
Providing Fairness in Heterogeneous Multicores with a Predictive, Adaptive

Scheduler

Saeid Barati

University of Chicago

saeid@cs.uchicago.edu

Henry Hoffmann

University of Chicago

hankhoffmann@cs.uchicago.edu

Abstract—Multicore applications contend for resources —
especially memory bandwidth — reducing both quality-of-
service and overall system performance. Contention-aware
schedulers have been proposed to provide fairness and pre-
dictable behavior through thread-level scheduling. Prior ap-
proaches have two drawbacks, however. First, many intro-
duce overhead that reduces overall performance. Second, the
emergence of heterogeneous multicores has made handling
contention and providing fairness much more difficult as the
scheduler must now account for both application interference
and the performance affects of different core types.

This paper proposes augmenting existing contention-aware
approaches with predictive and adaptive components to provide
fair memory access and performance improvements on het-
erogeneous multicores. The predictive component’s closed-loop
approach anticipates how different processes will perform with
different core types, while the adaptive component dynamically
tunes key scheduling parameters to the current workload. We
implement and evaluate this approach on a real Linux/x86
system with a variety of memory and compute intensive
benchmarks. We find that adding prediction improves fairness
and performance by 38% and 4% (respectively) compared to a
prior state-of-the-art contention-aware approach. The addition
of adaptation allows users to select for fairness or performance
optimization, providing an additional 24% improvement in
fairness or a 9% improvement in performance beyond the
predictive approach.

I. Introduction

Applications contending for shared resources in multicore

systems leads slowdown and unpredictable performance.

This unpredictability makes it difficult, or impossible, for

applications to provide quality-of-service guarantees [30].

For multi-threaded data parallel applications, contention

means threads with equal work require unequal time, leading

to slowdown [4].

The dominant factor in contention, and thus unfairness,

is main memory access – even if threads are scheduled on

disjoint processing cores, they still must share main mem-

ory bandwidth and the on-chip interconnect that connects

the cores to the memory [30]. Common contention-aware

schedulers are implemented in software level and include

three main components: (1) runtime progress monitoring, (2)

performance prediction, and (3) online scheduling decisions

[31]. Prior work has shown that the most important compo-

nent is the second: predicting threads’ future performance

given interference (especially in memory access) from co-

running threads [30].

While prior techniques offer notable fairness improvement

for homogeneous multicores, they suffer from performance

overhead (or in some cases, negligible performance im-

provement) [8, 28, 30]. Most schedulers for heterogeneous

multicores focus on improving overall performance only and

ignore fairness [3, 25]. Van Craeynest et al proposed the first

approach to ensure fairness on a heterogeneous architecture,

but it requires hardware support for the key phase of

performance prediction [24]. As correctly predicting future

behavior is an essential part of contention-aware scheduling,

many prior approaches build elaborate, prediction models

that require extensive off-line model building [20, 28] .

Finally, static assignment of key scheduling parameters is

not only a challenging problem, but incorrect assignment

may limit achievable fairness and performance improvement

[8]. Taking prior work into account, there is a need for a

contention-aware scheduler that can ensure fairness on a

heterogeneous system and provide performance improvement

without additional hardware support or extensive offline

tuning.

A. Dike: predictive, adaptive scheduler

To address this need we present Dike, a contention-

aware scheduler for heterogeneous multicores that provides

significant improvement to both fairness and performance

compared to prior approaches without requiring hardware

support1. Dike divides execution time into fixed-length

quanta. At runtime, Dike measures the memory access rate

of every thread during every quanta. Dike then predicts

the potential effects of migrating threads to different cores.

Dike’s closed-loop prediction model is efficient to compute

online, yet quickly converges to accurate estimates, allow-

ing Dike to reduce the number of migrations required to

maintain fairness.

We find that the quantum length and the number of

threads to migrate per quantum are key scheduling parame-

ters affecting both performance and fairness. Furthermore,

the optimal value for these parameters varies depending

on both the application workload and user preference for

1Dike is named after the Greek goddess of justice and fair judgment

fairness or performance. Therefore, Dike adaptively tunes

these two parameters as the system executes to ensure that

the scheduler is tuned to workload and user desires.

B. Summary of Results

We evaluate Dike on a Linux/x86 system with 40 cores

(half running at maximum frequency and the other half

running at minimum to form heterogeneous environment),

one memory controller, and 32 GB of main memory. We

make the source code, sample benchmarks and running

scripts as open source so that others can evaluate or use Dike

freely 2. We compare Dike to both Linux default scheduler

and Distributed Intensity Online (DIO) [30], a state-of-the-

art contention-aware scheduler. According to our empirical

results, Dike achieves:

• Fairness and performance improvement: We evalu-

ate Dike with combinations of compute and memory

intensive benchmarks and measure fairness and per-

formance. By geometric mean, Dike improves fairness

by 67% and 38% over Linux and DIO, respectively.

For performance, Dike outperforms both Linux default

scheduler and DIO by 8% and 4%. In addition, we

set different targets for adaptive improvement. We find

that by adapting key scheduling parameters to the

current workload, Dike provides additional fairness and

performance improvement of 24% and 9% respectively.

(See Section IV-A.)

• Low scheduling overhead: As thread migrations are

the mechanism for ensuring fairness in both DIO and

Dike, minimizing the number of migrations reduces

overhead. We find Dike reduces the average number

of migrations by 64% compared to DIO. Adding the

adaptive features results in an additional 23% to 29%

reduction in migrations. (See Section IV-B.)

• Runtime predictability: Unpredictable behavior of ap-

plications under contention may violate QoS guaran-

tees. We show that Dike can accurately predict threads’

memory access rates regardless of core type and with-

out a priori knowledge. The prediction error ranges

from -9% to 10% at most. (See Section IV-C.)

C. Contributions

• Design and implementation of a software level

contention-aware scheduler for heterogeneous multi-

cores that requires no additional hardware support.

• Introduction of a lightweight, closed-loop predictor that

accurately assesses the effects of thread migration.

• A methodology for adaptively tuning scheduling pa-

rameters to the current workload and to a user’s pref-

erence for fairness or performance.

• Empirical evaluation of Dike’s fairness and perfor-

mance compared to the Linux default scheduler and

2Available at https://github.com/saeidbarati157/dike

J
a
co

b
i

S
tr

ea
m

cl
u

st
er

L
eu

ko
cy

te

S
R

A
D

A
ve

ra
g
e

0

1

2

3

4

5

N
o

rm
al

iz
ed

R
u

n
ti

m
e

wl2

J
a
co

b
i

S
tr

ea
m

cl
u

st
er

S
T

R
E

A
M

H
o
ts

p
o
t

A
ve

ra
g
e

0

1

2

3

4

5

wl15

Standalone Concurrent − Homogeneous Concurrent − Heterogeneous

Figure 1: Performance variation of Standalone vs. Concurrent execution

a state-of-the-art homogeneous scheduler (DIO [30]).

The rest of paper is organized as follows. Section II

presents background and motivation for contention-aware

scheduling. Section III explains Dike’s framework. Sec-

tion IV illustrates the experimental results of our scheduler.

Section V compares Dike to prior work. Finally, we conclude

in Section VI.

II. Background andMotivation

This section motivates the need for Dike. We begin by

briefly reviewing the effects of contention on application

performance and discuss commonalities of prior contention-

aware approaches. We then discuss performance prediction,

a key component of any contention-aware approach. Finally,

we demonstrate that key scheduling parameters vary with

different applications and goals (fairness or performance).

Figure 1 shows the performance of various applications

when run standalone (as the only application in the system)

versus in a multi-application workload. The evaluation sec-

tion contains a full description of application workloads (see

Section IV). The figure shows that performance loss due to

concurrent execution is significant, but it is not uniformly

distributed. For example in workload 2 (wl2), the memory

intensive Jacobi application experiences a 2.3× performance

slowdown while the compute intensive SRAD application

degrades by only 1.25×. The problem gets worse on a

heterogeneous system. For example, the STREAM applica-

tion in wl15 has a slowdown of 3.4× on the homogeneous

system, but 4.6× slowdown on the heterogeneous system.

A body of work on contention-aware scheduling has

arisen to address these slowdowns. These schedulers gener-

ally follow the same structure. First, a performance monitor

records thread progress. Next, a predictor estimates perfor-

mance degradation. Then, a decider chooses a thread-to-core

mapping for improved fairness, and this mapping is finally

enforced by a scheduler.

The key differences between approaches often comes

down to the specific prediction mechanisms used. Many

w
l5

(B
)

w
l8

(U
C

)

w
l1

2
(U

M
)

-0.25

0

0.25

0.50

0.75

1

1.25

N
o

rm
al

iz
ed

Im
p

ro
v
em

en
t

Fairness

w
l5

(B
)

w
l8

(U
C

)

w
l1

2
(U

M
)

-0.25

0

0.25

0.50

0.75

1

1.25

Performance

Optimal Default Worst

Figure 2: Comparing Fairness/Performance improvement of Optimal, De-
fault and Worst scheduler configurations of Dike for selective workloads

prediction models require an extensive training phase before

execution [8, 20, 28]. Other methods require hardware

modification to collect specialized statistics [23, 25], but

these mechanisms are not available on current hardware.

Prediction requires understanding how co-running appli-

cations affect each other. Prediction is already difficult on

homogeneous systems (and the works referenced in the prior

paragraph only deal with homogeneity), but it is even harder

on heterogeneous systems where core types vary. With

different core types, the predictor must anticipate both the

effects applications will have on each other and the effects

that different core types will have on different applications.

One prior approach addresses predictive mechanisms for

heterogeneous systems [24], but it requires hardware support

that is not available on current systems. Thus, there is a need

for a lightweight prediction mechanism for heterogeneous

systems that works without offline training and does not

require specialized hardware.

Almost all contention-aware schedulers work by intelli-

gently migrating threads among cores. Therefore, two key

scheduling parameters are the number of threads to migrate

at once and the scheduling quantum. The values of these

two variables define a scheduler configuration. Figure 2 com-

pares the normalized fairness and performance improvement

of the optimal, default and worst scheduler configuration

where the optimal configuration provides highest fairness

and performance between all possible configurations for

three selected workloads (for more details, see Section IV).

Poor scheduler configurations lead to notable fairness and

performance loss. The optimal scheduler configuration, how-

ever, is a function of both the current application work-

load and user (or operator) preference to favor fairness

or throughput. Furthermore, the optimal configuration may

change as applications move through phases, new applica-

tions enter the system, or old applications exit. Thus, we

propose that contention-aware schedulers should adapt these

key parameters at runtime for optimal behavior.

In summary, these observations motivate the need for a

contention-aware scheduler that has both lightweight predic-

Observer

Selector

Predictor

DeciderMigrator
Yes

fair

system

No

Figure 3: Overview of the Dike runtime during each quanta.

tion mechanisms and adaptive configurability.

III. Dike Framework

Dike’s primary goals are to (1) alleviate shared resource

contention and (2) provide fairness among multi-threaded

and multiprocess workloads. A secondary goal is enhanc-

ing overall performance and avoiding overhead (we could

trivially provide fairness by making all threads extremely

slow).

Without the fairness, unpredictable thread performance

can introduce undesirable behavior which may violate QoS

guarantees in some case. Therefore, fairness in an applica-

tion means that threads’ runtime are approximately close

together. Fairness in a system means that applications are

not unpredictably impeded by other applications.

To provide fairness without hardware modification, Dike

is a software level scheduler that periodically re-maps

threads to cores ensuring each thread gets a fair share of

CPU and memory resources. Dike builds on the frame-

work common to all existing contention-aware schedulers

by augmenting it with an enhanced, closed-loop prediction

model and an adaptation phase which dynamically tunes key

scheduling parameters to the current workload.

Figure 3 illustrates Dike’s high-level structure. At initial-

ization, Dike has no knowledge of the current application

workload. Execution time is divided into fixed length quanta.

During each scheduling quantum, the Observer records the

memory access rate per thread and categorizes threads as

compute (C) or memory (M) intensive. Next, the Selector

sorts threads based on access rate and forms pairs of threads.

Dike uses coefficient of variation (standard deviation over

mean) to quantify variation of memory access rate. If the

system is in a fair state, where the coefficient of variation is

less than a user-defined threshold (0.1 by default), no action

is taken in the current quantum. Otherwise, the Predictor

estimates possible changes in memory access rates if pairs

of threads were swapped. Then, the Decider uses these

predictions to ensure each swap benefits fairness or perfor-

mance. If a swap is beneficial, the Migrator actually swaps

the threads, forcing each to migrate to the core currently

occupied by the other.

In addition, Dike employs an Optimizer that adaptively

updates the two key scheduling parameters quantaLength

– indicating the time between scheduling decisions – and

swapS ize – indicating the number of threads to swap at a

time. With adaptation, Dike can selectively optimize for both

(1) the current application workload and (2) user preference

for either fairness or throughput.

The remainder of this section provides details on each

of the components illustrated in Figure 3. While many

of these components are common to any contention-aware

scheduler, we emphasize that Dike’s unique features are in

its prediction mechanism and optimizer.

A. Observer

The observer has two jobs: thread classification and

core identification. Thread classification partitions threads

into either memory intensive or compute intensive. Core

identification partitions cores into higher and lower memory

bandwidth.

The intention of thread classification is to identify thread

demands, analyze current thread interference, and share re-

sources more efficiently. Clearly, a memory intensive thread

needs to access memory more often than a compute intensive

one, therefore the scheduler will attempt to move memory

intensive threads to high-bandwidth cores and compute

intensive threads to low-bandwidth cores to ensure fair

progress. Prior research studies the breakdown of shared

resources contention [30] concluding that main memory

is the dominant cause for contention and unpredictable

performance behavior. Dike thus employs memory access

rate to alleviate overall system contention.

The observer keeps track of memory access rate per thread

by reading hardware performance counters. A high-access

thread fetches most of its data from main memory, putting

pressure on the memory controller and on-chip interconnect.

Although memory access rate is a coarse heuristic approach,

as it does not consider cache locality or reuse, it works

well to approximate contention. The reason is it reflects

contention of multiple shared resources such as memory

controller and interconnect and therefore can function as

suitable metric for scheduling decisions.

While many approaches employ instructions per clock

(IPC) as a progress metric, we believe that memory access

rate is a better contention metric. IPC fails to represent

actual progress in heterogeneous systems where different

cores could have different clock speeds. Additionally, IPC

can be misleading in situations where threads are spinning

to acquire a mutex lock. In these cases, despite executing

instructions, threads are not making actual progress [10].

To distinguish between memory intensive and compute

intensive threads, we rely on established boundaries from

the literature – if a thread’s LLC miss rate is more than

10%, it is considered memory intensive (M), otherwise it is

compute intensive (C) [27]. Memory intensity of a thread dy-

namically changes as thread goes through execution phases.

Accordingly, Dike reclassifies threads regularly to enforce

best decisions.

Core identification distinguishes between higher and

lower bandwidth cores allowing Dike to determine thread-

core mappings that increase fairness and performance. Also,

the observer stores the moving mean bandwidth for each

core in the CoreBW variable and updates it every quanta.

Moving mean represents average bandwidth of core through-

out its execution. We later use this parameter to estimate

the potential benefit of moving thread to such core. The

predictor uses this variable to estimate future access rate if

the thread were migrated. The core identification can change

as the system evolves. A core may become low-bandwidth

due to contention, or a core might become high-bandwidth

if other sources of contention clear up. Thus, CoreBW is a

dynamic property of the cores and the current system usage.

B. Selector

The selector sorts threads based on memory access rate

and selectively pairs them. At first, the selector analyzes

current fairness. Coefficient of variation (standard deviation

over mean) is used to depict variation of memory access.

Smaller value indicates higher tendency towards average,

which means a fair environment.

The system is defined as fair if the standard deviation

(σ) over mean of threads memory access rate is less than a

user-defined threshold. If the system is fair, we skip to next

quanta, otherwise we should select potential pairs of threads

to migrate. An ideal mapping has high-access threads bound

to high bandwidth cores and low-access threads bound to

low bandwidth cores. The selector finds threads that are

not running on a proper core type and performs re-mapping

accordingly. We call the ideal mapping one that obeys a

placement rule where the minimum number of threads are

breaking ideal mapping; i.e., the smallest possible number

of threads are running on the wrong core type.

In some cases this rule is not achievable. For example,

if all threads are of the same type (C/M) or the number

of threads for each type is not equal to number of cores

of each type (high BW/low BW), several threads break the

placement rule. When the rule cannot be met in one quanta,

Dike will naturally migrate threads so that the rule is obeyed,

on average, across several quanta.

Algorithm 1 illustrates the Selector’s pair forming pro-

cedure. The inputs are a threads array that includes all

running threads and swapS ize which is the number of

threads to swap – statically assigned or decided by the

optimizer in adaptive mode. head and tail are the pointers

Algorithm 1 Forming pairs of threads in the Selector

Require: threads ⊲ array of threads
Require: adaptationGoal ⊲ Fairness / Performance
Require: swapS ize ⊲ given by optimizer

1: f airness = getS ystemFairness() ⊲ calculates current fairness
2: if f airness < θ f then ⊲ System is fair
3: return

4: end if

5: n = size(threads)
6: pair = {〈tl, th〉 | tl, th ∈ threads} ⊲ pair of low/high access threads
7: sort(threads) ⊲ sorts threads based on access rate
8: head = 0, tail = n − 1 ⊲ pointers to beginning/end of threads array
9: counter = 0

10: if all threads are same type (C/M) then

11: for k = 0 to swapS ize do

12: pairs[k] = 〈threads[k], threads[n − k]〉
13: end for

14: return

15: end if

16: while counter < swapS ize or head < tail do

17: for i = head to n do ⊲ starting from lowest access rate
18: if threads[i] is violator then ⊲ violation of placement rule
19: tl = threads[i]
20: Break

21: end if

22: end for

23: head = i

24: for j = tail downto 0 do ⊲ starting from highest access rate
25: if threads[j] is violator then ⊲ violation of placement rule
26: th = threads[j]
27: Break

28: end if

29: end for

30: tail = j

31: pairs[counter + +] = 〈tl, th〉
32: end while

return pairs ⊲ pairs of threads for swap operation

which indicate the lowest and highest access rate threads

respectively. If all of threads have same type (C/M), pairs

are generated from both ends regardless of the placement

rule. Unless pointers cross each other or sufficient pairs

have been chosen, the selector checks placement of pointing

threads. If a thread violates the rule, we select it to be paired,

otherwise the corresponding pointer moves to next thread in

threads array. Each pair is a combination of thread with

low-access thread (tl) and a high-access thread (th) , and is

represented as < tl, th >. In the end, we transfer pairs of

threads to the predictor. Sometimes the pointers cross each

other which means the number of violating threads are less

than swapS ize, and thus no more threads are available to be

chosen.

C. Predictor

After preparing thread pairs for swap – and before per-

forming the migration – Dike ensures the swap will improve

either fairness or performance depending on a predefined

improvement target. Hence, the predictor estimates the mem-

ory access rate of each pair of threads in next quanta. We

develop a closed-loop model for predicting a single thread

pair’s future access rates. For a thread pair of < tl, th >, the

pro f it of swapping low-access thread (tl) is defined as:

pro f ittl = CoreBWth − AccessRatetl − Overheadtl (1)

pro f ittl is the expected memory access rate change from

swapping thread tl. We assume that if a thread migrates

to a new core, it consumes the new core’s entire memory

bandwidth. Thereupon, backed up by empirical results, we

use the new core’s bandwidth – kept in parameter CoreBWth

– as the thread’s new access rate. CoreBWth is provided

by the observer earlier and keeps the moving mean of

bandwidth for thread th’s current core. If thread tl stays

on same core, we expect it to keep the same access rate.

Hence, AccessRatetl is the access rate of thread tl in the next

quanta. To conclude, CoreBWth and AccessRatetl are the

expected access rates of threads if the swap happens or not,

respectively. Further, the parameter Overheadtl expresses the

reduction in memory access rate due to the context switch

overhead.

Overheadtl =
swapOH

quantaLength
∗ AccessRatetl (2)

swapOH is the average time that a thread spends during a

swap. However, overhead depends on hardware and concur-

rent thread types, it can be simply obtained by common

system profilers. To run Dike online and avoid a pre-

processing phase, we consider Overheadtl as the precision

error of our model. This is an advantage of a closed loop

systems, as these types of errors are inherently accounted

for in the process of collecting feedback [9, 15].

Once each thread’s pro f it has been calculated individ-

ually using Eqn. 1, the total profit of a swap operation is

defined as sum of profits of both threads.

totalPro f it = pro f ittl + pro f itth (3)

Total profit is forwarded to the decider for further actions. In

some cases, pro f ittl (or pro f itth) could be a negative number

which represents a reduction in memory access rate. For

instance, when a memory intensive thread with high-access

rate migrates to a slow bandwidth core, memory access rate

drops and as a result, thread performance degrades as well.

Our prediction model is simple yet efficient. Prior work

shows heterogeneous multicore schedulers must be aware of

core types and thread characteristics to achieve high overall

throughput [24]. Dike requires no a prior knowledge, but

dynamically determines both core behavior (using CoreBW

parameter) and thread access rates (stored in AccessRate

parameter) making it a suitable lightweight scheduler for

heterogeneous architectures.

D. Decider

Once the prediction has been made, Dike decides whether

to perform each individual swap independently. To prevent

excessive overhead on a thread, Dike does not swap a thread

in consecutive quanta. Further increasing the number of

inactive quanta for migrated threads results in less fairness

with no substantial gain in performance. If any member of

a thread pair has been swapped in last quanta, scheduler

skips the pair. Also, the decider ignores pairs with negative

totalPro f it.

E. Migrator

While some prior work employs thread suspension as

scheduling enforcement, Dike uses thread migration instead.

Although suspending threads does not produce context

switch overhead, it slows down performance significantly

as fast threads are idle waiting for the slowest threads

to catch up. The migrator simply manipulates thread-to-

core affinity mappings to swap a thread pair’s cores. The

order of migration during the swap procedure has not been

found to make an empirical difference to either fairness

or performance. In detail, Dike does not use a third core

to operate swap. Therefore, at some point one core will

briefly host two threads, and the other one is threadless.

Our findings show no substantial change in fairness or

performance by choosing the slow or fast core to host both

threads for this short amount of time.

F. Optimizer

A broad range of prior work focuses on either fairness or

performance and ignores the other goal. Dike, in contrast,

can be tuned to favor improving fairness over performance

or vice versa.

Dike has two key parameters that dramatically affect

fairness and performance: quantaLength, the time between

scheduling decisions, and swapS ize, the number of threads

to swap in one quanta. Longer quantaLength hurts fairness

as migrations happen less frequently, but this property

improves performance. With increasing swapS ize, threads

get migrated repeatedly, leading to higher fairness but more

performance overhead. Empirically, we find that the best

value of these key parameters can vary as a function of

both workload (the applications running) and the user’s goals

(favoring fairness or throughput). Additionally, we expect

application workload to vary as a function of time as threads

will enter and leave the systems. Thus, rather than fix these

parameters, Dike supports adaptively tuning them.

Based on values for each scheduling parameter, we have

32 possible configurations for every workload. Figure 4

illustrates the effects of different configurations on fairness

and performance for two workloads (details about workloads

can be found in Section IV). In each subplot, fairness and

performance of each configuration is normalized to best

configuration which has the highest fairness or performance.

Every cell in the heatmap represents a configuration, where

the x-axis is swapS ize and the y-axis is quantaLength,

brighter represents better fairness or performance. The figure

shows that (1) for a given workload, the best configura-

tion is different for fairness or performance and (2) for a

given metric the best configuration varies among workloads.

(a) Fairness - wl8 (b) Performance - wl8

(c) Fairness - wl13 (d) Performance - wl13

Figure 4: Normalized fairness/performance of every configuration for
selective workloads

Therefore, there is no unique global configuration that can

provide the best fairness or performance for each workload.

Selecting a best configuration is a non-convex optimization,

so we rely on a heuristic approach for efficiency.

In the Dike implementation, quantaLength is drawn from

[100, 200, 500, 1000] milliseconds, while swapS ize is any

even number from 2 to half the total number of running

threads. Empirical results show that by swapping more than

half of threads in each quanta, overhead is substantial and it

is impossible for the scheduler to achieve any performance

improvement.

As optimal parameters vary per workload, we classify

workloads based on the number of compute and memory

intensive threads. Specifically, we group workloads into

three classifications: balanced (B), where the number of

memory and compute intensive threads are equal; unbal-

anced, compute (UC) where the compute intensive threads

outnumber the memory intensive ones; and unbalanced,

memory (UM), where memory intensive threads outnumber

compute intensive ones. We then use a different set of heuris-

tics to optimize for different classifications of workload.

We propose heuristic solution for each workload type

rather than individual workload. Specifically, we select top

configurations that provide 75% or more of best config-

uration with highest fairness and performance for each

workload type. Figure 5 depicts contour plot of normalized

fairness and performance for each workload type. In sub-

plots, the x-axis and y-axis are swapS ize and quantaLength

respectively, and higher intensity in each region represents

improvement in fairness or performance.

Given this data, we derive optimization rules based on

local extrema of contour plots. For example, Fairness - UC

Figure 5: Optimization space of scheduler configuration for B, UC and UM
workloads

subplot shows higher intensity in the center right, indicating

higher fairness is achievable by increasing swapS ize and

decreasing quantaLength until reaches it reaches 200ms. In

contrast, Performance - UC subplot suggests an increase

in both swapS ize and quantaLength to produce higher

performance. Similar observations have been made for other

types of workloads from the other plots shown in Figure 5.

In non-adaptive mode, Dike assigns median of ranges for

each scheduling parameter as default. In our experiments,

default scheduling configuration is < 8, 500 > . In adaptive

mode, Dike uses optimization rules drawn from the contour

plots. Algorithm 2 summarizes these optimization rules.

Initially, optimizer starts from default configuration and

updates scheduling parameters periodically according to type

of workload. In every step, the optimizer is allowed to

change scheduling parameter for one unit. For instance, up-

dating quantaLength from 100 to 1000 milliseconds requires

calling optimizer for 3 times.

IV. Experimental Evaluation

We evaluate Dike on a real system with one memory

controller and two sockets, each with an Intel Xeon-E5 CPU.

System configuration details are available in Table I. We set

one socket to the minimum CPU frequency, and on the other

we enable TurboBoost to build a large-scale heterogeneous

structure. Both the fast and slow cores have hyperthreading

enabled, meaning contention can occur from threads sharing

a single virtual core, from threads on different cores on the

same chip, or from threads scheduled on the two separate

sockets. This platform is thus a real system that has the type

Algorithm 2 Optimizing configurations of workloads

Require: θ f ⊲ fairness threshold by user
Require: adaptationGoal ⊲ Fairness / Performance
Require: < swapS ize, quantaLength > ⊲ current configuration

1: f airness = getS ystemFairness() ⊲ calculates current fairness
2: if f airness < θ f then ⊲ System is fair
3: return

4: end if

5: workloadType = getWorkloadType() ⊲ Identify workload type
6: if adaptationGoal is Fairness then
7: switch workloadType do

8: case B :
9: decrease quantaLength

10: quantaLength = Math.Max(quantaLength, 100)

11: case UC :
12: swapS ize = Math.Min(swapS ize + 2, 16)
13: decrease quantaLength

14: quantaLength = Math.Max(quantaLength, 200)

15: case UM :
16: swapS ize = Math.Min(swapS ize + 2, 16)
17: decrease quantaLength

18: quantaLength = Math.Max(quantaLength, 500)

19: end if

20: if adaptationGoal is Performance then

21: switch workloadType do

22: case B :
23: increase quantaLength

24: quantaLength = Math.Min(quantaLength, 1000)

25: case UC :
26: swapS ize = Math.Min(swapS ize + 2, 16)
27: increase quantaLength

28: quantaLength = Math.Min(quantaLength, 1000)

29: case UM :
30: increase quantaLength

31: quantaLength = Math.Min(quantaLength, 1000)

32: end if

return < swapS ize, quantaLength > ⊲ new configuration

of large scale heterogeneity anticipated for future high-end

computing systems [1].

The experimental workloads are from the Rodinia

OpenMP benchmark suite [5] shown in Table II. Each

workload is four benchmarks with differing numbers of

compute and memory intensive benchmarks with 8 threads

for 32 total threads (4 benchmarks by 8 threads). In our

experiments, each core (including the hyperthreaded virtual

cores) always runs one thread. Workloads are classified into

three types, Balanced (B), Unbalanced Compute Intensive

(UC) and Unbalanced Memory Intensive (UM) based on

number of compute and memory intensive threads. While

we know this mix from our own observation, the schedulers

are not given any a priori knowledge. Additionally, each

workload includes the KMEANS benchmark with 8 threads

which further increases contention as KMEANS produces

excessive inter-thread communication.

The experimental evaluation is divided into four parts.

First we compare Dike’s fairness and performance to prior

work and Linux default scheduler. Next, we show how the

number of thread migrations changes for each scheduling

method. Then, we demonstrate Dike’s prediction accuracy.

Table I: System Configuration

Component Details

Hardware Intel (r) Xeon-E5 ,
10 Cores (2.33 GHz), 10 Cores (1.21 GHz) ,

25 MB shared LLC , 32 GB RAM
Operating System Ubuntu 14.04

Table II: Workloads used for experiments. Memory Intensive benchmarks
are displayed bold

Workload B: Balanced (2 M / 2 C)

WL1 jacobi needle leukocyte lavaMD
WL2 jacobi streamcluster leukocyte srad
WL3 streamcluster needle hotspot lavaMD
WL4 jacobi streamcluster lavaMD heartwall
WL5 streamcluster needle leukocyte hotspot
WL6 jacobi needle heartwall srad

UC: Unbalanced-Compute Intensive (1 M / 3 C)

WL7 jacobi lavaMD leukocyte srad
WL8 needle hotspot leukocyte heartwall
WL9 streamcluster heartwall leukocyte srad

WL10 jacobi hotspot leukocyte heartwall
WL11 needle lavaMD hotspot srad

UM: Unbalanced-Memory Intensive (3 M / 1 C)

WL12 jacobi needle streamcluster lavaMD
WL13 jacobi needle stream omp leukocyte
WL14 streamcluster needle stream omp lavaMD
WL15 jacobi streamcluster stream omp hotspot
WL16 jacobi needle streamcluster srad

A. Fairness and Performance

Recent work on contention-aware scheduling is built on

the Distributed Intensity Online (DIO) approach [30]. In

this section, we compare DIO to different Dike policies in

terms of fairness and performance. We use Linux’s default

scheduler - completely fair scheduler (CFS) - as a baseline.

CFS tries to equalize allocated CPU time. In DIO, the

scheduler measures last level cache miss rates of at runtime,

sorts them from highest to lowest, and then pairs threads by

choosing one from top of the list (highest miss rate) and one

from bottom of the list (lowest miss rate) and swaps them.

We examine three different instantiations of Dike: a non-

adaptive version with a fixed swapS ize and quantaLength

of 8 and 500 (called Dike), an adaptive version favoring

fairness (Dike-AF), and an adaptive version favoring perfor-

mance (Dike-AP). The default Dike shows how prediction

improves fairness and performance compared to a prior

state-of-the-art approach. The adaptive versions show the

additional improvement from dynamically tuning scheduling

parameters.

We introduce a Fairness metric. In a fair environment,

homogeneous threads are expected to finish execution close

together with minimum difference from average execution

time. Thus, we employ the coefficient of variation (which

is standard deviation over mean) for measuring dispersion

of threads’ runtime. For each benchmark, Dike computes

coefficient of variation of threads execution time and takes

an average for all benchmarks. For a workload with n

benchmarks:

Fairness = 1 −

n∑

i=1

cvi

n
(4)

where cvi is the coefficient of variation of homogeneous

threads execution time in the benchmark i. In an ideal fair

system, homogeneous threads have same execution time;

i.e., cvi would be zero for each benchmark and thus the

maximum Fairness is 1. Higher Fairness implies more

predictability as threads’ execution times are approximately

equal.

Prior works have proposed the ratio of maximum slow-

down over minimum slowdown as a fairness metric[8, 13].

This ratio fails to address fairness completely as it only

considers best and worst cases. Choosing coefficient of

variation allows Dike to examine all threads behavior.

Figure 6a demonstrates how fairness changes by em-

ploying different scheduling methods for each workload

individually and averaged on 16 workloads over the base-

line (Linux Default Scheduler - CFS). As threads require

different shares of resources, time-sharing resources hurts

the performance of those who require more. For instance,

assigning the same memory bandwidth to both compute

and memory intensive threads slowdowns performance of

memory intensive threads, leading to unfairness. Figure 6a

shows the improvement in fairness over the baseline, so the

baseline is zero. The chart is divided up into four regions.

Each workload class is grouped together and the final region

shows both the average and geometric mean improvement.

By geometric mean, Dike improves fairness by 65% com-

pared to the baseline and by 38% compared to DIO, which

is, itself, 47% above the baseline. The difference between

Dike and DIO is the closed-loop prediction mechanism that

allows Dike to reach the ideal thread-core mapping with

minimal migration overhead. In contrast, DIO swaps all

threads in every quanta ignoring the overhead of thread

migrations.

Dike-AF increases the fairness gains by a further 14%

compared to Dike bringing the total improvement over the

baseline to 75%. This adaptation is especially beneficial for

the majority of the unbalanced workloads. Not surprisingly,

Dike-AP does not improve fairness compared to Dike as it

optimizes for performance; however, it is important to note

that this approach does not hurt fairness.

Figure 6b shows each workload’s speedup over baseline

for four the scheduling methods. The vertical bold line on the

y-axis represents the baseline performance of the workload

under CFS (which is 1). Since Dike is a fairness oriented

scheduler, it forces homogeneous threads of a benchmark to

have similar execution time. Therefore benchmark runtime is

not delayed by the slowest thread and consequently perfor-

mance improves in return. Comparing the average speedup

over baseline, Dike surpasses DIO by 4% in performance

w
l1

w
l2

w
l3

w
l4

w
l5

w
l6

w
l7

w
l8

w
l9

w
l1

0

w
l1

1

w
l1

2

w
l1

3

w
l1

4

w
l1

5

w
l1

6

g
eo

m
ea

n

A
v
er

a
g
e

(baseline)

0.25

0.50

0.75

1

F
a

ir
n

e
s
s
Im

p
ro

ve
m

e
n

t(
%

)

DIO Dike Dike − AF Dike − AP

B UC UM

(a) Fairness improvement of DIO, Dike, Dike-AF and Dike-AP over Linux default scheduler

w
l1

w
l2

w
l3

w
l4

w
l5

w
l6

w
l7

w
l8

w
l9

w
l1

0

w
l1

1

w
l1

2

w
l1

3

w
l1

4

w
l1

5

w
l1

6

g
eo

m
ea

n

A
v
er

a
g
e

0.85

0.95

(baseline)

1.05

1.15

1.25

N
o
rm

a
liz

e
d

P
e

rf
o
rm

a
n

c
e

B UC UM

(b) Relative Performance of DIO, Dike, Dike-AF and Dike-AP to Linux Default Scheduler

Figure 6: % Fairness and Performance improvement

improvement. While Dike-AF focuses on fairness rather than

performance, it still improves performance more over the

non-adaptive mode. Dike-AP provides the best performance,

which brings 12% geometric mean speedup compared to

baseline.

We consider both the fairness and performance results

together. Dike improves upon DIO in both fairness and

performance by 38% and 4% respectively. Adaptation se-

cures either better fairness or performance while giving the

option to emphasize one or the other. In some workloads

(such as wl5, wl12, wl15 and wl16), DIO has a better

fairness, but Dike compensates by providing particularly

better performance. The same pattern applies when DIO

has slightly better performance (e.g., wl13, wl14 and wl16),

and Dike delivers higher fairness in return. Dike-AF and

Dike-AP outdo DIO in terms of fairness and performance

respectively for almost every workload individually and on

average as well. Finally, analyzing non-adaptive mode versus

Dike-AF and Dike-AP shows that if we prioritize a target,

the adaptation provides better results than the non-adaptive

mode. In other words, for every workload in Figure 6a, Dike-

AF provides better fairness than the non-adaptive mode.

Likewise, Dike-AP outperforms the non-adaptive mode for

each workload according to Figure 6b. The reason is that in

every step of the adaptation, the optimizer ensures changing

scheduling parameters does not harm the desired behavior.

The performance of wl15 is a special case where the

workload is extremely sensitive to do thread migration. Es-

sentially any migration is going to hurt performance for this

workload. Also due to numerous drastic changes in memory

access rate of threads, Dike’s predictor fails to estimate

threads behavior correctly. In this situation, both DIO and

Dike come short of providing performance improvement

comparing to Linux’s default scheduler.

B. Number of swap operations

Above we argue that the performance improvement of

Dike compared to DIO is largely due to its prediction

mechanism which prevents needless migrations. In fact,

a major objective of Dike is to achieve fairness in the

minimum number of thread migrations; i.e., Dike trades pre-

diction overhead to reduce swap overhead. In this section we

provide further evidence for this argument by evaluating the

number of migrations that occur under various scheduling

policies.

Table III shows the swap (a pair of migrations) counts

for each workload and scheduling policy. Dike has third of

the swaps on average compared to DIO. Many benchmarks

have a memory intensive phase in the beginning to fetch data

and instructions. The memory access rate may drop after a

short period or continue at an even higher rate. Hence, it is

necessary to maintain fairness and prevent overuse of shared

resources in early stages by swapping more frequently. After

time, some threads may finish or change phases, and the

swap rate could decrease. At this moment, adaptation could

be useful by updating scheduling parameters to the best

combination depending on workload type in order to reduce

number of swaps further. Dike-AF makes certain fairness

boosts after each update while on the other side, Dike-

AP tries to enhance performance even more by reducing

number of swaps aggressively while ensuring fairness does

not diminish significantly. Comparing Dike-AF and Dike-

AP to the non-adaptive mode, the average number of swaps

is cut down by 69% and 89% respectively.

C. Prediction Error

An accurate memory access rate prediction allows a

scheduler to move threads across the cores without harming

fairness or incurring unnecessary thread movement. Figure 7

displays maximum, average and minimum of prediction

error across all threads for each workload. Zero error im-

plies perfect prediction while negative and positive error

represent underestimation and overestimation respectively.

Prediction error is the average difference between predicted

and actual memory access of the running threads. Dike’s

average prediction error ranges from 0 to 3%, while lower

and upper bounds are -9% and +10%. UM workloads are

simpler to estimate as threads are accessing memory in

steady rate. In contrast, predicting UC workloads is more

difficult since memory access patterns in compute intensive

threads fluctuates vastly. These threads experience short

periods of intensive memory access and then long periods

with few memory accesses. Unanticipated rise and fall in

access rate results in incorrect estimation.

To inspect prediction error in detail, we select workloads

with higher prediction errors and examine how error changes

w
l1

w
l2

w
l3

w
l4

w
l5

w
l6

w
l7

w
l8

w
l9

w
l1

0

w
l1

1

w
l1

2

w
l1

3

w
l1

4

w
l1

5

w
l1

6

A
v
er

a
g
e

-10

0

10

P
re

d
ic

ti
o

n
E

rr
o

r
(%

)

Figure 7: Prediction Error of Dike

1 50 100 150 200 250 300 350 400 450 500 550 600
-20

-10

0

10

20
SRAD Heartwall Jacobi Needle

time

P
re

d
ic

ti
o

n
E

rr
o

r
(%

)

wl11 wl6

Figure 8: Prediction Error of selective workloads

at runtime. Figure 8 illustrates trend of prediction error for

wl6 and wl11. The bold horizontal line depicts the end of

wl11 execution. Dotted lines illustrate the finish time of

benchmarks in wl6 (SRAD, Heartwall, Jacobi and Needle).

Phase changes with notable change in memory access rate

(more probable in compute intensive threads) cause spikes

in prediction error as Dike estimates memory access using

the moving mean. For instance, spikes at time 248 (or

305) are result of sudden change in memory access rate

of threads. Also completion of threads affects the execution

environment by freeing memory bandwidth and therefore

prediction error fluctuates afterward (the spikes after dotted

lines). Despite complications, Dike keeps prediction within

10% of the actual value.

V. RelatedWork

This section discusses prior work that addresses con-

tention (1) in the last level cache (LLC), (2) in the memory

controller, (3) through OS scheduling policies, (4) in hetero-

geneous multicores, and (5) through adaptive policies.

Shared LLC contention can degrade performance notably,

and many solutions have been proposed for cache contention

exclusively. Tam et al suggest page coloring where cache

portion is determined by a thread’s access rate [22]. Qureshi

et al partition cache space to minimize LLC misses [19].

Wang et al manage process’s cache requirement by re-

Table III: Comparing swap count in DIO, Dike, Dike-AF and Dike-AP

Workload Type B UC UM

wl1 wl2 wl3 wl4 wl5 wl6 wl7 wl8 wl9 wl10 wl11 wl12 wl13 wl14 wl15 wl16 Average

DIO 1980 2120 1952 1964 2364 2068 1624 1720 2220 2568 2144 1872 1776 1812 3564 2120 2116.75

Dike 9 14 12 9 12 270 2288 1594 2197 2500 981 317 1015 806 312 37 773.3125

Dike-AF 10 9 19 9 12 16 207 398 216 634 206 404 450 1081 260 696 289.1875

Dike-AP 8 8 8 8 14 14 293 333 254 513 323 168 310 405 95 304 191.125

adjusting scheduling order [26]. Fedorova et al introduce

cache-aware scheduling that grants more CPU time to

threads which are hurt more by contention [7]. All these

approaches focus on LLC only and do not address other

sources of contention – like main memory and on-chip

interconnect bandwidth.

Another crucial shared resource is the memory controller,

and several new memory controller designs have been pro-

posed. Nesbit et al describe Fair Queueing Memory (FQM)

where threads with earlier virtual time have higher priority

[16]. Inspired by FQM, Kim et al introduce Atlas that favors

threads with the least attained service [13]. Ebrahimi et al

estimate unfairness with a feedback loop and slow down

the cores executing especially demanding threads [6]. These

approaches require hardware modification. In addition, they

limit the worst case behavior (i.e., the thread that receives

the worst service) but they do not ensure equal progress

among all threads.

Contention-aware schedulers are a promising solution for

current hardware as they only employ OS thread/process

scheduling. Zhuralev et al provide fairness by relying on

LLC miss rate heuristics and dynamically balancing threads’

progress [30]. While LLC miss rate effectively distinguishes

compute and memory intensive threads, it does not always

indicate contention[23]. Xu et al allocates more CPU time

to threads that suffer more slowdown by estimating the

standalone IPC of each thread[28]. Feliu et al estimates

performance by periodically creating low-contention co-

schedulers [8]. These approaches rely on either a complex

prediction model or offline training to achieve acceptable

fairness/performance improvement.

Heterogeneity is increasingly prevalent in architectures,

where it may arise due to design time decisions [12],

runtime configurability [29], or as a side effect when a

logically homogeneous processor behaves like a hetero-

geneous processor due to the physical layout of memory

[11]. Most heterogeneous multicore schedulers utilize the

different core types to reach the highest overall throughput

[24]. Suleman et al use fast cores to accelerate critical

sections of code [21], while Annavaram et al prioritize

serial code segments [2]. Lakshminarayana et al assign

threads with larger remaining execution times to faster cores

[14]. While these approaches successfully maximize overall

throughput, they fail to guarantee fairness. This becomes

an issue for a barrier-synchronized multi-threaded workload

and for multi-application workloads where some applica-

tions require quality-of-service guarantees. Van Craeynest

et al address this need by ensuring equal work is done on

each core type [24]. While this was the first approach to

provide fairness in heterogeneous multicore scheduling it

requires hardware support for its prediction model that does

not currently exist on real machines. Adaptive solutions can

further reduce contention. FACT, the framework for adaptive

task migration, minimizes inter-workload interference [18].

Pricopi intelligently reconfigures and allocates cores to ap-

plications to form a heterogeneous architecture and minimize

makespan [17]. Both these approaches adapt at the hardware

level.

In summary, Dike is a contention-aware scheduler for

heterogeneous architecture that considers thread classifica-

tion and core type for scheduling decisions. Dike has a

lightweight predictive model requiring no offline training

and an adaptive optimization that improves fairness and per-

formance simultaneously. Dike can be deployed on current

hardware.

VI. Conclusion

Prior contention-aware schedulers employ complex pre-

diction models often requiring extensive training phases.

Additionally, they favor either fairness or performance, but

cannot handle both goals simultaneously. To meet the need

for a simple, but effective contention-aware scheduler that

can address with user performance, this paper presents Dike.

We evaluate Dike with various combinations of compute and

memory intensive benchmarks on a real machine and achieve

65% and 8% improvement in fairness and performance

respectively compared to Linux default CFS scheduler.

Using adaptation, fairness and performance improvements

raise to 78% and 12%. We release Dike’s source code and

configuration scripts as open source to further development

and reproducible results.

Acknowledgments: We are grateful to the anonymous

reviewers whose suggestions improved the paper. The effort

on this project is funded by the U.S. Government under

the DARPA BRASS program, by the Dept. of Energy

under DOE DE-AC02-06CH11357, by the NSF under CCF

1439156, and by a DOE Early Career Award.

References

[1] J. Ang et al. “Abstract Machine Models and

Proxy Architectures for Exascale Computing”. In:

Hardware-Software Co-Design for High Perfor-

mance Computing (Co-HPC), 2014. 2014, pp. 25–

32.

[2] M. Annavaram et al. “Mitigating Amdahl’s law

through EPI throttling”. In: ISCA. 2005.

[3] C. Augonnet et al. “StarPU: A Unified Platform

for Task Scheduling on Heterogeneous Multicore

Architectures”. In: Concurr. Comput. : Pract. Ex-

per. 23.2 (2011).

[4] A. Bhattacharjee and M. Martonosi. “Thread

Criticality Predictors for Dynamic Performance,

Power, and Resource Management in Chip Multi-

processors”. In: ISCA. 2009.

[5] S. Che et al. “Rodinia: A benchmark suite for

heterogeneous computing”. In: IISWC. 2009.

[6] E. Ebrahimi et al. “Fairness via Source Throttling:

A Configurable and High-performance Fairness

Substrate for Multi-core Memory Systems”. In:

ASPLOS. 2010.

[7] A. Fedorova et al. “Improving Performance Iso-

lation on Chip Multiprocessors via an Operating

System Scheduler”. In: PACT. 2007.

[8] J. Feliu et al. “Addressing Fairness in SMT Mul-

ticores with a Progress-Aware Scheduler”. In:

IPDPS. 2015.

[9] A. Filieri et al. “Automated Design of Self-

adaptive Software with Control-theoretical Formal

Guarantees”. In: ICSE. 2014.

[10] H. Hoffmann et al. “A generalized software frame-

work for accurate and efficient management of

performance goals”. In: EMSOFT. 2013.

[11] H. Hoffmann et al. “Remote Store Programming”.

In: High Performance Embedded Architectures

and Compilers (2010), pp. 3–17.

[12] B. Jeff. “Big.LITTLE system architecture from

ARM: saving power through heterogeneous multi-

processing and task context migration”. In: DAC.

2012.

[13] Y. Kim et al. “ATLAS: A scalable and high-

performance scheduling algorithm for multiple

memory controllers”. In: HPCA. 2010.

[14] N. Lakshminarayana et al. “Age based scheduling

for asymmetric multiprocessors”. In: SC. 2009.

[15] M. Maggio et al. “Power Optimization in Embed-

ded Systems via Feedback Control of Resource

Allocation”. In: IEEE TCST 21.1 (2013).

[16] K. J. Nesbit et al. “Virtual Private Caches”. In:

ISCA. 2007.

[17] M. Pricopi and T. Mitra. “Task Scheduling

on Adaptive Multi-Core”. In: Computers, IEEE

Transactions on 63.10 (2014).

[18] K. K. Pusukuri et al. “FACT: A Framework for

Adaptive Contention-aware Thread Migrations”.

In: CF. 2011.

[19] M. K. Qureshi and Y. N. Patt. “Utility-Based

Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Partition

Shared Caches”. In: MICRO. 2006.

[20] D. Shelepov et al. “HASS: A Scheduler for

Heterogeneous Multicore Systems”. In: SIGOPS

Oper. Syst. Rev. 43.2 (2009).

[21] M. A. Suleman et al. “Accelerating Critical Sec-

tion Execution with Asymmetric Multi-core Ar-

chitectures”. In: ASPLOS. 2009.

[22] D. K. Tam et al. “RapidMRC: Approximating L2

Miss Rate Curves on Commodity Systems for

Online Optimizations”. In: SIGPLAN Not. 44.3

(2009).

[23] L. Tang et al. “Contentiousness vs. Sensitivity:

Improving Contention Aware Runtime Systems on

Multicore Architectures”. In: EXADAPT. 2011.

[24] K. Van Craeynest et al. “Starchart: hardware and

software optimization using recursive partitioning

regression trees”. In: PACT. 2013.

[25] K. Van Craeynest et al. “Scheduling Heteroge-

neous Multi-cores Through Performance Impact

Estimation (PIE)”. In: ISCA. 2012.

[26] Y. Wang et al. “Reducing Shared Cache Con-

tention by Scheduling Order Adjustment on Com-

modity Multi-cores”. In: IPDPSW. 2011.

[27] Y. Xie and G. Loh. “Dynamic classification of pro-

gram memory behaviors in CMPs”. In: CMMSI.

2008.

[28] D. Xu et al. “On Mitigating Memory Bandwidth

Contention Through Bandwidth-aware Schedul-

ing”. In: PACT. 2010.

[29] Y. Zhou and D. Wentzlaff. “The Sharing Architec-

ture: Sub-core Configurability for IaaS Clouds”.

In: ASPLOS. 2014.

[30] S. Zhuravlev et al. “Addressing Shared Resource

Contention in Multicore Processors via Schedul-

ing”. In: ASPLOS. 2010.

[31] S. Zhuravlev et al. “Survey of Scheduling Tech-

niques for Addressing Shared Resources in Mul-

ticore Processors”. In: ACM Comput. Surv. 45.1

(2012), 4:1–4:28.

