
Combining Machine Learning and Control to Manage
Computing System Complexity and Dynamics∗

Nikita Mishra Connor Imes
University of Chicago

nmishra,ckimes@cs.uchicago.edu

John D. La�erty
Yale University

john.la�erty@yale.edu

Henry Ho�mann
University of Chicago

hankho�mann@cs.uchicago.edu

Introduction
As power and energy become �rst-order concerns for com-

puting systems, so�ware developers are increasingly tasked
with meeting multiple, o�en con�icting goals; e.g., creat-
ing responsive mobile applications that maximize ba�ery
life. Developers faced with this problem must address two
challenges: complexity and dynamics.

Complexity arises as computer architectures increasingly
expose resources to so�ware for management. Consider Sam-
sung’s recent release of the Galaxy S9+ smartphone. �is
phone came with an upgraded multicore CPU—the �rst “very
large core” in a smartphone. A tech reporter, however, found
that performance and ba�ery life were much worse than
expected because heuristics that did a good job of core and
DVFS management for the S9, worked very poorly for the
S9+ (click for link). �e S9+ is just one example of how hard-
ware complexity creates problems for so�ware: a resource
management heuristic that worked well for one system (the
S9) was extremely poor on another (the S9+).

Dynamics arise from �uctuating workloads and varying
resource availability. �us, even if so�ware developers �nd
a resource con�guration that works well in one scenario,
there is no guarantee that it will continue to meet goals
as the environment changes. A video encoder represents a
simple example. During low-motion scenes, the encoder’s
performance requirements (keeping up with the camera) are
easily met with low resource usage. In high-motion scenes,
the encoder needs more resources to produce high-quality
video. If so�ware always allocates resources for the low-
motion case, quality will su�er in times of high-motion. If
so�ware allocates for high-motion, energy (and thus ba�ery
life) is wasted during simpler scenes.

Prior Work on Complexity and Dynamics
To manage the complexity of modern processors, many

researchers have applied statistics, machine learning, or ar-
ti�cial intelligence [5, 12, 15, 31, 52, 57, 58, 66, 85].1 �ese
learning techniques are well suited to modeling high-level
application behavior—e.g., performance, power, and energy—
as a function of system resource allocation. �ese models,
1All citation numbers refer to the original paper.

*Originally Appeared as: Mishra, Connor Imes, John D. Laferty, and Henry
Hofmann. CALOREE: Learning Control for Predictable Latency and Low
Energy. 184–198., ASPLOS ’18: 2018 Architectural Support for Programming
Languages and Operating Systems, March 24–28, 2018, Williamsburg, VA

however, may be invalidated if the environment changes
su�ciently. Even reinforcement learning techniques—which
update models dynamically—are insu�cient for many de-
ployments, because they (1) provide no formal guarantees
that they will deliver the desired behavior and (2) they re-
quire so�ware developers to manually tune parameters such
as learning rate [46].

To manage computing system dynamics, a number of re-
search projects have turned to control theoretic solutions
[8, 24, 25, 30, 42, 64, 69, 74, 80, 82]. Control provides formal
guarantees that it will meet goals, if they are achievable. Per-
haps more importantly, control formalisms permit reasoning
about the precise conditions under which the goals can be
achieved [24]. Unfortunately, these guarantees are based on
bounding the computer system’s ground-truth behavior. If
models are not available—or their error cannot be bounded—
then control systems cannot be applied. �ese restrictions
make it extremely di�cult to apply control theory solutions
to general-purpose computing systems. A model may not
be available, and even if it is, models of application perfor-
mance and resource usage are o�en non-linear and non-
convex, making them ill-suited to most control techniques.
�e most successful deployment of control has thus been
in application-limited scenarios where models are relatively
easy to build, such as managing multimedia applications
[18, 19, 35, 47, 74, 80] or webservers [29, 45, 70].

Maggio et al. empirically compare a wide range of learning
and control approaches to meet application latency require-
ments with minimal energy through active resource man-
agement [46]. �eir �ndings are consistent with the above
observations. Reinforcement learning is the best choice if
no model is available, but control systems are signi�cantly
more robust given a model.

Motivation and Challenges
Intuitively, learning and control should be combined to

provide formal guarantees that a computer system will meet
its goals even in a general purpose environment with no prior
knowledge of the application to be controlled. Indeed, the
mechanisms and implementation that make this combination
work e�ciently are precisely the contributions of this paper.
In a general purpose computing environment, learning can
produce highly accurate models for new applications and
then pass those to a control system that ensures the goals
are met; this approach would combine learning’s �exibility

1

https://www.anandtech.com/show/12615/improving-exynos-9810-galaxy-s9-part-1


with control’s formal guarantees. Realizing this combination,
however, requires addressing two major challenges:
• Dividing resource management into sub-problems that

suit learning and control’s di�erent strengths.
• De�ning abstractions that e�ciently combine sub-problem

solutions, while maintaining control’s formal guarantees.

CALOREE: Combining Learning and Control

Control

Learning + Control
Performance

Po
we
r

Figure 1. Learn-
ing smoothes the con-
troller’s domain.

We address the �rst challenge
by adopting a virtualized con-
trol system, which is easily sep-
arated into learning and control
tasks. Textbook controllers man-
age physical actuators (such as
clockspeed or the number of al-
located cores) [24]. �us, apply-
ing control requires knowing the
precise relationship between a physical actuator and the
application under control—impossible in a general environ-
ment. We instead propose a virtualized control system. For
example, to control application latency, we use speedup in-
stead of absolute performance. In this way, all unpredictable
external interference is viewed as a change to a baseline la-
tency and the relative speedup is insensitive to these changes.
Learning is well-suited to modeling speedups as a function
of resource usage and �nding Pareto-optimal tradeo�s in
speedup and energy. Once the learner has found Pareto-
optimal tradeo�s the problem is convex, piece-wise linear,
and well-suited to adaptive control solutions which guar-
antee the required speedup even in dynamic environments.
Figure 1 illustrates the intuition: processor complexity cre-
ates local optima, where control solutions can get stuck;
but learning �nds true optimal tradeo�s—“smoothing”—the
problem, allowing control techniques to handle dynamics
while providing globally optimal resource allocations.

We address the second challenge by de�ning a two-part
interface between learning and control that maintains con-
trol’s formal guarantees. �e �rst part is a performance hash
table (PHT) that stores the piecewise-linear learned model.
�e PHT allows the controller to �nd the resource alloca-
tion that meets a desired speedup with minimal energy and
requires only constant (average case) access time. �e in-
terface’s second part is the learned variance. Knowing this
value, the controller automatically adjusts its internals to
maintain formal guarantees even though the speedup is mod-
eled by a noisy learning mechanism at runtime, rather than
directly measured o�ine—as in traditional control design.

�us, we propose a general methodology where an abstract
control system is customized at runtime by a learner. We
refer to this approach as CALOREE2. Unlike previous work
on control systems that required numerous user-speci�ed
models and parameters [8, 30, 42, 64, 82], CALOREE builds

2Control And Learning for Optimal Resource Energy E�ciency

models and tunes parameters automatically; i.e., it requires
no user-level inputs other than latency requirements.

Results Summary
We evaluate CALOREE by pairing a number of di�erent

learners with our virtualized control system to manage appli-
cation latency on a heterogeneous ARM big.LITTLE system.
We compare to state-of-the-art learning (including polyno-
mial regression [15, 66], collaborative �ltering—i.e., the Net-
�ix algorithm[3, 12]—and a hierarchical Bayesian model [52])
and control (including proportional-integral-derivative [24]
and adaptive, or self-tuning [41]) controllers. We also com-
pare with a naive version of CALOREE that does not account
for possible errors in the learner; i.e., it assumes learned
models are ground truth. We set latency goals for bench-
mark applications and measure both the percentage of time
the latency requirements are violated and the energy. We
test both single-app—where an application runs alone—and
multi-app environments—where background applications
enter the system and compete for resources.

Our paper shows that CALOREE achieves the most reli-
able latency and best energy savings. In the single-app case,
the best prior technique misses 10% of deadlines on average,
while CALOREE misses only 6%. All other approaches miss
100% of deadlines for at least one application, but CALOREE
misses, at most, 11% of deadlines. In the multi-app case,
the best prior approach averages 40% deadline misses, but
CALOREE misses just 20% (we note that not all goals can
be met in this second scenario). We evaluate energy by
comparing to optimal energy assuming a perfect model of
application and system. In the single-app case, the best prior
approach averages 18% more energy consumption than opti-
mal, but CALOREE consumes only 4% more. In the multi-app
case, the best prior approach averages 28% more energy than
optimal, while CALOREE consumes just 6% more. Critically,
the naive version of CALOREE is o�en no be�er than prior
approaches, showing the importance of not just constructing
the models, but also incorporating possible error into the
control design.

Contributions
In summary, CALOREE is the �rst work to use learning to

customize control systems at runtime, ensuring application
latency—both formally and empirically—with no prior knowl-
edge of the controlled application. While the approach was
originally intended to manage latency with minimal energy,
the ideas are general and can be trivially extended to other
goals and tradeo�s. CALOREE’s contributions are:
• Separation of resource management into (1) learning com-

plicated resource interactions and (2) controlling a virtual
goal that is later mapped into speci�c resource se�ings.
• A generalized control design usable with multiple learners.
• A method for guaranteeing latency using learned—rather

than measured—models.

2



CALOREE’s Potential Impact
While we originally demonstrated CALOREE on an ARM

big.LITTLE architecture (running Linux) we believe CALOREE
represents a general approach to resource—and even con�g-
uration—management, as all such management systems will
be forced to deal with complexity and dynamics. In addition,
the concept of marrying a control system to a learner has
potential to make learning-based approaches much more ro-
bust and predictable. We address these two potential impacts
(general con�guration management and enhancing learning
systems) in the remainder of this document. We note that
the citation for a potential test of time award is the same as
the footnote listed on the �rst page of this document.

Generalized Con�guration Management
A resource allocation can simply be viewed as a con�gura-

tion. Many so�ware and hardware systems are con�gurable,
but deployed systems o�en rely on heuristic con�guration se-
lection. �ese heuristics must be tuned by so�ware develop-
ers and are extremely bri�le. CALOREE provides more reli-
able performance (fewer missed deadlines) and be�er energy
consumption (closer to optimal) than prior machine learn-
ing and control approaches. At the same time, CALOREE’s
only parameter is the desired operating point for the man-
aged application. By eliminating user-speci�ed parameters,
CALOREE should be much more robust than heuristic-based
approaches that must be tuned for each individual deploy-
ment and may have no suitable static se�ing.

To demonstrate this robustness, we have ported CALOREE
to three new environments. First, we repeated similar ex-
periments to the original paper on a Linux/x86 server, again
�nding that CALOREE provides the most reliable perfor-
mance and greatest energy savings. As both the ARM sys-
tem from the original paper and this x86 system run Linux,
these results are achieved with the exact same code—the
only changes are to con�guration �les specifying available
resources. We then ported CALOREE to Android to test
on the Galaxy S9+. �e only code changes required here
were Android speci�c resource monitoring and actuation—
the math and methodology are the same. While we have
only had a short time to test the S9+ we have measured web-
browsing latency and found that CALOREE again provides
more reliable performance with near-optimal energy while
far outperforming even the best manual tuning of Samsung’s
scheduler.

Finally, in a DARPA collaboration with MIT, Rice, and
UT Austin, we used CALOREE to dynamically con�gure an
embedded video encoder. In this case, CALOREE con�gures
application variants that trade performance for image quality.
For the DARPA demo, a human adversary causes system (in-
cluding fan and core) failures. When resources are available,
CALOREE produces the highest quality video. When re-
sources fail, CALOREE sacri�ces accuracy to maintain frame
rate. �e same code from the original paper was used in this

demo, the only di�erence is the speci�cation of application-
level alternatives instead of system resources. A video of the
demo in action is available: h�ps://youtu.be/3PYY6f92muY.

Enhancing Learning-based Management
CALOREE makes learning-based con�guration manage-

ment much more robust without requiring redesign of exist-
ing learning approaches. CALOREE works with any learner
that produces predictions of application behavior as a func-
tion of system con�guration. Our original paper tested four
such learners and found that the combination of learning
and control was always be�er than learning alone.

While the above is a good empirical result, there are foun-
dational reasons that these results should hold in general.
CALOREE does not simply bolt a controller to a learner, but
instead automatically tunes its internal control equations to
the learner’s output. For example, the controller’s pole is a
key parameter. Under traditional control designs, this pole
is set by the human designer to govern the control system’s
dynamic response and guarantee convergence to the goal.
Rather than requiring a human to tune this key parameter,
CALOREE automatically sets it based on the ratio of the min-
imum and maximum estimated speedups and the learner’s
con�dence interval. �us, CALOREE’s methodology for com-
bining learning and control automatically compensates for
uncertainty in the learner’s models.

�e only requirements for the learner are that: (1) it pro-
duces a piecewise-linear model relating con�gurations to
behavior and (2) provides con�dence intervals. Under these
assumptions, CALOREE formally guarantees that the appli-
cation will meet its goals. �e di�erence from traditional
control is that CALOREE provides probabilistic (as a function
of the con�dence interval) instead of absolute guarantees.
(Learners which cannot provide con�dence intervals can
still be used with CALOREE—and were tested in the origi-
nal paper—but without these values the formal guarantees
are lost). �us, there is both a theoretical and empirical ba-
sis to believe that CALOREE’s approach will improve any
learning-based con�guration management system.

Summary of Impact
CALOREE creates more robust and e�cient computing

systems through intelligent con�guration management. CAL-
OREE includes a rigorous methodology for designing and
deploying computing systems that are aware of high-level
goals and automatically adapt their behavior to ensure those
goals are met in complex, dynamic environments. Where
the current state-of-the-practice involves ad hoc, heuristic
techniques, CALOREE addresses multi-objective optimiza-
tion in a fundamental way. CALOREE is portable, formally
analyzable, and easily re-purposed to address new problems
as they emerge. CALOREE is more robust and e�cient than
either learning or control alone, adapting to meet multiple
goals while requiring less programmer e�ort.

3

https://youtu.be/3PYY6f92muY


References
[1] Jason Ansel, Maciej Pacula, Yee Lok Wong, Cy Chan,

Marek Olszewski, Una-May O’Reilly, and Saman Ama-
rasinghe. 2012. Siblingrivalry: online autotuning
through local competitions. In CASES.

[2] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski,
Alan Edelman, and Saman Amarasinghe. 2011. Lan-
guage and compiler support for auto-tuning variable-
accuracy algorithms. In CGO.

[3] R. M. Bell, Y. Koren, and C. Volinsky. 2008. �e BellKor
2008 solution to the Net�ix Prize. Technical Report.
ATandT Labs.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. �e
PARSEC Benchmark Suite: Characterization and Archi-
tectural Implications. In PACT.

[5] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez.
2008. Coordinated management of multiple interacting
resources in chip multiprocessors: A machine learning
approach. In MICRO.

[6] Giorgio C Bu�azzo, Giuseppe Lipari, Luca Abeni, and
Marco Caccamo. 2006. So� Real-Time Systems: Pre-
dictability vs. E�ciency: Predictability vs. E�ciency.
Springer.

[7] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W. Shea�er, Sang-Ha Lee, and Kevin Skadron.
2009. Rodinia: A Benchmark Suite for Heterogeneous
Computing. In IISWC.

[8] Jian Chen and Lizy Kurian John. 2011. Predictive coor-
dination of multiple on-chip resources for chip multi-
processors. In ICS.

[9] Jian Chen, Lizy Kurian John, and Dimitris Kaseridis.
2011. Modeling Program Resource Demand Using In-
herent Program Characteristics. SIGMETRICS Perform.
Eval. Rev. 39, 1 (June 2011), 1–12.

[10] Ryan Cochran, Can Hankendi, Ayse K. Coskun, and
Sherief Reda. 2011. Pack & Cap: adaptive DVFS and
thread packing under power caps. In MICRO.

[11] Sarah Dean, Horia Mania, Nikolai Matni, Benjamin
Recht, and Stephen Tu. 2017. On the Sample Complexity
of the Linear �adratic Regulator. Technical Report
1710.01688v1. arXiv.

[12] Christina Delimitrou and Christos Kozyrakis. 2013.
Paragon: QoS-aware Scheduling for Heterogeneous
Datacenters. In ASPLOS.

[13] Christina Delimitrou and Christos Kozyrakis. 2014.
�asar: Resource-e�cient and QoS-aware Cluster Man-
agement. In ASPLOS.

[14] Zhaoxia Deng, Lunkai Zhang, Nikita Mishra, Henry
Ho�mann, and Fred Chong. 2017. Memory Cocktail
�erapy: A General Learning-Based Framework to Op-
timize Dynamic Tradeo�s in NVM. In MICRO.

[15] Christophe Dubach, Timothy M. Jones, Edwin V.
Bonilla, and Michael F. P. O’Boyle. 2010. A Predic-
tive Model for Dynamic Microarchitectural Adaptivity

Control. In MICRO.
[16] Antonio Filieri, Henry Ho�mann, and Martina Maggio.

2014. Automated design of self-adaptive so�ware with
control-theoretical formal guarantees. In ICSE.

[17] Antonio Filieri, Henry Ho�mann, and Martina Mag-
gio. 2015. Automated multi-objective control for self-
adaptive so�ware design. In FSE.

[18] J. Flinn and M. Satyanarayanan. 1999. Energy-aware
adaptation for mobile applications. In SOSP.

[19] Jason Flinn and M. Satyanarayanan. 2004. Managing
ba�ery lifetime with energy-aware adaptation. ACM
Trans. Comp. Syst. 22, 2 (May 2004).

[20] Rodrigo Fonseca, Prabal Du�a, Philip Levis, and Ion
Stoica. 2008. �anto: Tracking Energy in Networked
Embedded Systems. In OSDI.

[21] Andrew Gelman, John B Carlin, Hal S Stern, David B
Dunson, Aki Vehtari, and Donald B Rubin. 2013.
Bayesian data analysis. CRC press.

[22] Ashvin Goel, David Steere, Calton Pu, and Jonathan
Walpole. 1998. SWiFT: A Feedback Control and Dy-
namic Recon�guration Toolkit. In 2nd USENIXWindows
NT Symposium.

[23] Ma�hew Halpern, Yuhao Zhu, and Vijay Janapa Reddi.
[n. d.]. Mobile CPU’s rise to power: �antifying the
impact of generational mobile CPU design trends on
performance, energy, and user satisfaction. In HPCA.

[24] Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury. 2004. Feedback Control of Computing
Systems. John Wiley & Sons.

[25] Henry Ho�mann. 2015. JouleGuard: energy guarantees
for approximate applications. In SOSP.

[26] Henry Ho�mann, Anant Agarwal, and Srinivas De-
vadas. 2012. Selecting Spatiotemporal Pa�erns for De-
velopment of Parallel Applications. IEEE Trans. Parallel
Distrib. Syst. 23, 10 (2012).

[27] Henry Ho�mann, Jonathan Eastep, Marco D. Santam-
brogio, Jason E. Miller, and Anant Agarwal. 2010. Ap-
plication Heartbeats: a generic interface for specifying
program performance and goals in autonomous com-
puting environments. In ICAC.

[28] Henry Ho�mann, Jim Holt, George Kurian, Eric Lau,
Martina Maggio, Jason E. Miller, Sabrina M. Neu-
man, Mahmut Sinangil, Yildiz Sinangil, Anant Agarwal,
Anantha P. Chandrakasan, and Srinivas Devadas. 2012.
Self-aware computing in the Angstrom processor. In
DAC.

[29] T. Horvath, T. Abdelzaher, K. Skadron, and Xue Liu.
2007. Dynamic Voltage Scaling in Multitier Web Servers
with End-to-End Delay Control. Computers, IEEE Trans-
actions on 56, 4 (2007).

[30] Connor Imes, David H. K. Kim, Martina Maggio, and
Henry Ho�mann. 2015. POET: A Portable Approach to
Minimizing Energy Under So� Real-time Constraints.
In RTAS.

4



[31] Engin Ipek, Onur Mutlu, José F. Martı́nez, and Rich
Caruana. 2008. Self-Optimizing Memory Controllers:
A Reinforcement Learning Approach. In ISCA.

[32] Syed Muhammad Zeeshan Iqbal, Yuchen Liang, and
Hakan Grahn. 2010. ParMiBench - An Open-Source
Benchmark for Embedded Multiprocessor Systems.
IEEE Comput. Archit. Le�. 9, 2 (July 2010).

[33] C. Karamanolis, M. Karlsson, and X. Zhu. 2005. Design-
ing controllable computer systems. In HotOS. Berkeley,
CA, USA.

[34] David H. K. Kim, Connor Imes, and Henry Ho�mann.
2015. Racing and Pacing to Idle: �eoretical and Em-
pirical Analysis of Energy Optimization Heuristics. In
CPSNA.

[35] Minyoung Kim, Mark-Oliver Stehr, Carolyn Talco�,
Nikil Du�, and Nalini Venkatasubramanian. 2013.
xTune: A Formal Methodology for Cross-layer Tun-
ing of Mobile Embedded Systems. ACM Trans. Embed.
Comput. Syst. 11, 4 (Jan. 2013).

[36] Etienne Le Sueur and Gernot Heiser. 2011. Slow Down
or Sleep, �at is the �estion. In Proceedings of the
2011 USENIX Annual Technical Conference. Portland,
OR, USA.

[37] B.C. Lee, J. Collins, Hong Wang, and D. Brooks. 2008.
CPR: Composable performance regression for scalable
multiprocessor models. In MICRO.

[38] Benjamin C. Lee and David Brooks. 2008. E�ciency
Trends and Limits from Comprehensive Microarchitec-
tural Adaptivity. In ASPLOS.

[39] Benjamin C. Lee and David M. Brooks. 2006. Accurate
and E�cient Regression Modeling for Microarchitec-
tural Performance and Power Prediction. In ASPLOS.

[40] Ma�hew Lentz, James Li�on, and Bobby Bha�acharjee.
2015. Drowsy Power Management. In SOSP.

[41] W.S. Levine. 2005. �e control handbook. CRC Press.
[42] Baochun Li and K. Nahrstedt. 1999. A control-based

middleware framework for quality-of-service adapta-
tions. IEEE Journal on Selected Areas in Communications
17, 9 (1999).

[43] J. Li and J.F. Martinez. 2006. Dynamic power-
performance adaptation of parallel computation on chip
multiprocessors. In HPCA.

[44] Lennart Ljung. 1999. System Identi�cation: �eory for
the User. Prentice Hall PTR, Upper Saddle River, NJ,
USA.

[45] C. Lu, Y. Lu, T.F. Abdelzaher, J.A. Stankovic, and S.H.
Son. 2006. Feedback Control Architecture and Design
Methodology for Service Delay Guarantees in Web
Servers. IEEE TPDS 17, 9 (September 2006), 1014–1027.

[46] Martina Maggio, Henry Ho�mann, Alessandro V. Pa-
padopoulos, Jacopo Panerati, Marco D. Santambrogio,
Anant Agarwal, and Alberto Leva. 2012. Comparison
of Decision-Making Strategies for Self-Optimization

in Autonomic Computing Systems. ACM Trans. Au-
ton. Adapt. Syst. 7, 4, Article 36 (Dec. 2012), 32 pages.
h�ps://doi.org/10.1145/2382570.2382572

[47] M. Maggio, H. Ho�mann, M. D. Santambrogio, A. Agar-
wal, and A. Leva. 2013. Power Optimization in Embed-
ded Systems via Feedback Control of Resource Alloca-
tion. IEEE Transactions on Control Systems Technology
21, 1 (Jan 2013).

[48] Martina Maggio, Alessandro Vi�orio Papadopoulos,
Antonio Filieri, and Henry Ho�mann. 2017. Automated
Control of Multiple So�ware Goals Using Multiple Ac-
tuators. In ESEC/FSE.

[49] John D. McCalpin. 1995. Memory Bandwidth and Ma-
chine Balance in Current High Performance Computers.
IEEE TCCA Newsle�er (Dec. 1995), 19–25.

[50] Nikita Mishra. 2017. Statistical Methods for Improving
Dynamic Scheduling and Resource Usage in Computing
Systems. Ph.D. Dissertation. h�ps://search.proquest.
com/docview/1928485902?accountid=14657

[51] Nikita Mishra, Connor Imes, Huazhe Zhang, John D
La�erty, and Henry Ho�mann. 2016. Big Data for LIT-
TLE Cores: Combining Learning and Control for Mobile
Energy E�ciency. Technical Report TR-2016-10. Uni-
versity of Chicago, Dept. of Comp. Sci.

[52] Nikita Mishra, Huazhe Zhang, John D. La�erty, and
Henry Ho�mann. 2015. A Probabilistic Graphical
Model-based Approach for Minimizing Energy Under
Performance Constraints. In ASPLOS.

[53] Akihiko Miyoshi, Charles Lefurgy, Eric Van Hensber-
gen, Ram Rajamony, and Raj Rajkumar. 2002. Critical
Power Slope: Understanding the Runtime E�ects of
Frequency Scaling. In ICS.

[54] Carl N Morris. 1983. Parametric empirical Bayes infer-
ence: theory and applications. J. Amer. Statist. Assoc.
78, 381 (1983), 47–55.

[55] Adam J. Oliner, Anand P. Iyer, Ion Stoica, Eemil Lager-
spetz, and Sasu Tarkoma. 2013. Carat: Collaborative
Energy Diagnosis for Mobile Devices. In Proceedings of
the 11th ACMConference on Embedded Networked Sensor
Systems (SenSys ’13). ACM, New York, NY, USA, Article
10, 14 pages. h�ps://doi.org/10.1145/2517351.2517354

[56] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on
Transfer Learning. IEEE Trans. on Knowl. and Data Eng.
22, 10 (Oct. 2010), 1345–1359. h�ps://doi.org/10.1109/
TKDE.2009.191

[57] Paula Petrica, Adam M. Izraelevitz, David H. Albonesi,
and Christine A. Shoemaker. 2013. Flicker: A Dynami-
cally Adaptive Architecture for Power Limited Multi-
core Systems. In ISCA.

[58] Dmitry Ponomarev, Gurhan Kucuk, and Kanad Ghose.
2001. Reducing Power Requirements of Instruction
Scheduling �rough Dynamic Allocation of Multiple
Datapath Resources. In MICRO.

5

https://doi.org/10.1145/2382570.2382572
https://search.proquest.com/docview/1928485902?accountid=14657
https://search.proquest.com/docview/1928485902?accountid=14657
https://doi.org/10.1145/2517351.2517354
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191


[59] Raghavendra Pothukuchi, Amin Ansari, Petros Voul-
garis, and Josep Torrellas. 2016. Using Multiple Input,
Multiple Output Formal Control to Maximize Resource
E�ciency in Architectures. In ISCA.

[60] Ramya Raghavendra, Parthasarathy Ranganathan, Van-
ish Talwar, Zhikui Wang, and Xiaoyun Zhu. 2008. No
”power” struggles: coordinated multi-level power man-
agement for the data center. In ASPLOS.

[61] R. Rajkumar, C. Lee, J. Lehoczky, and Dan Siewiorek.
1997. A resource allocation model for QoS management.
In RTSS.

[62] Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip
Levis, David Mazières, and Nickolai Zeldovich. 2011.
Energy Management in Mobile Devices with the Cinder
Operating System. In EuroSys.

[63] Muhammad Husni Santriaji and Henry Ho�mann. 2016.
GRAPE: Minimizing energy for GPU applications with
performance requirements. In MICRO.

[64] Akbar Shari�, Shekhar Srikantaiah, Asit K. Mishra,
Mahmut Kandemir, and Chita R. Das. 2011. METE:
meeting end-to-end QoS in multicores through system-
wide resource management. In SIGMETRICS.

[65] Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas,
Xiao Zhang, and Zhuan Chen. 2013. Power Contain-
ers: An OS Facility for Fine-grained Power and Energy
Management on Multicore Servers. SIGPLAN Not. 48, 4
(March 2013), 65–76. h�ps://doi.org/10.1145/2499368.
2451124

[66] David C. Snowdon, Etienne Le Sueur, Stefan M. Pe�ers,
and Gernot Heiser. 2009. Koala: A Platform for OS-level
Power Management. In EuroSys.

[67] Michal Sojka, Pavel Pı́sa, Dario Faggioli, Tommaso
Cucino�a, Fabio Checconi, Zdenek Hanzálek, and
Giuseppe Lipari. 2011. Modular so�ware architecture
for �exible reservation mechanisms on heterogeneous
resources. Journal of Systems Architecture 57, 4 (2011).

[68] Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi.
2013. Holistic Run-time Parallelism Management for
Time and Energy E�ciency. In ICS.

[69] David C. Steere, Ashvin Goel, Joshua Gruenberg, Dy-
lan McNamee, Calton Pu, and Jonathan Walpole. 1999.
A Feedback-driven Proportion Allocator for Real-rate
Scheduling. In Proceedings of the �ird Symposium on
Operating Systems Design and Implementation (OSDI
’99). USENIX Association, Berkeley, CA, USA, 145–158.
h�p://dl.acm.org/citation.cfm?id=296806.296820

[70] Q. Sun, G. Dai, and W. Pan. 2008. LPV Model and Its
Application in Web Server Performance Control. In
ICCSSE.

[71] G. Tesauro. 2007. Reinforcement Learning in Auto-
nomic Computing: A Manifesto and Case Studies. IEEE
Internet Computing 11 (2007). Issue 1.

[72] Michel Tokic. 2010. Adaptive ϵ-Greedy Exploration in
Reinforcement Learning Based on Value Di�erences.

In KI.
[73] Stephen Tu and Benjamin Recht. 2017. Least-Squares

Temporal Di�erence Learning for the Linear �adratic
Regulator. Technical Report 1712.08642v1. arXiv.

[74] Vibhore Vardhan, Wanghong Yuan, Albert F. Har-
ris III, Sarita V. Adve, Robin Kravets, Klara Nahrst-
edt, Daniel Grobe Sachs, and Douglas L. Jones. 2009.
GRACE-2: integrating �ne-grained application adapta-
tion with global adaptation for saving energy. IJES 4, 2
(2009).

[75] Greg Welch and Gary Bishop. [n. d.]. An Introduction
to the Kalman Filter. Technical Report TR 95-041. UNC
Chapel Hill, Department of Computer Science.

[76] Jonathan A. Winter, David H. Albonesi, and Christine A.
Shoemaker. 2010. Scalable thread scheduling and global
power management for heterogeneous many-core ar-
chitectures. In PACT.

[77] Qiang Wu, Philo Juang, Margaret Martonosi, and Dou-
glas W. Clark. 2004. Formal online methods for volt-
age/frequency control in multiple clock domain micro-
processors. In ASPLOS.

[78] Weidan Wu and Benjamin C Lee. 2012. Inferred models
for dynamic and sparse hardware-so�ware spaces. In
Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM
International Symposium on. IEEE, 413–424.

[79] Joshua J. Yi, David J. Lilja, and Douglas M. Hawkins.
2003. A Statistically Rigorous Approach for Improving
Simulation Methodology. In HPCA.

[80] Wanghong Yuan and Klara Nahrstedt. 2003. Energy-
e�cient so� real-time CPU scheduling for mobile mul-
timedia systems. In SOSP.

[81] Huazhe Zhang and Henry Ho�mann. 2016. Maximiz-
ing Performance Under a Power Cap: A Comparison
of Hardware, So�ware, and Hybrid Techniques. In AS-
PLOS.

[82] R. Zhang, C. Lu, T.F. Abdelzaher, and J.A. Stankovic.
2002. ControlWare: A middleware architecture for
Feedback Control of So�ware Performance. In ICDCS.

[83] Xiao Zhang, Rongrong Zhong, Sandhya Dwarkadas,
and Kai Shen. 2012. A Flexible Framework for
�ro�ling-Enabled Multicore Management (TEMM).
In ICPP.

[84] Yanqi Zhou, Henry Ho�mann, and David Wentzla�.
2016. CASH: Supporting IaaS Customers with a Sub-
core Con�gurable Architecture. In ISCA.

[85] Yuhao Zhu and Vijay Janapa Reddi. 2013. High-
performance and energy-e�cient mobile web browsing
on big/li�le systems. In HPCA.

6

https://doi.org/10.1145/2499368.2451124
https://doi.org/10.1145/2499368.2451124
http://dl.acm.org/citation.cfm?id=296806.296820

	References

