
GRAPE: Minimizing Energy for GPU Applications
with Performance Requirements

Muhammad Husni Santriaji
Surya University & University of Chicago
Email: muhammad.santriaji@surya.ac.id

santriaji@uchicago.edu

Henry Hoffmann
University of Chicago

Email: hankhoffmann@uchicago.edu

Abstract—Many applications have performance requirements
(e.g., real-time deadlines or quality-of-service goals) and we
can save tremendous energy by tailoring resource usage so
the application just meets its performance using the minimal
resources. This problem is a classic constrained optimization:
the performance goal is the constraint and energy consumption
is the objective to be optimized. While several existing hardware
approaches solve unconstrained optimizations (i.e., maximizing
performance or minimizing energy), we are not aware of a hard-
ware approach that minimizes GPU energy under an externally
defined performance constraint. Therefore, we propose GRAPE,
a hardware control system for GPUs that coordinates core
usage, wavefront/warp action, core speed, and memory speed to
deliver user-specified performance while minimizing energy. We
implement GRAPE in VHDL (to demonstrate feasibility) and
as an extension to GPGPU-Sim (for performance and power
measurement). We find that GRAPE can be implemented with
very low hardware overhead; however, compared to the no-
overhead approach of race-to-idle, GRAPE reduces energy by
9-26% (depending on the performance goal), while meeting
performance goals with an average error of 0.75%.

I. INTRODUCTION

Energy consumption is a first order concern for computing
systems, from mobile devices (where it defines battery life)
to supercomputers (where it determines operating costs). At
the same time, ever-increasing performance demands have
led to the adoption of GPU-based acceleration in a wide
range of computing platforms. While GPUs deliver tremen-
dous computational throughput, they consume a significant
portion of total system energy. Therefore, this paper studies
hardware support for GPU energy reduction when executing
applications with performance requirements.

Such applications are not required to achieve the best
possible performance, but deliver results with predictable
timing — often expressed as a latency or quality-of-service
goal. Examples exist in mobile platforms — including video,
media capture, and display where the system interacts with
a user [14, 26, 45]. At the other end of the computing

This project is funded by the U.S. Government under the DARPA BRASS
program, by the Dept. of Energy under DOE DE-AC02-06CH11357, by the
NSF under CCF 1439156, and by a DOE Early Career Award.

spectrum, future supercomputer workloads will include in-
teractive simulations and data analysis applications [37, 42,
43, 52]. In these cases, applications should not run as fast
as possible, but meet their performance requirements with
minimal energy.

Many prior approaches manage resources for energy reduc-
tion. Some consider a single resource only, e.g., CPU [27] or
memory [11] frequency. Others coordinate multiple resources
for greater energy savings [12, 18, 20, 32, 44]. Finally,
some approaches incorporate application-level knowledge
(e.g., frame rates) to tailor resource usage to an application’s
frame-based performance requirements [35, 57]. While these
approaches combine multi-component management with do-
main knowledge, they do so in software. We are not aware
of a hardware approach that manages multiple components
to meet performance requirements while minimizing energy.

A hardware resource management system has the potential
to both remove the optimization burden from software and
react more quickly than software can. Of course, providing
a hardware solution presents several challenges:
• Overhead: Significant area, time, or power overhead

will diminish any potential gains.
• Unknown Applications: To support different applica-

tions; hardware management should (1) rapidly detect
applications’ response to different resources and (2)
react when this response changes (e.g., it transitions
from memory bound to compute bound).

To provide hardware resource management, we introduce
GRAPE (GPU Resource Adaptation for Performance and
Energy). GRAPE overcomes the above challenges to meet
user-specified performance goals by managing: (1) the num-
ber of streaming multiprocessors (SMs), (2) the number of
warps/wavefronts, (3) the SM frequency, and (4) the DRAM
frequency. GRAPE’s control theoretic approach meets the
performance goal and dynamically tailors response to the
application’s behavior – including phases in an application.
Compared to prior work, GRAPE provides three innovations:
• The domain knowledge comes at runtime in the form of

a performance requirement. For this paper, the desired
performance is expressed as instructions per second.
GRAPE’s design, however, is independent of any one978-1-5090-3508-3/16/$31.00 c© 2016 IEEE

metric; e.g., it could be trivially modified to support
floating point rate. GRAPE’s general interface supports
frame-based applications as well as potential future
interactive applications.

• All management is performed in hardware. Whereas
prior approaches for constrained optimization in GPUs
require software support, GRAPE’s hardware solution
meets performance goals with minimal energy.

• GRAPE’s control theoretic design provides some for-
mal guarantees about its dynamic behavior, including
guaranteed convergence to the desired performance and
bounded convergence time. These guarantees make are
appropriate for meeting soft real-time requirements.

We integrate GRAPE into GPGPU-Sim v3.2.2 [4] and
GPUWattch [28] and then it using 17 benchmarks drawn from
Rodinia [8] and Parboil [49]. We compare to the strategy of
racing-to-idle; i.e., allocating all resources and transitioning
to a low-power idle state when a task completes. We also
implement GRAPE in VHDL to demonstrate its feasibility.
The evaluation shows that GRAPE provides:
• Low Overhead: We synthesize the VHDL for an FPGA

using Quartus to demonstrate feasibility and provide
a rough estimate of overhead. The PowerPlay Early
Power Estimator shows that GRAPE needs 0.434 Watts
to operate. (See Section III-D.)

• Performance Predictability: Across a range of differ-
ent targets (from 25% to 100% of maximum achievable
performance), GRAPE meets the goal with only 0.75%
average error. (See Section V-A.)

• Energy Efficiency: At low performance targets,
GRAPE consumes only 74% of the energy of race-to-
idle. At higher performance targets, the energy savings
diminishes; however, even at maximum performance
GRAPE reduces energy consumption by 9.02% com-
pared to allocating all resources. (See Section V-B.)

• Peak Power Reduction: At low performance targets,
peak power is only 40.29% of race-to-idle. At maximum
performance, peak power is 87.48% of race-to-idle. (See
Section V-C.)

GRAPE is for applications with performance constraints;
however, its low overhead allows it to be incorporated into
many GPU designs. Overall this paper makes the following
contributions:
• Developing a hardware control framework that adapts

resource usage to meet application performance require-
ments with minimal energy.

• Evaluating the approach empirically.
• Releasing the code (both simulation and VHDL) as open

source so others can expand or evaluate it 1.
To the best of our knowledge, GRAPE is the first approach to
propose a hardware solution for reducing GPU energy while
meeting user-defined performance goals.

1Available at: https://github.com/grapemicro/GRAPE.git

II. MOTIVATIONAL EXAMPLE

We motivate GRAPE by considering two separate GPU
applications: cfd and hotspot to show that carefully tailoring
resource usage to the application and its required perfor-
mance can save energy while delivering predictable timing.

Of course, performing resource allocation in hardware
incurs some cost. In the following, we argue that the GRAPE
approach is low overhead. In this section, however, we com-
pare against a zero overhead approach which is commonly
used for general purpose platforms: race-to-idle [16, 34]. In
the race-to-idle approach, an application uses all resources
to complete work as fast as possible and then transitions to
the idle state until the next interactive job arrives. This race-
to-idle approach: 1) is easy to implement, 2) never misses
deadlines, and 3) requires no hardware support.

We implement both GRAPE and race-to-idle using GPG-
PUSim. The GRAPE design is described in detail in Sec-
tion III. At a high-level, software sets a performance goal
(currently desired instructions per second) in a hardware
register. GRAPE reads the goal, executes the application,
and measures its performance. GRAPE’s internal control
system dynamically determines how to speed up or slow
down the application. As the application executes, the con-
troller’s coefficients are adjusted in response to application
phases and changing resource needs. Specifically, GRAPE
will dynamically adjust SM count, wavefront action, memory
speed and SM speed. Race-to-idle, in contrast, does not adapt
to the application, but uses all resources at their maximum
setting until the job is complete.

Figure 1 shows the comparison of the race-to-idle and
GRAPE approaches. For each application we launch with
a performance goal that requires only 50% of maximum
resource usage (we test a wide range of different goals in
the full evaluation). The left column of charts shows CFD,
while the right column shows hotspot. The first row shows
performance, the second shows power, and the third shows
resource usage (as a %) – all as a function of time.

The charts show several interesting behaviors. First, for
both applications, GRAPE’s performance fluctuates before
settling; however, the average performance over the life of
the application is always above the goal. The performance
of race-to-idle also averages to the desired performance, but
it starts by running as fast as possible and then transitioning
to a low-power idle state once the work is done. For these
examples, both approaches meet the required performance.
Looking at power consumption, however, shows a difference.
For these examples, race-to-idle has a larger power con-
sumption than GRAPE — these power numbers include the
power overhead of the GRAPE system itself. In this example,
GRAPE reduces energy consumption by over 20% for each
application. Peak power consumption is also considerably
reduced. Results will vary with different applications and
performance targets, but this shows the potential of using
hardware to tailor resource usage to performance goals.

https://github.com/grapemicro/GRAPE.git

CFD

P
er
fo
rm

a
n
ce

hotspot

P
ow

er
R
es
o
u
rc
eU

se

0

20

40

60

(B
IP

S)

goal race− to− idle GRAPE

0
100
200
300
400

0

50

100

150

(W
at

ts
)

0

50

100

150

1 2 3 4 5
0

50

100

time [ms]

(%
)

SM wavefront DRAMfreq SMfreq

0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

time [ms]

0

50

100

150
P
ow

er
(W

a
tt
s)

0

50

100

150

CFD

P
er
fo
rm

a
n
ce

hotspot

P
ow

er
R
es
o
u
rc
eU

se
0

20

40

60

(B
IP

S)

goal race− to− idle GRAPE

0
100
200
300
400

0

50

100

150
(W

at
ts

)

0

50

100

150

1 2 3 4 5
0

50

100

time [ms]

(%
)

SM wavefront DRAMfreq SMfreq

0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

time [ms]

1

Fig. 1: Performance (top row), power (middle) and resource usage (bottom) for CFD (left) and hotspot (right) applications
using both race-to-idle and GRAPE.

The final chart shows GRAPE’s resource usage over time.
For each resource the chart lists the percentage in use, so
a value of 50% means that resource is used at half its
capacity. CFD is a memory limited application [8], and
GRAPE captures this behavior, quickly reducing wavefront
action and SM speed, while keeping memory speed high.
In contrast, hotspot tends to need more compute resources
[8]. Indeed, GRAPE begins hotspot with high wavefront
action and lower memory frequency. Interestingly, just over
halfway through hotspot’s execution, it changes behavior.
Inspecting the output of GPGPUSim, we see that at that
point, hotspot hits a shared memory bank conflict that causes
serialized memory access. While GRAPE does not explicitly
detect that stall, it does detect a drop in performance and
it reduces wavefront action accordingly, as that no longer
benefits performance, but costs power.

These results demonstrate the potential benefits of tailoring
application resource usage with GRAPE. GRAPE’s feedback
models are 1) robust, 2) computationally inexpensive, and 3)
implementable in hardware. These models are also provably
convergent to the desired behavior. When an application
is running, the GRAPE control system detects differences
between the application’s desired performance and the actual
measured performance. Rather than trying to diagnose the
cause of that difference, GRAPE simply adjusts resource
usage until the difference goes away. GRAPE is technically
an adaptive control system in that internally monitors the
quality of its control and adjusts the controller while it
executes. This adaptive property allows GRAPE to handle
a wide variety of applications.

Intuitively, GRAPE’s control system works like the cruise
control in a car. Car drivers set a speed and cruise control
adjusts fuel flow to ensure that the speed is met. In principle,
a huge number of variables affect the relationship between
fuel flow and a car’s speed such as wind velocity, incline,

surface condition, and tire pressure. Modeling this huge set
of parameters is quite difficult and produces complicated
models that are not useful in practice. Control engineers,
however, have found that simple feedback models produce
robust cruise controls that deliver desired speed even when
the operating environment is unknown ahead of time [29].
Motivated by prior successes in control theory, we work to
apply these techniques to the problem of maintaining a GPU
performance goal while minimizing energy consumption.

III. GRAPE SYSTEM DESIGN

Fig. 2: GRAPE Control Diagram

GRAPE is a hardware control system for GPUs designed
to meet user-specified performance while minimizing en-
ergy through management of (1) streaming multiprocessors
(SMs), (2) wavefronts/warps, (3) SM speed, and (4) DRAM
speed, while keeping overhead low. Figure 2 illustrates the
GRAPE controller’s block diagram. The application provides
a performance goal in the form of a target computation
rate. This target is compared to the current performance
and the difference is passed to a controller. The controller
computes a signal indicating how much to speedup the
application. This speedup signal is passed to a translator,
which converts speedup into specific allocations of SMs,
wavefront/warps, SM speed, and DRAM speed that deliver
the controller-specified speedup with minimal energy. Each

TABLE I: Notation used in the paper.

Symbol Meaning
Controller

guser performance goal set by the user
t time index
e performance error
g internal performance goal set by controller
α control correction constant
ŵ current workload
x inverse workload
x̂ a posteriori estimate of x
x̂− a priori estimate of x
p a posteriori performance variance estimate
p− a priori performance variance estimate
k Kalman filter gain
h current performance
s general control speedup signal

Translator
cost power cost
sm status of SM in GPU
nSM number of SMs
nW number of wavefronts
DRAMstall stall from SM to DRAM
Cachestall stall in SM pipeline due to memory request
SMstall stall from DRAM to SM
DRAMthreshold stall threshold for DRAM
Cachethreshold stall threshold for SM
M ordered set of memory configurations
MEMindex index in M; i.e., a specific configuration
sMEMindex speedup value of memory configuration
cMEMindex power cost of memory configuration
fMEMindex memory frequency of configuration
SMindex SM configuration
sSMindex speedup of SM configurations
cSMindex power cost of SM configurations
fSMindex SM frequency of configuration
fmax maximum SM frequency available
costtemp temporary cost for finding selection
costmin least cost for finding selection

Model Update
highboundMEMindex upper bound on speedup for mem. config.
lowboundMEMindex lower bound on speedup for mem. config.
β learning rate

resource is adjusted and the application executes with the
new resource configuration. GRAPE then observes both the
stall behavior and the new performance of the application.
The stall behavior will be used to update translation on the
next iteration, while the performance is fed back into the
controller and the process begins again.

We detail each GRAPE module in turn. For each of
the three modules we give an intuitive overview and then
formally specify its behavior in the form of equations and
algorithms. The final subsection discusses GRAPE’s hard-
ware implementation. Table I summarizes the notation used
throughout this section.

A. The Controller

The controller determines how much to speed up the
application at time t. It does so by computing the error
between the desired behavior and the measured behavior.
The controller accounts for both immediate behavior —

e.g., application performance is too low at this iteration —
and long-term behavior — e.g., the application initially ran
too slowly and now needs extra speed to meet the overall
performance target. Additionally, the controller tailors re-
sponse to individual applications — or phases in applications
— by continually estimating the application workload; i.e.,
the application’s instruction latency with minimal resources.
GRAPE’s controller has several strengths: (1) it uses a simple
feedback model, which is easy to calculate in hardware at
runtime, (2) it is provably convergent to the desired behavior,
and (3) it is robust in the face of noise and model errors [29].

It is assumed that the controller executes at discrete time
steps t, and the controller executes Algorithm 1 at each
step. The algorithm has four inputs: (1) the user-specified
performance goal guser, (2) the current measured performance
h(t), (3) the number of instructions completed so far I,
(4) and the elapsed time executing the application `. The
controller first sets an internal goal g(t) allowing GRAPE
to correct for any errors it may have made previously —
if GRAPE is initially too slow, it will speed up its own
internal goals. GRAPE then computes the difference between
its internal goal and the measured performance at the current
time (Algorithm 1, line 2).

Phase Estimation. Next, GRAPE estimates the applica-
tion workload at the current time ŵ(t). The workload is
a key parameter that tunes control response to the current
application; it represents the number of instructions that
the application would retire in a time step if allocated the
minimal resources. As the application goes through phases,
this value might change, so it is continually updated as part
of the control action. Lines 4-9 of Algorithm 1 estimate
workload using a standard one-dimensional Kalman filter
formulation [53]. GRAPE uses a Kalman filter because it is
specifically designed to provide accurate estimations in noise
and it is exponentially convergent, meaning that the time it
takes to converge to the correct estimation is proportional to
the logarithm of the error between the initial estimate and
the true value [6].

The last step in each control iteration is to use the error
(from Algorithm 1 line 2) and the workload estimate (from
line 9) to compute the speedup (line 10-11). The speedup is
computed according to the Proportional Integral (PI) control
law using standard techniques [15]. This speedup signal is
then passed to the translator.

Algorithm 1 is constant time and a small number of
instructions. It can easily be implemented in fixed-point arith-
metic for hardware. Despite this simplicity, control adapts
in several ways. First, by keeping an internal goal, separate
from the externally specified goal, the controller can adapt to
both errors it generates and to phases in application behavior
that radically change the performance. Second, the Kalman
filter provides fine grain customization of control by adapting
to the current workload. Note that as workload increases,
the controller’s output speedup will also increase (line 10),

Algorithm 1 The Controller

Require: guser . application specified performance goal
Require: h(t) . instructions per second at time t
Require: I . completed instructions
Require: ` . elapsed time

1: procedure THE CONTROLLER
. Update local goal based on global progress

2: g(t) = guser−α(I/`−guser)
. Error between new goal and current performance

3: e(t) = g(t)−h(t)
. Estimate application workload (i.e., phases)

4: x̂−(t) = x̂−(t−1)
5: p−(t) = p(t−1)+q(t)
6: k(t) = p−(t)s(t−1)

[s(t)]2 p−(t)+o
7: x̂(t) = x̂−(t)+ k(t)[h(t)− s(t−1)x̂−(t)]
8: p(t) = [1− k(t)s(t−1)]p−(t)
9: ŵ(t) = 1

x̂(t)
. Compute speedup

10: s(t) = s(t−1)+ ŵ(t)·e(t)
11: return s(t) . speedup to apply at current time
12: end procedure

which is consistent with intuition. Similarly, if the application
suddenly entered a phase where it performed less work, then
the controller would reduce speedup appropriately.

One GRAPE’s advantages is that the control theoretic tech-
niques presented here emit formal analysis, which heuristic
techniques do not. While a rigorous mathematical analysis
is beyond the scope of this paper (and also straightforward
as GRAPE’s controller is built on top of several standard
mechanisms), we sketch the outline of such formal analysis
in Appendix A. The two major advantages of GRAPE’s
controller are: 1) it will converge to the desired performance
(if achievable) and 2) the convergence time is bounded by
the logarithm of the workload error estimate produced by the
Kalman filter. Intuitively, GRAPE will hit the performance
target and do so in a small number of steps (i.e., invocations
of Algorithm 1).

B. The Translator

The translator takes the generic speedup signal and pro-
duces a specific setting for the number of SMs, wavefronts,
SM frequency, and memory frequency. Ideally, the translator
would guarantee the desired speedup is achieved and mini-
mize energy usage, which is properly an integer programming
problem, and thus expensive to solve in hardware exactly
even for small numbers of configurable resources. GRAPE,
therefore, relies on a heuristic solution based on empirical
observations.

At a high-level, the heuristic solution first finds the fastest
combination of SMs and wavefronts for this application, it
then selects the appropriate memory frequency based on the
observed number of memory stalls, and finally reduces the

Algorithm 2 The Translator

Require: s(t) . speedup provided by controller
1: procedure THE TRANSLATOR

. Compute the number of SMs
2: nSM = 0
3: for all sm in the GPU do
4: if sm == active then
5: nSM = nSM+1
6: end if
7: end for

. Compute the number of wavefronts
8: if Cachestall ≥Cachethreshold then
9: if nW > 32 then

10: nW = 32
11: end if
12: nW = nW −4
13: else
14: nW = nW +4
15: end if

. Compute the SM and memory frequencies
16: if DRAMstall > DRAMthreshold then
17: M = {7,8}
18: else
19: M = {1,2,3,4,5,6,7}
20: end if
21: costmin = ∞

22: for MEMindex ∈M do
23: if si ≥ s(t) then
24: fSMindex = d fmax· s(t)

sMEMindex
e

25: costtemp = cSMindex·cMEMindex
26: if costtemp ≤ costmin then
27: costmin = costtemp
28: fSM ← fSMindex
29: fMEM ← fMEMindex
30: end if
31: end if
32: end for
33: return nSM . number of SMs to use
34: return nW . number of wavefronts/warps
35: return fSM . SM frequency
36: return fMEM . DRAM frequency
37:
38: end procedure

SM frequency as much as possible while still achieving the
speedup signal. Thus this heuristic still achieves the required
speedup, but may sacrifice optimality to produce a simple
implementation. Said another way, the heuristic will meet
the required performance, but may use more energy than a
true optimal solution.

Algorithm 2 details GRAPE’s translation stage. It is broken
into three distinct phases labeled with comments in the

algorithm.
Number of SM. The first phase (lines 2-7) simply

counts how many SMs are active, meaning they have a
CTA(Cooperative Thread Array) running. Empirically, it is
always better to run as many SMs as possible. If the SM is
not active, then GRAPE will set it to its lowest frequency
setting.

Wavefront Scheduler. The next phase (in lines 8-15)
determines the number of wavefronts to use. The key to
determining the number of SMs is looking at the time the SM
pipeline is spent stalling. If the stalls are above a threshold,
then GRAPE limits wavefronts to 32 — 2/3 of its maximum
capacity. We move wavefronts in steps of 4 per control action
as we find it gives the best results empirically.

SM and DRAM DVFS. The final phase of translation
(lines 16-32) set the SM and DRAM frequency. This phase
uses two small tables that are stored in hardware and each
indexed by an id. Each id has its own frequency, estimated
speedups and costs (in power).

In this final phase, GRAPE is heuristically determining
whether the application is compute or memory bound. It
first checks if memory stalls are above a certain threshold
(line 16). If they are, the application is considered memory
bound, and GRAPE will only consider actuator settings
that provide high memory frequency (line 17). Otherwise,
GRAPE classifies the application as compute bound and
only considers slower memory settings. At this stage, these
settings are simply indexes into the tables mentioned above.

Once GRAPE has determined the settings to consider, it
walks through those memory settings trying to find the slow-
est frequency setting that will meet or exceed the specified
speedup (lines 21-31). Each step of the for loop matches a
memory frequency setting to a corresponding SM frequency,
determines whether or not that is above the required speedup,
and then determines whether the cost (in power) is less than
the lowest cost found so far. If the cost is lower, then GRAPE
saves this new cost and the settings it found. After completing
this final phase, the translator returns the number of SMs,
number of wavefronts, the SM frequency, and the DRAM
frequency.

Translation takes time proportional to the number of in-
dices in the tables. In practice this tends to be a small number
as hardware supports only a few frequency settings.

C. Actuator Model Update

The translator is reliant on models of frequency costs
and speedups to produce good results. These values are not
universal, however, and may differ for different applications.
For example, a slight decrease in memory frequency may
not have significant effect on a compute-bound benchmark,
but it will for a memory-bound one. To account for these
differences GRAPE updates these models on the fly. Initial
actuator models assume that cost and performance between
actions is linear, then after several decision period GRAPE

will update the models to reflect actual behavior of the
application under control.

We note that there is a complicated, non-linear relationship
between the resources used, application workload, measured
behavior and system noise. Rather than build a computa-
tionally expensive model, GRAPE adopts the approach of
continually estimating this non-linear behavior with a series
of linear models, including the Kalman filter presented above
and the model update presented here. This approach is
analogous to the way scientific applications model compli-
cated, non-linear physical systems with iterative application
of linear equations.

Algorithm 3 Update Model

Require: h(t) . measured throughput
Require: ŵ(t) . estimated workload
Require: cost(t) . measured cost (power)

1: procedure UPDATE MODEL
2: sMEMindex = β · fmax

fSMindex
w(t)·h(t)+(1−β)·sMEMindex

3: if sMEMindex ≥ highBoundMEMindex then
4: sMEMindex = highBoundMEMindex
5: end if
6: if sMEMindex ≤ lowBoundMEMindex then
7: sMEMindex = lowBoundMEMindex
8: end if
9: cMEMindex = β

cost(t)
cSMindex

+(1−β)cMEMindex
10: end procedure

Every time GRAPE computes a new control action, it
updates the table that stores its models of speedup and cost
using Algorithm 3. This is a simple algorithm that updates
the model as a function of its current value and the measured
behavior. Line 2 computes a new estimate for the memory
speedup in the last memory configuration used. The constant
fmax represents the maximum frequency for SMs which is
800 MHz. β the learning rate which affects how fast the
value changes. For example, β = 1 would always use the
last measured value and ignore history. We set this value to
0.85 in our implementation. Lines 3-8 clamp the new value
such that not overlap the higher and lower ID value to prevent
overflow in the fixed-point hardware implementation. Line 9
updates the cost model, or power consumption, of applying
this system resource configuration.

GPU applications generally exhibit three distinct kinds of
behavior depending on the resource that bottlenecks perfor-
mance: compute, memory, or cache. Despite, this difference,
however, we find that it is only necessary to update the model
of memory response — the SM frequency response tends to
keep linear for all types of benchmarks. Thus, we find that
updating the SM frequency model is unnecessary. Therefore,
to save area overhead, we only update the memory frequency
model (using Algorithm 3) and keep the SM frequency model
constant.

D. Hardware Implementation

GRAPE is designed to be implementable in hardware.
While we do not have the resources to synthesize a GPU that
includes GRAPE, we believe it is important to demonstrate
that GRAPE can be implemented in hardware. We therefore
implement (and release as open source) a VHDL implemen-
tation of GRAPE.

To get some specific numbers, we synthesize GRAPE for
an FPGA using Quartus II software. The target FPGA device
we use is DE2-115. We implement a fixed point package
to perform multiplication and division in VHDL [5]. We
synthesize the design and find that GRAPE requires 18,426
logic elements, 311 registers and 63 embedded multipliers.
TimeQuest timing analyzer shows that GRAPE’s fmax is
1.45 MHz or 482 cycles overhead in GPU SM frequency.
PowerPlay Early Power Estimator shows that GRAPE needs
0.134 Watts to operate. We share this implementation on the
link below 2.

We implemented the dynamic frequency and SM actuator
by masking the clock in GPGPU-Sim. Wavefront actuator
implemented by swl scheduler. We edit the GPUWattch to
count the dynamic voltage and leakage static power [7].
We use GTX480 model provided by those simulators. We
model the DVFS overhead as 512 cycles [25]. These actuators
increase the GPU power consumption by 0.3 W. One decision
period for GRAPE is 4096 cycles. We include all of this
overhead during simulation in GPGPU-Sim.

GRAPE samples the sensors every 4096 cycles. We assume
there is no overhead in sampling the data. Control calculation
is called early at 550 cycles earlier to reduce the error in
calculation. Frequency overhead is 512 cycles, during this
overhead period the simulator runs the application in previous
frequency action.

Overall, we find that these results show GRAPE to be
low overhead and easily implemented in hardware. The area,
power, and timing would probably all improve if GRAPE
was synthesized in ASIC or custom VLSI and added to a real
GPU implementation. For the purposes of our evaluation we
use these numbers from the FPGA for all experiments.

IV. METHODOLOGY

A. Baseline Architecture

GRAPE is evaluated on GPGPU-Sim v3.2.2, a cycle-
accurate GPGPU Simulator [4] and GPUWattch [28] to get
the energy consumption. Our baseline implementation in
GPGPU-Sim is based on the configuration in Table II.

In this implementation, we have a set of SM actuators,
SM frequency actuators, memory frequency actuators and
wavefront actuators. SM actuators have 16 members covering
operation from idle to 15 SMs. We assume that SM frequency
actuator has 8 P-states, ranging from a peak of 800 MHz
to a minimum of 100 MHz, with step size of 100 MHz.

2Available at: https://github.com/grapemicro/GRAPE.git

TABLE II: GPGPU-Sim Configuration.

Field Value
Shader Core Fermi 15 Shader Cores,

5-Stage Pipeline,
Resources / Core Max 1536 Threads,

32 kB Shared Memory,
32768 Registers
48 warps

L1 Caches / Core 32kB 8-way L1 Data Cache,
8 kB 4-way texture,
8kB 4-way constant cache,
64B Line Size

L2 Unified Cache 786 kB,
128B Line size,
8-way associative

Scheduling GTO Scheduling,
Load Balance scheduling

Interconnect 1 crossbar,
16B Channel Width,

DRAM Model FR-FCFS
(128 RQS/MC),
4B Bus Width,
4 DRAM-banks/MC,
2 kB page size,
4 burst size,
8 MCs

These settings align with the GTX 480’s existing DVFS
settings. DRAM frequency actuators have 8 P-states, ranging
from a peak of 1056 MHz to 152MHz. We use the 45 nm
predictive technology models [39] to scale the voltage with
frequency (from 1.14 V to 0.55 V). We use the scheduler’s
wavefront limiting (swl) [41] to manipulate the number of
active wavefronts.

B. Benchmarks

We evaluate GRAPE using the benchmarks in Table III.
The table lists each benchmark name, an abbreviation used
in this paper, and the resource on which the benchmark is
most dependent as characterized in prior work by Sethia
and Mahlke [44]. For every benchmark we measure the
timing data from the simulator and get the power data from
GPUWattch.

C. Points of Comparison

We compare GRAPE to the following:
Race-to-Idle: Runs each job in an application as fast as

possible and then the idles the system until the next job is
to be processed [16, 34]. According to Smith the GTX480
idles at 47 W[46].

Race-to-Sleep: Runs each job as fast as possible and
then puts the GPU to sleep until the next job is ready for
processing. We optimistically assume that the sleep state
consumes minimal power and it takes no overhead to enter
and exit the sleep state. Thus, the numbers unrealistically
favor race-to-sleep, but it demonstrates the most effective
savings a sleep state could possibly have.

Equalizer-to-idle: Equalizer is a system that maintains
near maximum performance while minimizing energy con-

https://github.com/grapemicro/GRAPE.git

TABLE III: Benchmarks Used.

Applications Abbr. Resource Need Source
1 AES Cryptography AES Memory [30]
2 Backpropagation BP Memory [8]
3 FFT Algorithm FFT Memory [49]
4 Needelman-Wunch NW Unsaturated [8]
5 Breadth First Search BFS Cache [49]
6 B+ Tree BPT Memory [8]
7 CFD Solver CFD Memory [8]
8 Coulombic Potential CUTCP Compute [49]
9 Gaussian Elimination GE Unsaturated [8]
10 Hotspot HOT Compute [8]
11 KMeans KM Cache [8]
12 LU Decomposition LUD Unsaturated [8]
13 Particle Filter Float PFF Memory [8]
14 Pathfinder PF Compute [8]
15 Sum of Absolute Diff. SAD Unsaturated [8]
16 SRAD SRAD Memory [8]
17 Streamcluster SC Unsaturated [8]

sumption [44]. Equalizer, as originally conceived, is not
designed to meet performance targets, but we add this ca-
pability by using the state produced by Equalizer and then
idling once the job is complete. Equalizer is not available as
open source, so we derive these numbers from Equalizer’s
published results and only compare the applications GRAPE
has in common with Equalizer.

V. EXPERIMENTAL EVALUATION

This section presents our empirical evaluation of GRAPE,
using the experimental setup described in the previous sec-
tion. We first measure GRAPE’s ability to meet performance
requirements. We then evaluate GRAPE’s energy savings and
peak power reduction. The section concludes by studying the
impact of idle power on energy savings.

A. Performance Impact

For each benchmark we evaluate several performance
goals. Specifically, we set a performance goal corre-
sponding to X% of maximum performance where X ∈
{25,50,75,100}. For example, FFT has a maximum perfor-
mance of 408,346 MIPS (millions of instructions per second).
The 25% goal for FFT means we set the performance at
102,086 MIPS.

We quantify error as the relative error expressed as a
percentage. Relative error is the difference between the target
and achieved performance divided by the target. We only
count error if GRAPE runs the application below goal and
count the error as zero if GRAPE runs the benchmark
above the goal. Of course, running above the goal will incur
additional energy costs, but we evaluate energy in the next
section.

Figure 3 shows the relative error for each benchmark and
performance target. GRAPE successfully maintains the per-
formance goal achieving, on average, 99.25% of the desired
performance; i.e., 0.75% average error across all performance
targets. We note that the race-to-idle strategy will never miss

a target – the major advantage of this strategy – because it
always completes all work in the default configuration and
idles.

While GRAPE’s accuracy is, in general, quite good, the
results demonstrate two areas where GRAPE struggles. First,
error increases as the performance target increases. Second,
the errors are highest for the LUD and SAD benchmarks. As
the performance target increases, GRAPE’s margin for error
decreases. While GRAPE’s controller is self-correcting, at
high performance targets, there may simply not be enough
time to correct an error before the benchmark completes.
This lack of time for the self-correction mechanism to take
effect is the same issue that affects the LUD and SAD
benchmarks. Both of these benchmarks consist of multiple
kernels where the first kernel has very high parallelism and
subsequent kernels have lower parallelism. GRAPE reduces
resource usage for the high parallelism kernel, but then it is
not physically possible to meet the performance target when
the lower-parallelism kernels start to execute.

This pattern – highly parallel kernels followed by low-
parallelism kernels – represents the worst case for GRAPE.
Despite this worst case behavior, the results for SAD and
LUD are still fairly good. We note that the results would
improve if we ran these kernels in a loop, as that would
allow GRAPE’s self-correction mechanism to work over
repeated application invocations. In addition, in future work,
we could address this issue by combining GRAPE with static
program analysis to provide GRAPE with the foreknowledge
necessary to address this pattern.

B. Energy Impact

Figure 4 shows GRAPE’s energy consumption and fig-
ure 5 shows its energy efficiency (performance/Watt). All
numbers are normalized to the race-to-idle strategy. By
geometric mean, targeting performance goals of 25%, 50%,
75% and 100% results in energy reductions of 25.76%,
24.66%, 19.25% and 9.02% compared to race-to-idle (higher
is better). Meanwhile, targeting performance goal as 25%,
50%, 75% and 100% from default gives us 1.35×, 1.34×,
1.25× and 1.11× energy efficiency (MIPS/Watt, higher is
better) compared to race-to-idle.

At the 100% performance target, race-to-idle is not actu-
ally idling the system at all. However, GRAPE’s intelligent
resource allocation strategies provide relative energy savings
even when performance is not reduced. This is because
GRAPE can reduce the energy consumed by unnecessary
resources even when running at maximum performance. For
example, GRAPE will reduce memory energy for compute
bound benchmarks and reduce compute energy for memory
bound benchmarks, compared to race-to-idle.

The kmeans benchmark gets the biggest benefit, as
GRAPE increases its energy efficiency up to 1.93× and
achieves energy saving of 48.18% compared to race-to-idle.
GRAPE’s wavefront scheduling successfully configures the

A
E
S

B
P

B
F
S

B
P
T

C
F
D

C
U
T
C
P

F
F
T

G
E

H
O
T

K
M

L
U
D

N
W

P
F
F

P
F

S
A
D

S
R
A
D

S
C

A
ve
ra
g
e

0 %

50%

100%

P
er
fo
rm

an
ce

A
cc
u
ra
cy

Race to Idle GRAPE 25% Goal GRAPE 50% Goal GRAPE 75% Goal GRAPE 100% Goal

Fig. 3: GRAPE Performance Accuracy
A
E
S

B
P

B
F
S

B
P
T

C
F
D

C
U
T
C
P

F
F
T

G
E

H
O
T

K
M

L
U
D

N
W

P
F
F

P
F

S
A
D

S
R
A
D

S
C

A
ve
ra
g
e

0 %

20%

40%

E
n
er
gy

S
av
in
g

GRAPE 25% Goal GRAPE 50% Goal GRAPE 75% Goal GRAPE 100% Goal

Fig. 4: GRAPE energy savings compared to race-to-idle.

A
E

S

B
P

B
F

S

B
P

T

C
F

D

C
U

T
C

P

F
F

T

G
E

H
O

T

K
M

L
U

D

N
W

P
F

F

P
F

S
A

D

S
R

A
D

S
C

A
ve

ra
ge

0×

1×

2×

P
er

fo
rm

an
ce

E
ffi

ci
en

cy

Race to Idle GRAPE 25% Goal GRAPE 50% Goal GRAPE 75% Goal GRAPE 100% Goal

Fig. 5: GRAPE energy efficiency (performance/Watt) com-
pared to race-to-idle.

most effective wavefront available. This increasing perfor-
mance then turns into a reduction in resource usage. Stream-
cluster also benefits from this scenario, increasing energy
efficiency up to 1.42× and achieves energy saving of 29.55%.
GRAPE’s generality also benefits computational benchmarks
like Hotspot – increasing its performance efficiency up to
1.39× and achieves energy saving of 27.84%.

These results demonstrate the claim from the introduction:
that careful tailoring of resource usage can greatly reduce
energy consumption compared to strategies like racing-to-
idle. Furthermore, these results demonstrate that it is possible
to build a resource management strategy into hardware and
achieve good results.

C. Power Impact

GRAPE not only decreases the energy consumption, it also
decreases peak power consumption significantly compared to
racing to idle. As we see in figure 6 GRAPE successfully
manages the performance goal for 25%, 50%, 75% and
100% to give us 40.29%, 52.08%, 67.54% and 87.84% power
reductions respectively.

A
E
S

B
P

B
F
S

B
P
T

C
F
D

C
U
T
C
P

F
F
T

G
E

H
O
T

K
M

L
U
D

N
W

P
F
F

P
F

S
A
D

S
R
A
D

S
C

A
ve
ra
ge

0 %

50%

100%

N
or
m
al
iz
ed

R
u
n
n
in
g
P
ow

er

Race to Idle GRAPE 25% Goal GRAPE 50% Goal GRAPE 75% Goal GRAPE 100% Goal

Fig. 6: Average Power Consumption

D. Comparison with Prior Work

CU
T PF PF

F
CF

D KM

Ge
om

ean
s

0

20

40

60

80

En
er
gy

Sa
vi
ng

in
%

GRAPE
Equalizer

CU
T PF PF

F
CF

D KM

Ge
om

ean
s

0

20

40

60

80
GRAPE
Equalizer

CU
T PF PF

F
CF

D KM

Ge
om

ean
s

0

20

40

60

80
GRAPE
Equalizer

CU
T PF PF

F
CF

D KM

Ge
om

ean
s

0

20

40

60

80

En
er
gy

Sa
vi
ng

in
%

GRAPE
Equalizer

Fig. 7: GRAPE comparison with Equalizer-to-idle in 25%
goal (top-left chart), 50% goal (top-right chart), 75% goal
(bottom-left chart) and unconstrained performance (bottom-
right chart).

Figure 7 compares the energy savings of GRAPE to
that of Equalizer [44], a comprehensive dynamic system

which coordinates SM frequency, DRAM frequency, inter-
connect frequency, L2 frequency and number of CTA. While
GRAPE performs constrained optimization (meeting perfor-
mance with minimum energy), Equalizer is an unconstrained
optimizer, it provides no performance guarantees, but gener-
ally tries to reduce energy without impacting performance. In
this section, we compare GRAPE’s constrained optimization
approach to Equalizer-to-idle.

The results show that GRAPE’s incorporation of perfor-
mance requirements allows it to save substantial energy com-
pared to Equalizer for all the targets less than 100%. For the
100% target, GRAPE is similar to Equalizer. We emphasize
that GRAPE is not designed to improve on Equalizer, in-
stead it solves a different problem: constrained optimization.
These results, however, demonstrate that GRAPE can provide
competitive behavior on unconstrained performance (bottom-
right chart). Thus, GRAPE provides a new capability without
diminishing existing capabilities.

E. Sensitivity to Idle Power

A
E
S

B
P

B
F
S

B
P
T

C
F
D

C
U
T
C
P

F
F
T

G
E

H
O
T

K
M

L
U
D

N
W

P
F
F

P
F

S
A
D

S
R
A
D

S
C

A
ve
ra
ge

0 %

20%

40%

E
n
er
gy

S
av
in
g

GRAPE 25% Goal GRAPE 50% Goal GRAPE 75% Goal GRAPE 100% Goal

Fig. 8: GRAPE energy saving compared to race-to-sleep.

0W 20W 40W 60W 80W 100W

−40%

−20%

0%

20%

40%

60%

Idle Power

E
n
er
gy

S
av
in
g

GRAPE 25% Goal

GRAPE 50% Goal

GRAPE 75% Goal

GRAPE 100% Goal

Fig. 9: Energy Reduction in Varying Idle Power

GRAPE’s energy reduction is clearly sensitive to both the
idle power consumption and the performance goal. We have
already explored sensitivity to various performance goals in
the above results. In this section we explore sensitivity to idle
power.

Figure 8, compares GRAPE’s energy savings to a race-
to-sleep strategy. We assume sleeping GPU GTX480 power
is 34.3265W, which all the SMs are in idle state and the
voltage is minimum [28] and that the sleep state can be

entered and exited with no overhead (likely an optimistic
assumption). Compared to race-to-sleep, GRAPE can still
increase the energy efficiency to 1.18 and decrease the energy
consumption to 0.86×.

GRAPE saves energy by finding the best configuration and
avoiding the high idle power in the GPU. If the idle power
is very low then the energy saving and energy efficiency
also become lower and if the idle energy is higher then the
energy saving will be increasing too. We show the relation
between different idle power and energy savings in Figure
9. However, due limitations in technology scaling, future
processors are expected to decrease the dynamic power while
the leakage power – and thus, idle power – increase [22, 24].
Therefore, we believe GRAPE will continue to be suitable
and applicable to reduce future GPU energy consumption
while maintaining performance goals.

VI. RELATED WORKS

We discuss related work in GPU resource management,
especially for power and energy savings.

Throughput Control: A method to control computation
throughtput already presented in [50], [9], [2] and [10]. While
those method try to control the system’s throughput, however
those method is not implemented on GPGPU. Some potential
energy saving is missed because some actuators that can only
found in GPGPU is not controlled.

Core Clock Gating in GPU: Hong et al. propose an
offline calculation to predict the optimal cores configura-
tion to reduce energy consumption in GPUs [19]. GRAPE
finds optimal resources configuration online without any
prior knowledge before about GPGPU kernel applications.
Suleman et al. proposes Feedback-Directed Pipelining (FDP)
[51], a software framework that chooses the core-to-stage
allocation at run-time. The FDP strategy maximizes the
performance of the workload and then saves power by
reducing the number of active cores. GRAPE is implemented
in hardware, considers more than just core usage, and reduces
overall energy consumption. Song et al. proposes Throttle
CTA Scheduling (TCS)[47] to improve energy efficiency for
memory intensive GPU workloads. GRAPE works not only
in memory-intensive applications but in all interactive GPU
applications.

DVFS in GPU: Mei et al., [31] Jiao et al., [21] and Abe
et al. [1] use DVFS to reduce power consumption and energy
in GPUs, however there are some unpredictable performance
losses. GRAPE maintains predictable, user-specified perfor-
mance goals while reducing energy consumption. Rong et al.
increase energy efficiency by increasing the GPU frequency.
[13] in GPU K20. However, increasing the frequency leads to
increasing power. GRAPE not only decreases the energy but
the power. GRAPE could easily be extended to include these
increased frequency settings. Amur et al. predict performance
degradation due to DVFS[3]. GRAPE adapts the DVFS

performance degradation online and trade it to reduce energy
consumption while maintain performance goal.

Dynamic Resource Allocation: Sethia et al. propose
Equalizer [44] to dynamically tune GPU resources. Equalizer
focuses on increasing performance so the energy will be
reduced due reduced running time. Equalizer does not count
the impact of idle energy consumption after the application is
finished and allows increasing power due increasing resource
usage. In that sense, Equalizer is better suited for non-
interactive applications that benefit from completing as fast
as possible. GRAPE, however, focuses on minimizing en-
ergy consumption while maintaining interactive performance.
GRAPE not only reduces energy, but also peak power and it
accounts for the impact of idle power after the application is
finished. Our empirical results show that GRAPE can achieve
similar results to Eqaulizer for unconstrained optimization
while allowing a new capability – meeting performance
goals. Wu et al. propose a machine learning method to
estimate GPU performance and power [54]. While their
implementation is still offline, GRAPE already implemented
an autonomous system that predicts performance and power
online without prior knowledge of applications. Pothukuchi
et al propose a general technique for synthesizing multiple
input, multiple output controllers for architectures [38].

Managing number of threads for cache locality: Narasi-
man et al. proposed two level warp scheduling to reduce
memory stall [36]. Kayiran et al. proposed DynCTA to man-
age CTA number in GPU core [23]. Rogers et al. proposed
cache concious wavefront scheduling to manage wavefront
[41]. However, GRAPE uses dynamic wavefront scheduling
to reduce the stall between core and memory.

Application-aware Approaches: Zhu and Reddi use mod-
els of webpage resource needs to schedule rendering on large
or small cores in a heterogeneous processor [57]. Nachiappan
et al. use application-level knowledge to tune many different
system-level resources, including GPU, CPU, and DRAM to
meet frame rates for frame-based mobile applications [35].
Mishra et al. use probabilistic graphical models to predict
the most efficient resource usage for interactive applications
running on a server [33]. The JouleGuard system uses
control theory and high-level application feedback to meet
energy guarantees by tuning both resources and application
configuration [17]. The CASH architecture and runtime uses
application-level feedback to minimize the cost of renting
compute resources while meeting a performance constraint
[56]. These approaches are all similar in their high-level
goals: deliver some guarantee to the user while optimizing
some objective. The JouleGuard and CASH even incorporate
control systems, like GRAPE. GRAPE is unique in that it
solves this problem in hardware.

A number of libraries and middle-ware frameworks sup-
port real-time applications through resources management
[20, 40, 48, 55]. Most of these frameworks allow applications
to express their high-level timing requirements and then

allocate resources to ensure that those requirements are met
efficiently. In that sense, GRAPE shares the same high-
level goal. The major difference is that GRAPE supports
this goal in hardware and requires no software changes
(other than specification of the performance requirement).
We believe GRAPE is the first hardware approach to meet
user-specified performance goals while minimizing energy
for GPU applications. GRAPE thus removes a significant
optimization burden from software.

VII. CONCLUSION

GRAPE is a resource management system for interactive
GPU applications. GRAPE takes a performance goal and then
determines how to allocate resources to an application such
that the performance goal is met and energy is minimized.
GRAPE uses a computationally inexpensive control system
which is easily realizable in hardware with low overhead.
GRAPE is highly accurate in delivering performance yet
it provides significant energy savings for applications with
different performance goals. In addition, our results indicate
that GRAPE is competitive with prior approaches for un-
constrained optimization – meaning that GRAPE can have
a positive benefit even for non-interactive applications. The
combination of low-overhead and competitiveness with prior
techniques means that GRAPE could be integrated into GPUs
with almost no downside while providing significant energy
savings for interactive applications.

APPENDIX

We briefly outline the formal guarantees provided by the
GRAPE controller. These guarantees are provided by the
controller design itself, so we only outline them here. A full
formal theoretic analysis is beyond the scope of this paper.
We therefore sketch the analysis of two key claims:

1) The controller converges to the desired performance.
2) The convergence time is bounded.

Convergence: The controller consists of three sets of equa-
tions: 1) the equations that set the internal goal (Algorithm
1, line 2-3), 2) the Kalman filter (lines 4-9, and 3) the PI
controller that sets speedup (line 10). Prior work shows this
Kalman filter formulation to be exponentially convergent; i.e.,
the number of time steps required to converge is proportional
to the logarithm of the difference between the true workload
and the estimated workload [6]. Once the Kalman filter has
converged, the estimated workload used in line 10 is stable.
Using standard control analysis, it is trivial to show that the
PI controller converges to the desired performance after the
Kalman filter is stable (that is, in fact, a major reason to
use the PI control law) [15]. In fact, after the Kalman filter
stabilizes it takes one additional time step for the controller
to stabilize at the desired performance (based on Z-domain
analysis of a PI controller with no pole [15]). The only thing
remaining is to show that the internal goal stabilizes, which is
trivial at the point where the Kalman filter and controller have

converged. Intuitively, the time spent waiting for these two
systems to converge produces error, but once they converge
that error becomes a fixed constant. Once that error is fixed
then the difference between the external goal and internal
goal is fixed and the entire system is convergent.

Bounded Convergence Time:The time for the controller
and internal goal to stabilize is constant. The time for the
Kalman filter to converge is the log of the error. Of course,
if error was known a priori, we would not need a Kalman
filter in the first place, but a logarithmic convergence is fast
in practice. Furthermore, straightforward eigenvalue analysis
of the control system shows that the path to convergence
will be smooth (i.e., not oscillate), if the workload is not
overestimated. Therefore, in practice we seed the initial work-
load estimate with the smallest value seen in our empirical
study. Thus the convergence time will be proportional to the
logarithm of the difference between the minimal workload
and the application’s actual workload.

We note three limitations of this formal analysis. First,
it does not provide hard real-time guarantees. There is no
guarantee that the system will be able to fully recover
from the original error. Instead this guarantee says that the
system will converge to the desired performance after time
proportional to the difference between true and estimated
workload. In practice, this produces good results for all but
some extreme cases. Second, a degenerate or adversarial
application could create a very bad scenario for the controller
by changing workload rapidly (every control period) by at
least an order of magnitude so that the controller never has a
chance to converge. We do not believe real applications will
exhibit this behavior, but if they do they should not be used
in conjunction with GRAPE. Furthermore, large changes in
behavior are fine as long as they are spread out so that the
controller can converge between these changes. Third, this
analysis only guarantees that the controller converges to the
desired performance, it does not guarantee convergence to the
minimal energy solution. In fact, to make the optimization
practical, we use a heuristic solution which may be subopti-
mal, but the empirical results are strong.

REFERENCES

[1] Y. Abe et al. “Power and Performance Analysis of GPU-
accelerated Systems”. In: Proceedings of the 2012 USENIX
Conference on Power-Aware Computing and Systems. Hot-
Power’12. Hollywood, CA: USENIX Association, 2012,
pp. 10–10.

[2] N. Almoosa et al. “Throughput regulation in multicore pro-
cessors via IPA”. In: 2012 IEEE 51st IEEE Conference on
Decision and Control (CDC). 2012, pp. 7267–7272.

[3] H. Amur et al. “Towards Optimal Power Management: Esti-
mation of Performance Degradation due to DVFS on Modern
Processors”. In: (2010).

[4] A. Bakhoda et al. “Analyzing CUDA workloads using a
detailed GPU simulator”. In: Performance Analysis of Sys-
tems and Software, 2009. ISPASS 2009. IEEE International
Symposium on. IEEE. 2009, pp. 163–174.

[5] D. Bishop. “Fixed point package users guide”. In: Packages
and bodies for the IEEE (2006), pp. 1076–2008.

[6] L. Cao and H. M. Schwartz. “Analysis of the Kalman filter
based estimation algorithm: an orthogonal decomposition
approach”. In: Automatica 40.1 (2004), pp. 5–19.

[7] Y. Cao. Predictive Technology Model for Robust Nanoelec-
tronic Design. Springer Science & Business Media, 2011.

[8] S. Che et al. “Rodinia: A benchmark suite for heteroge-
neous computing”. In: Workload Characterization, 2009.
IISWC 2009. IEEE International Symposium on. IEEE. 2009,
pp. 44–54.

[9] T. Chen et al. “Execution Time Prediction for Energy-
efficient Hardware Accelerators”. In: Proceedings of the 48th
International Symposium on Microarchitecture. MICRO-48.
Waikiki, Hawaii: ACM, 2015, pp. 457–469.

[10] X. Chen et al. “Throughput Regulation in Shared Memory
Multicore Processors”. In: 2015 IEEE International Confer-
ence on High Performance Computing. 2015.

[11] Q. Deng et al. “MemScale: Active Low-power Modes for
Main Memory”. In: Proceedings of the Sixteenth Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS XVI. Newport
Beach, California, USA: ACM, 2011, pp. 225–238.

[12] C. Dubach et al. “A Predictive Model for Dynamic Microar-
chitectural Adaptivity Control”. In: MICRO. 2010.

[13] R. Ge et al. “Effects of Dynamic Voltage and Frequency
Scaling on a K20 GPU”. In: Parallel Processing (ICPP),
2013 42nd International Conference on. 2013, pp. 826–833.

[14] Google. The Google gospel of speed.
[15] J. L. Hellerstein et al. Feedback Control of Computing

Systems. John Wiley & Sons, 2004.
[16] H. Hoffmann. “Racing and Pacing to Idle: An Evaluation of

Heuristics for Energy-aware Resource Allocation”. In: Pro-
ceedings of the Workshop on Power-Aware Computing and
Systems. HotPower ’13. Farmington, Pennsylvania: ACM,
2013, 13:1–13:5.

[17] H. Hoffmann. “JouleGuard: energy guarantees for approxi-
mate applications”. In: SOSP. 2015.

[18] H. Hoffmann et al. “Self-aware computing in the Angstrom
processor”. In: DAC. 2012.

[19] S. Hong and H. Kim. “An Integrated GPU Power and
Performance Model”. In: Proceedings of the 37th Annual
International Symposium on Computer Architecture. ISCA
’10. Saint-Malo, France: ACM, 2010, pp. 280–289.

[20] C. Imes et al. “POET: A Portable Approach to Minimizing
Energy Under Soft Real-time Constraints”. In: RTAS. 2015.

[21] Y. Jiao et al. “Power and Performance Characterization of
Computational Kernels on the GPU”. In: Green Computing
and Communications (GreenCom), 2010 IEEE/ACM Int’l
Conference on Int’l Conference on Cyber, Physical and
Social Computing (CPSCom). 2010, pp. 221–228.

[22] A. Kahng. “The ITRS design technology and system drivers
roadmap: Process and status”. In: Design Automation Confer-
ence (DAC), 2013 50th ACM / EDAC / IEEE. 2013, pp. 1–6.

[23] O. Kayiran et al. “Neither more nor less: Optimizing thread-
level parallelism for GPGPUs”. In: Parallel Architectures and
Compilation Techniques (PACT), 2013 22nd International
Conference on. 2013, pp. 157–166.

[24] N. S. Kim et al. “Leakage current: Moore’s law meets static
power”. In: computer 36.12 (2003), pp. 68–75.

[25] W. Kim et al. “System level analysis of fast, per-core DVFS
using on-chip switching regulators”. In: High Performance
Computer Architecture, 2008. HPCA 2008. IEEE 14th Inter-
national Symposium on. 2008, pp. 123–134.

[26] Kissmetrics. How loading time affects your bottom line.
[27] C. Lefurgy et al. “Power capping: a prelude to power

shifting”. In: Cluster Computing 11.2 (2008), pp. 183–195.
[28] J. Leng et al. “GPUWattch: enabling energy optimizations in

GPGPUs”. In: ACM SIGARCH Computer Architecture News
41.3 (2013), pp. 487–498.

[29] W. Levine. The control handbook. Ed. by W. Levine. CRC
Press, 2005.

[30] S. A. Manavski. “CUDA Compatible GPU as an Efficient
Hardware Accelerator for AES Cryptography”. In: Signal
Processing and Communications, 2007. ICSPC 2007. IEEE
International Conference on. 2007, pp. 65–68.

[31] X. Mei et al. “A Measurement Study of GPU DVFS on
Energy Conservation”. In: Proceedings of the Workshop
on Power-Aware Computing and Systems. HotPower ’13.
Farmington, Pennsylvania: ACM, 2013, 10:1–10:5.

[32] D. Meisner et al. “Power management of online data-
intensive services”. In: ISCA (2011).

[33] N. Mishra et al. “A Bayesian Approach to Minimizing
Energy Under Performance Constraints”. In: ASPLOS. 2015.

[34] A. Miyoshi et al. “Critical Power Slope: Understanding the
Runtime Effects of Frequency Scaling”. In: ICS. 2002.

[35] N. Nachiappan et al. “Domain knowledge based energy
management in handhelds”. In: High Performance Computer
Architecture (HPCA), 2015 IEEE 21st International Sympo-
sium on. 2015, pp. 150–160.

[36] V. Narasiman et al. “Improving GPU Performance via Large
Warps and Two-level Warp Scheduling”. In: Proceedings
of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture. MICRO-44. Porto Alegre, Brazil: ACM,
2011, pp. 308–317.

[37] T. Patki et al. “Practical Resource Management in Power-
Constrained, High Performance Computing”. In: Proceedings
of the 24th International Symposium on High-Performance
Parallel and Distributed Computing. HPDC ’15. Portland,
Oregon, USA: ACM, 2015, pp. 121–132.

[38] R. Pothukuchi et al. “Using Multiple Input, Multiple Output
Formal Control to Maximize Resource Efficiency in Archi-
tectures”. In: ISCA. 2016.

[39] Predictive Technology Model. http://ptm.asu.edu/.
[40] R. Rajkumar et al. “A resource allocation model for QoS

management”. In: RTSS. 1997.
[41] T. G. Rogers et al. “Cache-Conscious Wavefront Schedul-

ing”. In: Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO-45.
Vancouver, B.C., CANADA: IEEE Computer Society, 2012,
pp. 72–83.

[42] V. Sarkar et al. “Software challenges in extreme scale
systems”. In: Journal of Physics: Conference Series 180.1
(2009), p. 012045.

[43] Scientific discovery at exascale: Report from the doe ascr
2011 workshop on exascale data management, analysis,and
visualization. 2011.

[44] A. Sethia and S. Mahlke. “Equalizer: Dynamic Tuning of
GPU Resources for Efficient Execution”. In: Microarchitec-
ture (MICRO), 2014 47th Annual IEEE/ACM International
Symposium on. 2014, pp. 647–658.

[45] A. Shye et al. “Power to the people: Leveraging human
physiological traits to control microprocessor frequency”. In:
MICRO. 2008.

[46] R. Smith. NVIDIAs GeForce GTX 480 and GTX
470: 6 Months Late, Was It Worth the Wait?
http://www.anandtech.com/show/2977/nvidia-s-geforce-gtx-

480-and-gtx-470-6-months-late-was-it-worth-the-wait-/19.
Accessed: 2015-05-01.

[47] S. Song et al. “Energy-efficient Scheduling for Memory-
intensive GPGPU Workloads”. In: Proceedings of the Con-
ference on Design, Automation & Test in Europe. DATE
’14. Dresden, Germany: European Design and Automation
Association, 2014, 19:1–19:6.

[48] D. C. Steere et al. “A Feedback-driven Proportion Allocator
for Real-rate Scheduling”. In: OSDI. 1999.

[49] J. A. Stratton et al. “Parboil: A revised benchmark suite for
scientific and commercial throughput computing”. In: Center
for Reliable and High-Performance Computing (2012).

[50] J. Suh and M. Dubois. “Dynamic MIPS Rate Stabilization in
Out-of-order Processors”. In: Proceedings of the 36th Annual
International Symposium on Computer Architecture. ISCA
’09. Austin, TX, USA: ACM, 2009, pp. 46–56.

[51] M. A. Suleman et al. “Feedback-directed Pipeline Paral-
lelism”. In: Proceedings of the 19th International Conference
on Parallel Architectures and Compilation Techniques. PACT
’10. Vienna, Austria: ACM, 2010, pp. 147–156.

[52] Synergistic Challenges in data-intensive science and exascale
computing. 2013.

[53] G. Welch and G. Bishop. An Introduction to the Kalman
Filter. Tech. rep. TR 95-041. UNC Chapel Hill, Department
of Computer Science.

[54] G. Wu et al. “GPGPU performance and power estimation
using machine learning”. In: High Performance Computer
Architecture (HPCA), 2015 IEEE 21st International Sympo-
sium on. 2015, pp. 564–576.

[55] R. Zhang et al. “ControlWare: A middleware architecture
for Feedback Control of Software Performance”. In: ICDCS.
2002.

[56] Y. Zhou et al. “CASH: Supporting IaaS customers with a
sub-core configurable architecture”. In: ISCA. 2016.

[57] Y. Zhu and V. Reddi. “High-performance and energy-efficient
mobile web browsing on big/little systems”. In: High Perfor-
mance Computer Architecture (HPCA2013), 2013 IEEE 19th
International Symposium on. 2013, pp. 13–24.

