long process.

4.3.2 Efficiency

Efficiency is the performance delivered under a power cap. We evaluate efficiency using weighted

speedup. This is a standard metric for multi-application workloads that weights the performance

each application achieves in a multi-application scenario by the performance it would achieve in

isolation. This metric has been demonstrated to be both consistent and fair [9].

19

CHAPTER 5

EXPERIMENTAL EVALUATION

This section evaluates PUPiL’s timeliness and efficiency and compares it to both the software

approach and Intel’s RAPL. To enable others to perform similar evaluations, we have made the

software and scripts used to perform this evaluation available online. We begin by evaluating

single application workloads and then address multi-application workloads.

5.1 Single Application

To evaluate power control methods in single application workloads, we launch each application

under a power cap and measure both its performance and settling time. We evaluate 5 different

processor power caps: 60, 100, 140, 180, and 220 Watts. When setting the caps in RAPL we split

the power budget between both sockets evenly. The software and hybrid approaches are free to

divide the power cap among the sockets as they see fit.

5.2 Performance

We first evaluate the performance delivered under each power cap. These results are shown in

Fig. 5.1. This figure contains one chart for each power cap. The x-axis shows the benchmark,

the y-axis shows performance normalized to optimal (1 is the best possible performance). The

charts show one bar for each of RAPL, software-only, and PUPiL. We determine optimal speed by

running each application in every possible system configuration and measuring its performance.

The optimal speed is then the best speed obtainable for that power cap using available system

configurations.

While results vary per application and power cap, the general trends show that the software

approach provides higher performance, on average, than RAPL. Furthermore, the hybrid approach

generally provides the highest performance. The average performance for each power cap and
20

Table 5.1: Comparison of Average Performance.
Power Cap RAPL Software PUPiL

60W 0.60 0.73 0.75
100W 0.78 0.83 0.87
140W 0.81 0.88 0.90
180W 0.84 0.89 0.92
220W 0.85 0.92 0.94

power controller is summarized in Table 5.1. From this table we see that PUPiL consistently

outperforms RAPL across all power caps by at least 10% (at the 180W cap) and at most 25% (at

the 60W cap). Furthermore, the software approach is very close to PUPiL. These results confirm

that software has an advantage in efficiency over hardware, in general.

Clearly RAPL performs well on some applications (e.g., btree and svmfe) and poorly on

others (e.g., dijkstra and kmeans). RAPL generally performs well for applications that have

ample parallelism and scale well to use all 32 virtual cores. RAPL generally performs poorly on

applications with scaling issues or limited parallelism. For such applications, it is better to restrict

the resources they are using and increase the speed of this small subset.

For example, kmeans scales well as it is provided more cores on a socket. When kmeans is

allocated cores on both sockets, however, inter-socket communication becomes a bottleneck. In

that case, kmeans continues to issue instructions and burn power, but without increasing speed.

RAPL must reduce its clock speed to meet the power cap. In contrast, both the software-approach

and PUPiL recognize that using the second socket made performance worse, and they restrict

kmeans to a single socket, but increase the speed of that socket, resulting in higher performance.

5.3 Settling Time

For each application and power cap we measure settling time. Fig. 5.2 shows the settling times for

all approaches and applications under the 140 Watt cap. Results for other caps are similar (only

1-2% different) and are omitted for space. Each application is shown on the x-axis and settling

time (measured in milliseconds) is shown on the y-axis (in a logarithmic scale).

The data in Fig. 5.2 demonstrates the tremendous advantages in timeliness that RAPL has over

21

the software-based approach. On average, across all benchmarks, RAPL’s settling time is 356

ms. In contrast, the software approach averages 95,000 ms, a difference of approximately 260 ×.

These results demonstrate the claims of timeliness made in the introduction to the paper. RAPL

has significant timeliness advantages over the software-based approach. PUPiL, however, is able

to maintain RAPL’s timeliness advantages, averaging 365 ms. The small increase in overhead is

due to the fact that the power cap is now set through PUPiL’s software interface rather than directly

setting the register in hardware.

These results demonstrate the main claims in the introduction. Specifically, RAPL’s hardware

approach addresses the timeliness challenge, quickly converging to the power cap. The software

approach achieves efficiency gains compared to hardware. The average performance advantage

is at least 16%, while for specific applications (e.g., kmeans, dijkstra) the gains can be over

2×. Finally, PUPiL’s hybrid approach is able to meet both the timeliness and efficiency chal-

lenges, combining the low settling time of the hardware approach with the high performance of the

software approach. In the next section, we look at timeliness and efficiency for multi-application

workloads.

5.4 Multi-Application Workloads

In this section we evaluate the power capping techniques for multi-application workloads. We

begin by dividing our benchmark applications into two sets: ones for which RAPL delivers near-

optimal performance, and ones for which RAPL falls short of optimal. Specifically, we consider

RAPL to be near-optimal for an application if it achieves greater than 90% of optimal performance

under the 180W power cap. Applications above this threshold fall into the set of application for

which we consider RAPL to perform well, all others fall into the set where we consider RAPL to

perform poorly.

We then create multi-application workloads by randomly selecting applications from the two

sets. Specifically we create 12 separate mixes, each consisting of four applications. For the first

22

Table 5.2: Multi-application Workloads.
Name Benchmarks
mix1 jacobi, swaptions, bfs, particlefilter

mix2 cfd, bfs, fluidanimate, jacobi

mix3 blackscholes, cfd, jacobi, fluidanimate

mix4 particlefilter, blackscholes, swaptions, btree

mix5 x264, Dijkstra, vips, HOP

mix6 STREAM, fussy-kmeans, HOP, Dijkstra

mix7 STREAM, kmeans, vips, HOP

mix8 kmeans, Dijkstra, x264, STREAM

mix9 jacobi, swaptions, fussy-kmeans, vips

mix10 cfd, bfs, x264, HOP

mix11 jacobi, blackscholes, Dijkstra, fussy-kmeans

mix12 btree, particlefilter, kmeans, STREAM

four mixes (1–4), all applications are drawn from the set for which RAPL achieves near optimal

performance. The mixes 5–8 are all taken from applications for which RAPL performs poorly.

The applications in mixes 9–12 include two applications from each set. These multi-application

workloads are summarized in Table 5.3: each workload is given a name – mixN – and we list the

applications used in that workload.

We evaluate two separate multi-application scenarios: cooperative and oblivious. In the coop-

erative scenario, we assume all applications know that they are running with other applications;

each is launched with only 8 threads, so that the total number of active threads is equal to the num-

ber of virtual cores. In the oblivious scenario, we assume that each application is launched without

regard to the other applications in the system and each requests 32 threads, for a total of 128 alive

in the system. We compare the performance achieved by RAPL and PUPiL in these two scenarios.

5.4.1 Cooperative Performance

The performance for the cooperative multi-application scenario is shown in the left column of

Fig. 5.3. There is a chart for each power cap. The y-axes show the ratio of PUPiL to RAPL

weighted speedup (higher means PUPiL outperforms RAPL) for each application mix (shown on

the x-axes).

The performance comparison for the cooperative scenario reveals similar trends to the single-

application scenarios. There are several mixes for which PUPiL and RAPL achieve similar per-
23

Table 5.3: Ratio of PUPiL to RAPL Average Performance.
Power Cap Cooperative Oblivious

60W 1.43 2.53
100W 1.21 2.56
140W 1.18 2.44
180W 1.18 2.46
220W 1.21 2.43

formance, but there are some where PUPiL’s hybrid approach far outperforms RAPL. Table 5.3

shows the average ratio of PUPiL to RAPL performance across all mixes for each power cap. In

the cooperative scenario, PUPiL consistently outperforms RAPL by at least 18% on average.

It interesting to note that the single-application performance is not necessarily a good indicator

of multi-application performance. For each power cap there are examples where PUPiL far out-

performs RAPL. For example, across all power caps PUPiL achieves much higher performance for

mix2. This happens despite the fact that all applications in mix2 are drawn from the set for which

RAPL provides good individual performance. This result shows that multi-application workloads

can have complicated behavior and it justifies the need for an adaptive approach, like PUPiL, that

can accommodate the unexpected.

5.4.2 Oblivious Performance

The performance for the oblivious multiapp scenario is shown in the right column of Fig. 5.3.

Recall that in the oblivious scenario, each application requests 32 threads. The performance results

show that PUPiL provides significantly better performance than RAPL in the oblivious multi-

application case. The average results across all performance caps are shown in Table 5.3, which

indicates that PUPiL achieves at least 2.4× better average performance than RAPL. Furthermore,

this advantage can jump up to as much as 6× for some application mixes.

These results demonstrate that in a system that reflects the oblivious multi-application workload

– where every application is trying to claim as many resources as possible – RAPL by itself is

simply not sufficient to provide high performance under the power cap. Instead, the flexibility of

a system like PUPiL is needed to carefully manage resource usage and deliver high performance.

24

Table 5.4: Ratio of PUPiL to RAPL Average Performance.
Workload Spin Cycles (%) Memory Bandwidth (GB/s)

RAPL PUPiL RAPL PUPiL
mix7 15 0.23 14.6 23.8
mix8 54 .48 17.5 30.3
mix12 33 .40 14.3 27.0

The reason for PUPiL’s higher performance is that these oblivious workloads typically bottleneck

on some resource early. This bottleneck is usually either intersocket communication bandwidth

or memory bandwidth. This bottlenecking in the multi-application scenario is similar to what we

have seen in the single application case, but now the consequences are more dire. We explore the

reasons for this more in the next section.

5.4.3 Detailed Multiapp Data

This section presents some low-level metrics collected to explain the performance difference be-

tween PUPiL and RAPL in the oblivious multiapp case. To look for major differences between

RAPL and PUPiL we use Intel’s VTune tool to collect low-level metrics for the application mixes

under both RAPL and PUPiL control.

VTune collects a tremendous amount of data on applications, but when looking at the metrics,

two things stood out: spin cycles and memory bandwidth. This data is shown in Table 5.4 for

the three mixes where PUPiL outperforms RAPL by the greatest amount. For each mix, the table

shows the percentage of time spent executing spin cycles, cycles for which the processor is retiring

instructions, but no forward progress is being made (e.g., test-and-set instructions which fail the

test). The table also shows the achieved memory bandwidth in MB/s for these three mixes.

From the table, it is obvious that under RAPL control these mixes spend significantly larger

portions of their time spinning and achieve a significantly smaller memory bandwidth. We believe

that the problem is that one of the applications in these mixes uses polling synchronization during

a fairly long serial portion of operation. The other applications appear to be largely memory

limited and are either embarrassingly parallel (no or limited synchronization) or use condition

variables to synchronize. Therefore, these other applications need memory bandwidth to make
25

progress and yield the CPU when they cannot make progress. The one application that does polling

synchronization, however, apparently ruins the behavior of the entire system, as when it gets the

CPU it holds it for its entire scheduling quantum while making minimal forward progress. This

behavior limits the ability of the other applications to make progress as well. When the mix is

scheduled on fewer cores, however, its overall performance increases dramatically. Somewhat

surprisingly, the use of fewer cores appears to reduce the chance that one application’s threads get

scheduled and just do polling synchronization.

RAPL cannot detect this, but PUPiL, which dynamically monitors performance can. PUPiL re-

alizes that moving to a state with fewer cores results in an overall performance increase. Thus, this

study with multiple applications further demonstrates the efficiency of software-based approaches

and validates the design of PUPiL which incorporates dynamic feedback.

5.5 Sensitivity and Overhead Analysis

Throughout this section we investigate several factors which affect the results. Our results examine

sensitivity to various power caps. We have seen that performance under very low power caps is

difficult for any power management system. We have also seen that in both cooperative and oblivi-

ous multiapp scenarios PUPiL outperforms RAPL across a wide range of power caps. Further, the

use of diverse workloads has demonstrated that some applications achieve high performance with

RAPL alone, while others need the greater flexibility of PUPiL’s hybrid approach.

In a feedback based system, overhead can take two forms. First, it can arise from the number

of measurements that need to be taken before the system converges. Second, it can arise as an

impact on the converged system. Our results account for both forms of overhead. We emphasize

that all results reported in this section include the power and performance impact of the power

capping systems themselves. The first type of overhead is measured directly in terms of settling

times shown in Fig. 5.2. We see that the software only approach has very high, likely unusably

high, overhead by this metric. The second type of overhead is accounted for by the comparison to

26

optimal in Fig. 5.1. This figure shows that the performance impact of the PUPiL runtime system is

acceptable in that PUPiL produces the closest to optimal performance.

27

Power Cap
60W

100W

140W

180W

220W

0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

RAPL Software PUPiL

0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

blacks
choles

PLSA

km
eans fu

zzy

sw
ish

+
+ bfs

jacobi

sw
aptions

x264

bodytr
ack

btre
e cfd

partic
lefilte

r

svm
rfe HOP

ScalParC

fluidanimate
dijks

tra

STREAM
km

eans
vip

s

Avera
ge

0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

Figure 5.1: Performance of several power control techniques normalized to optimal.

blacks
choles

PLSA

km
eans fuzzy

sw
ish

+
+ bfs

jacobi

sw
aptions

x264

bodytr
ack

btre
e cfd

partic
lefilte

r
svn

rfe HOP

ScalParC

fluidanimate
dijks

tra

STREAM
km

eans
vip

s

Avera
ge

100
101
102
103
104
105

Se
ttl

in
g

Ti
m

e
(m

s)

RAPL Software PUPiL

Figure 5.2: Settling times for several power control techniques.

28

Power Target
60W

100W

140W

180W

220W

0.6
1.0
1.4
1.8
2.2
2.6

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

1.0

3.0

5.0

7.0

0.6
1.0
1.4
1.8
2.2
2.6

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

1.0

3.0

5.0

7.0

0.6
1.0
1.4
1.8
2.2
2.6

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

1.0

3.0

5.0

7.0

0.6
1.0
1.4
1.8
2.2
2.6

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

1.0

3.0

5.0

7.0

mix1mix2mix3mix4mix5mix6mix7mix8mix9
mix1

0
mix1

1
mix1

2

Avera
ge

0.6
1.0
1.4
1.8
2.2
2.6

N
or

m
al

iz
ed

Pe
rf

or
m

an
ce

mix1mix2mix3mix4mix5mix6mix7mix8mix9
mix1

0
mix1

1
mix1

2

Avera
ge

1.0

3.0

5.0

7.0

Figure 5.3: Ratio of PUPiL to RAPL performance in cooperative (left) and oblivious (right) mul-
tiapp scenarios.

29

CHAPTER 6

RELATED WORK

As power and energy become first order concerns of computing systems, a number of approaches

have been proposed for managing these critical issues. Power management approaches have been

proposed in diferent computing fields and level. Approaches focusing on meeting performance

target while minimizing energy cost appeared in both cluster computing [19, 34, 43, 48] and mo-

bile computing [11, 20, 49]. However, none of these approaches implement power cap or have

power limit guarantee. In system level, several OS projects have added operating system support

for monitoring and allocated energy. The Quanto project facilitates tracking energy usage in net-

worked embedded devices [12]. The Cinder OS allows energy usage to be tracked and allocated

across multiple applications in a system [33]. The Koala project also allows energy to be tracked

and allocated while supporting several different policies for optimizing energy and performance

[38]. Similarly, power containers support fine-grain tailoring of heterogeneous resources to vary-

ing workloads [35]. The Coop-I/O project allows applications to coordinate with the operating

system to schedule I/O operations in the most energy efficient manner possible [46]. None of these

projects, however, explicitly support maximizing performance under a power constraint, which is

the subject of this paper.

while minimizing energy either in cluster to cut down the electricity bill or in mobile devices to

increase batter life is an important problem, power capping is a different concern. Firstly, operating

within power limits has become essential as multicore scalability is increasingly limited by power

and thermal management [8, 42]. The physical realities of power dissipation in modern processors

have led to hardware designs characterized by dark silicon. Secondly, uncontrollable power usage

has led to great over-provisioning of power delivering and cooling devices in datacenters. Reliable

power capping can eliminate the over-provisioning and further increase the computing density of

datacenter, which motivates Intel’s SandyBridge and later processors to support power manage-

ment in hardware [6] . However, it only considers tuning the DVFS rather than coordinating all

30

configurable resources as we proposed, it cannot deliver optimal efficiency.

Cluster level solutions which guarantee power consumption include those proposed by Wang

et al. [44] and Raghavendra et al. [30]. These cluster-level solutions require some node-level

power management scheme. Node-level systems for guaranteeing power consumption have been

developed to manage different individual components including DVFS for a processor [24], per-

core DVFS in a multicore [23], processor idle-time [13, 50], DRAM [7].

Several researchers have noted that coordinating multiple components provides greater per-

formance under a power cap than management of a single component in isolation [15, 17, 25,

29]. Thus, approaches have been proposed which provide power guarantees while increasing

performance through coordinated management of multiple components, including processor and

DRAM [4, 10], processors speed and core allocation [5, 32], combining DVFS and scheduling [31,

47], and combining DVFS and process placement [26]. The VirtualPower project coordinates

power management, virtual machine placement, and server consolidation to meet power constraints

in a virtualized data center [29]. Despite differences in mechanisms, these techniques all solve a

common problem: select the highest performance set of resources that respect a given power limit.

All of these projects found higher performance is available through the coordination of multiple

resources. With these results, it is not surprising that a hardware solution alone would not achieve

high efficiency for some applications.

We believe that power management should not solely be the domain of hardware, but must be

supported by both hardware and software coordinated through the operating system. Hardware

should be used to quickly enforce power limits, as hardware can simply act faster than software.

Software techniques, however, should be used to determine the set of resources to activate that

achieve the best performance under the power limit, considering the current workload. This paper

has presented a general, decision tree-based approach for performing this coordination.

We note that this approach is complimentary to other approaches which schedule applications

to minimize energy [27, 45, 51]. PUPiL determines what set of resources to activate, but it does not

31

explicitly assign those resources to applications. Instead, it lets the underlying operating system

scheduler perform that work. In this paper, that scheduler was simply the default Linux scheduler.

It is likely that further performance gains could be achieved by coupling PUPiL with advanced

energy-aware schedulers.

32

CHAPTER 7

FUTURE WORK

This section introduces several promising research project as extensions to our work.

Firstly, further coordinating memory and processor power is potentially another big win. As a

considerable proportion of workloads in server system are memory intensive, this gives memory

power a increasingly large weight of the whole system power. Some data from Intel shows that

memory can contribute as much as 25 percent of whole system power. Therefore, to efficiently cap

the system power at a larger power range, we need to consider both processor and memory power.

In this work, the only knob for adjusting memory power is memory controller number and we

don’t have a choice of on which power state memory nodes are running. As more memory power

management techniques appear, such as RAPL memory power limiting, it will be interesting to

see how much influence memory power management contributes to the overall power and if it’s

considerable, how should we coordinate both? We believe that feedback based control loop can

find the answer but then how to efficiently find the balance point will be critical.

Second, multi-node power capping is a natural extension of this work. Power capping tech-

niques are a promising approach to solve the over-provisioning of power supply and cooling de-

vices in datacenters. Our approach, however, is currently system-level power capping and cluster-

level power capping will be requested for such needs. Therefore, the future project would be

extending current work from single node to multiple nodes. Trivially using single node power

capping to evenly cap power of multiple nodes may solve the problem of power overload but will

generate serious performance issue. To coordinate different nodes to achieve better performance,

we have to allocate power to the most needed component based on the information of workload,

e.g., data dependency. For example, in a simple pipelined computation model, we need to allocate

more power to the slowest stage to boost up overall performance.

Thirdly, Coupling PUPiL and energy-aware scheduler would have further performance gain.

In this paper, we determine the set of resources to be activated for best performance, but we don’t

33

directly assign the resources to application, instead, it is done by the underlying operating system.

For example, in the oblivious multiple application case, we assign the activated resources to all the

four benchmarks and OS will be deciding how many threads of which benchmark is deployed on

which core. Given the fact that, different application favors different configuration, a energy-aware

scheduler which can isolate each of the application and assign the optimal resources to each of the

applications would achieve higher performance, e.g., in our multiple application experiment, when

kmeans application competes resources with other 3 applications on all 32 cores, it spins for most

of the time and keeps holding the core resource from being used by other application and this

behavior destroys the total performance of all four applications. A ’smart’ scheduler would isolate

kmeans from other applications and maybe keeps it on its optimal configuration(single socket,16

core). In such way, neither will kmeans spin that much, nor it will compromise other application’s

performance.

Lastly, hardware counter based performance modeling may benefit our management system.

Our current performance feedback technique needs code segment to be inserted into the appli-

cation. This is a constraint for existing software even the code modification is minimal. Also,

performance feedback time varies a lot depending on the application, which sometimes greatly

increase the converging time of finding the optimal configuration. As we have seen, there are some

correlation between the hardware counter such as IPC, cache miss, memory access, spin cycle,

context switching, etc. If we can derive performance within acceptable accuracy using only those

hardware counters, it will benefit not only our work but almost all of the feedback based approach

will have a faster control loop and no more software code modification will be needed. Therefore,

this would be a challenging and meaningful thing to study.

34

CHAPTER 8

CONCLUSION

This paper has investigated hardware and software power capping techniques. We have found that

hardware techniques provide significantly faster response time – they quickly enforce power limits

– while software techniques provide much greater flexibility – they can tailor resource usage to the

current application workload. We have used these observations to formulate and evaluate a hybrid

hardware/software power capping system called PUPiL. We evaluated PUPiL and compared it to

a pure software approach and to Intel’s state-of-the-art hardware based power capping approach.

Across a number of power targets and workloads, we find that PUPiL achieves the same response

time as the hardware approach and the flexibility of the software approach. In single application

workloads, PUPiL provides at least 10% greater average performance than RAPL. In cooperative

multi-application workloads PUPiL provides at least 18% greater average performance. In oblivi-

ous multi-application workloads, PUPiL provides at least 2.4× the performance. We conclude that

delivering performance under a power cap cannot be left to hardware alone, but requires the coop-

eration of both hardware and software based approaches. We have developed one such approach

and released the code and test cases for this approach so that others can benefit from it, compare

against it, or extend it in future work.

35

BIBLIOGRAPHY

[1] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, J. Hiller,

S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S.

Williams, K. Yelick, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W.

Harrod, J. Hiller, S. Keckler, D. Klein, P. Kogge, R. S. Williams, and K. Yelick. ExaScale Computing Study:

Technology Challenges in Achieving Exascale Systems Peter Kogge, Editor & Study Lead. 2008.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. “The PARSEC Benchmark Suite: Characterization and Architectural

Implications”. In: PACT. 2008.

[3] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron. “Rodinia: A Benchmark Suite

for Heterogeneous Computing”. In: IISWC. 2009.

[4] J. Chen and L. K. John. “Predictive coordination of multiple on-chip resources for chip multiprocessors”. In:

ICS. 2011.

[5] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda. “Pack & Cap: adaptive DVFS and thread packing under

power caps”. In: MICRO. 2011.

[6] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. “RAPL: Memory Power Estimation and

Capping”. In: ISLPED. 2010.

[7] B. Diniz, D. Guedes, W. Meira Jr., and R. Bianchini. “Limiting the power consumption of main memory”. In:

ISCA. 2007.

[8] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. “Dark silicon and the end of

multicore scaling”. In: ISCA. 2011.

[9] S. Eyerman and L. Eeckhout. “Restating the Case for Weighted-IPC Metrics to Evaluate Multiprogram Work-

load Performance”. In: Computer Architecture Letters 13.2 (2014), pp. 93–96. ISSN: 1556-6056. DOI: 10.

1109/L-CA.2013.9.

[10] W. Felter, K. Rajamani, T. Keller, and C. Rusu. “A performance-conserving approach for reducing peak power

consumption in server systems”. In: ICS. 2005.

[11] J. Flinn and M. Satyanarayanan. “Energy-aware adaptation for mobile applications”. In: SOSP. 1999.

[12] R. Fonseca, P. Dutta, P. Levis, and I. Stoica. “Quanto: Tracking Energy in Networked Embedded Systems”. In:

OSDI. 2008.

36

[13] A. Gandhi, M. Harchol-Balter, R. Das, C. Lefurgy, and J. Kephart. “Power capping via forced idleness”. In:

Workshop on Energy-Efficient Design. Austin, TX, 2009.

[14] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback Control of Computing Systems. John Wiley

& Sons, 2004.

[15] U. Hoelzle and L. A. Barroso. The Datacenter as a Computer: An Introduction to the Design of Warehouse-

Scale Machines. 1st. Morgan and Claypool Publishers, 2009.

[16] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agarwal. “Application heartbeats: a generic

interface for specifying program performance and goals in autonomous computing environments”. In: ICAC.

2010.

[17] H. Hoffmann, J. Holt, G. Kurian, E. Lau, M. Maggio, J. E. Miller, S. M. Neuman, M. Sinangil, Y. Sinangil, A.

Agarwal, A. P. Chandrakasan, and S. Devadas. “Self-aware computing in the Angstrom processor”. In: DAC.

2012.

[18] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Rinard. “Dynamic Knobs for Re-

sponsive Power-Aware Computing”. In: ASPLOS. 2011.

[19] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu. “Dynamic Voltage Scaling in Multitier Web Servers with

End-to-End Delay Control”. In: Computers, IEEE Transactions on 56.4 (2007).

[20] C. Imes, D. H. K. Kim, M. Maggio, and H. Hoffmann. “POET: A Portable Approach to Minimizing Energy

Under Soft Real-time Constraints”. In: RTAS. 2015.

[21] T. Instruments. http://www.ti.com/product/ina231.

[22] S. Iqbal, Y. Liang, and H. Grahn. “ParMiBench - An Open-Source Benchmark for Embedded Multiprocessor

Systems”. In: Computer Architecture Letters 9.2 (2010). ISSN: 1556-6056. DOI: 10.1109/L-CA.2010.14.

[23] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi. “An Analysis of Efficient Multi-Core

Global Power Management Policies: Maximizing Performance for a Given Power Budget”. In: MICRO. 2006.

[24] C. Lefurgy, X. Wang, and M. Ware. “Power capping: a prelude to power shifting”. In: Cluster Computing 11.2

(2008).

[25] D. Meisner et al. “Power management of online data-intensive services”. In: ISCA (2011).

[26] A. Merkel and F. Bellosa. “Balancing power consumption in multiprocessor systems”. In: EuroSys. 2006.

[27] A. Merkel, J. Stoess, and F. Bellosa. “Resource-conscious scheduling for energy efficiency on multicore pro-

cessors”. In: EuroSys. 2010.

37

[28] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choudhary. “MineBench: A Benchmark Suite

for Data Mining Workloads”. In: IISWC. 2006.

[29] R. Nathuji and K. Schwan. “VirtualPower: coordinated power management in virtualized enterprise systems”.

In: SOSP. 2007.

[30] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu. “No ”power” struggles: coordinated multi-

level power management for the data center”. In: ASPLOS. 2008.

[31] K. K. Rangan, G.-Y. Wei, and D. Brooks. “Thread motion: fine-grained power management for multi-core

systems”. In: ISCA. 2009.

[32] S. Reda, R. Cochran, and A. Coskun. “Adaptive Power Capping for Servers with Multithreaded Workloads”.

In: Micro, IEEE 32.5 (2012).

[33] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and N. Zeldovich. “Energy Management in Mobile

Devices with the Cinder Operating System”. In: EuroSys. 2011.

[34] A. Sharifi, S. Srikantaiah, A. K. Mishra, M. Kandemir, and C. R. Das. “METE: meeting end-to-end QoS in

multicores through system-wide resource management”. In: SIGMETRICS. 2011.

[35] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and Z. Chen. “Power Containers: An OS Facility for Fine-

grained Power and Energy Management on Multicore Servers”. In: ASPLOS. 2013.

[36] Y. Shin, K. Shin, P. Kenkare, R. Kashyap, H.-J. Lee, D. Seo, B. Millar, Y. Kwon, R. Iyengar, M.-S. Kim, A.

Chowdhury, S.-I. Bae, I. Hon, W. Jeong, A. Lindner, U. Cho, K. Hawkins, J. Son, and S. Hwang. “28nm High-

Metal-Gate Heterogeneous Quad-Core CPUs for High-Performance and Energy-Efficient Mobile Application

Processor”. In: ISSCC. 2013.

[37] Y. Sinangil, S. M. Neuman, M. E. Sinangi, N. Ickes, G. Bezerra, E. Lau, J. E. Miller, H. Hoffmann, S. Devadas,

and A. P. Chandraksan. “A Self-Aware Processor SoC using Energy Monitors Integrated into Power Converters

for Self-Adaptation”. In: VLSI Symposium. 2014.

[38] D. C. Snowdon, E. Le Sueur, S. M. Petters, and G. Heiser. “Koala: A Platform for OS-level Power Manage-

ment”. In: EuroSys. 2009.

[39] B. Sprunt. “The basics of performance-monitoring hardware”. In: IEEE Micro 22.4 (2002).

[40] E. Team. Key Challenges for Exascale OS/R. Online document, https://collab.mcs.anl.gov/display/

exaosr/Challengesl.

[41] P. Team. Online document, http://icl.cs.utk.edu/papi/.

38

[42] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez, S. Swanson, and M. B. Taylor.

“Conservation cores: reducing the energy of mature computations”. In: ASPLOS. 2010.

[43] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari. “Server workload analysis for power minimization

using consolidation”. In: USENIX Annual technical conference. 2009.

[44] X. Wang, M. Chen, and X. Fu. “MIMO Power Control for High-Density Servers in an Enclosure”. In: IEEE

Transactions on Parallel and Distributed Systems 21.10 (2010).

[45] M. Weiser, B. B. Welch, A. J. Demers, and S. Shenker. “Scheduling for Reduced CPU Energy”. In: OSDI.

1994.

[46] A. Weissel, B. Beutel, and F. Bellosa. “Cooperative I/O: A Novel I/O Semantics for Energy-Aware Applica-

tions”. In: OSDI. 2002.

[47] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker. “Scalable thread scheduling and global power management

for heterogeneous many-core architectures”. In: PACT. 2010.

[48] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. “Formal online methods for voltage/frequency control in

multiple clock domain microprocessors”. In: ASPLOS. 2004.

[49] W. Yuan and K. Nahrstedt. “Energy-efficient soft real-time CPU scheduling for mobile multimedia systems”.

In: SOSP. 2003.

[50] X. Zhang, R. Zhong, S. Dwarkadas, and K. Shen. “A Flexible Framework for Throttling-Enabled Multicore

Management (TEMM)”. In: ICPP. 2012.

[51] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto. “Survey of Energy-Cognizant Scheduling

Techniques”. In: IEEE Trans. Parallel Distrib. Syst. 24.7 (2013), pp. 1447–1464. DOI: 10.1109/TPDS.2012.

20. URL: http://doi.ieeecomputersociety.org/10.1109/TPDS.2012.20.

39

