
JouleGuard: Energy Guarantees for Approximate Applications

Henry Hoffmann
University of Chicago, Department of Computer Science

hankhoffmann@cs.uchicago.edu

Abstract
Energy consumption limits battery life in mobile devices and
increases costs for servers and data centers. Approximate
computing addresses energy concerns by allowing applica-
tions to trade accuracy for decreased energy consumption.
Approximation frameworks can guarantee accuracy or per-
formance and generally minimize energy; however, they pro-
vide no energy guarantees. Such guarantees would be bene-
ficial for users who have a fixed energy budget and want to
maximize application accuracy within that budget. We ad-
dress this need by presenting JouleGuard: a runtime con-
trol system that coordinates approximate applications with
system resource usage to provide control theoretic formal
guarantees of energy consumption, while maximizing accu-
racy. We implement JouleGuard and test it on three differ-
ent platforms (a mobile, tablet, and server) with eight dif-
ferent approximate applications created from two different
frameworks. We find that JouleGuard respects energy bud-
gets, provides near optimal accuracy, adapts to phases in ap-
plication workload, and provides better outcomes than appli-
cation approximation or system resource adaptation alone.
JouleGuard is general with respect to the applications and
systems it controls, making it a suitable runtime for a num-
ber of approximate computing frameworks.

Categories and Subject Descriptors D.4.8 [Operating
Systems]: Performance—Measurements, Monitors; I.2.8
[Problem Solving, Control Methods, Search]: Control The-
ory

General Terms Design, Experimentation, Measurement,
Performance

Keywords Adaptive software, control theory, dynamic
systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SOSP’15, October 4–7, 2015, Monterey, CA.
Copyright c© 2015 ACM 978-1-4503-3834-9/15/10. . . $15.00.
http://dx.doi.org/10.1145/2815400.2815403

1. Introduction
Energy consumption is crucial to the full spectrum of com-
puting systems from mobile, where it determines battery life,
to supercomputing, where it affects costs. Energy usage has
been confronted at the application-level through approxi-
mate computing, which trades accuracy for reduced resource
usage (see Sec. 6.1 for examples). At the system-level, en-
ergy has been confronted through energy-aware systems that
trade performance for reduced resource usage (see Sec. 6.2
for examples). Cross-layer approaches coordinate applica-
tion and system (see Sec. 6.3 for examples).

The combination of approximate applications and energy-
aware systems creates a huge design space characterized by
three features: 1) the level at which tradeoffs are made (ap-
plication, system, or both), 2) the properties traded (accu-
racy, performance, energy), and 3) the objectives (to min-
imize/maximize versus provide guarantees). For example,
Green [5] and EnerJ [53] are application-level approaches
that guarantee accuracy while minimizing energy consump-
tion. Several resource managers provide performance guar-
antees (for real-time or QoS) while minimizing energy con-
sumption [10, 23, 26, 27, 37, 43, 64]. Cross-layer approaches
coordinate both application and system to achieve perfor-
mance guarantees with greater energy savings than can be
achieved by either alone [33, 36, 63].

One critical point currently unaddressed in this design
space is providing energy guarantees while maximizing ac-
curacy. Such an approach would help the many users who
do not need minimal energy, but instead want a guarantee
that energy consumption will not hit a critical threshold. For
example, few mobile users want to minimize energy – they
need guarantees that their battery will last until they return to
a charger. Ideally, the system would maximize accuracy (i.e.,
user-experience) while ensuring users only run out of charge
at the very time they reach their charger. Energy guarantees
are analogous to real-time and quality-of-service constraints.
When meeting such timing guarantees, the OS does not max-
imize performance, but instead schedules jobs to complete at
the deadline, ensuring the timing and minimizing the impact
on the rest of the system [61]. Similarly, providing energy
guarantees for approximate computations should minimize
the effect on the result’s accuracy.

1.1 Energy Guarantees with JouleGuard
This paper meets the challenge of providing energy guaran-
tees for approximate applications by presenting JouleGuard.
JouleGuard takes an energy goal and dynamically configures
application and system to ensure that the goal is met and
application accuracy is near optimal. The key insight is that
this complicated multidimensional optimization problem can
be split into two sub-problems: maximizing system energy
efficiency and dynamically managing application accura-
cy/performance tradeoffs. Energy can be affected by mak-
ing the system more efficient or speeding up the application.
Thus, JouleGuard first adjusts resource usage to maximize
energy efficiency. Any additional speedup required to meet
the energy goal comes from carefully tuning application ac-
curacy. Because both sub-problems may alter performance,
they are dependent – each affects the other. JouleGuard,
however, provides formal, control-theoretic [17], guarantees
that the energy goal will be respected, despite the depen-
dence. These guarantees come from a novel combination
of machine learning and control theoretic techniques. Joule-
Guard is general with respect to both the approximate ap-
plications and energy-aware systems it coordinates, mak-
ing it compatible with multiple approximate computing ap-
proaches and system resources.

1.2 Summary of Results
We implement JouleGuard in C and test it on three hardware
platforms (a heterogeneous mobile processor, a tablet, and
a server) running eight different approximate applications
(five built with PowerDial [25] and three built with Loop
Perforation[56]). Our results show:
• Low Overhead: JouleGuard adds only small overhead,

in terms of both energy and performance. (See Sec. 5.1).
• Stability and Convergence: JouleGuard quickly con-

verges to a given energy goal with low error. On aver-
age, across all applications, all machines, and a number
of energy goals, JouleGuard maintains energy within a
few percent of the goal. (See Sec. 5.3.)

• Optimality: JouleGuard converges to the energy goals
with near optimal accuracy. On average, for all appli-
cations, systems and goals, JouleGuard is within a few
percent of true optimal accuracy (see Sec. 5.4.) Joule-
Guard provides greater accuracy than the best that could
be achieved through application approximation or system
resource allocation alone (see Sec. 5.5.)

• Responsiveness: JouleGuard quickly reacts to applica-
tion phases, automatically increasing accuracy whenever
the application workload allows. (See Sec. 5.6.)

1.3 Contributions
This paper makes the following contributions:
• It presents a case for providing energy guarantees.
• Demonstration that maximizing accuracy on an energy

budget can be split into two sub-problems: 1) finding the

most energy-efficient system configuration and 2) tun-
ing application performance to provide additional energy
savings while maximizing accuracy.

• A machine-learning solution to maximizing energy effi-
ciency (Sec. 3.2) and a control theoretic solution to man-
aging application performance (Sec. 3.3).

• Formal analysis that the runtime is robust and converges
to the energy goals despite the inherent dependence be-
tween application and system (Sec. 3.4).

• Empirical evaluation of JouleGuard on multiple real sys-
tems with different applications (Sec. 5).

To the best of our knowledge, this is the first cross-layer ap-
proach that provides formal guarantees of energy consump-
tion while maximizing accuracy. The rest of this paper is or-
ganized as follows. Sec. 2 presents an example of maximiz-
ing search accuracy on an energy budget. Sec. 3 discusses
JouleGuard’s design and formal guarantees. Sec. 4 describes
the applications and systems used to evaluate JouleGuard
in Sec. 5. Sec. 6 compares JouleGuard to existing work in
approximate applications, energy-aware systems, and cross-
layer approaches. Sec. 7 concludes.

2. Motivation
This section demonstrates the challenges of maximizing ac-
curacy on an energy budget and builds intuition for the for-
mal analysis to follow. We consider document search using
an approximate version of the open-source swish++ search
engine [60], which varies the number of documents it re-
turns per query [25]. We run the search engine on a server
platform which supports several configurations controlling
tradeoffs between power and performance.

We configure swish++ as a web server, and deploy it
on our system with 32 threads1. We measure search perfor-
mance and the total system power consumption with the ap-
plication in its default (full accuracy) configuration using all
system resources (see Sec. 4 for a detailed description of
the system). In this default configuration, swish++ processes
3100 queries per second (qps) at an average power consump-
tion of 280 Watts, or 0.09 Joules per query.

For this example, we want to reduce energy consumption
by 1/3 to 0.06 Joules per query (the full evaluation tests a
wide range of energy goals). We could achieve this energy
with a 50% performance increase, a 33% power decrease,
or by some combination of the two. The primary challenge
is determining which combination will result in the highest
application accuracy.

We are not aware of any existing system that provides
overall system energy guarantees while maximizing accu-
racy. It is tempting, then, to start with existing approaches

1 We use public domain books from Project Gutenberg as our search docu-
ments. For search queries, we construct a dictionary of all words present in
the documents, excluding stop words, and select words at random following
a power law distribution. This is the same experimental setup used in prior
work to test a variable accuracy version of swish++ [25].

0.02
0.04
0.06
0.08
0.10
0.12

E
ne

rg
y/

Q
ue

ry
(J

ou
le

s)
Sys − only App − only Uncoord JouleGuard

0 2 4 6 8 10

20
40
60
80

100

time (ms)

R
es

ul
ts

R
et

ur
ne

d
(%

)

Figure 1. Different approaches to meeting and energy goal
for the swish++ search engine.

that provide other guarantees and see if small changes can
provide energy guarantees. In this section, we first modify
an existing system-level approach, then an application-level
approach. We next deploy an application and system-level
approach simultaneously. All are found unsatisfactory for
various reasons, so the final section previews JouleGuard.
The behavior of all four approaches is illustrated in Fig. 1.

2.1 System-level Approach
The system can change swish++’s resource allocation to
reduce energy consumption and a number of system-level
approaches have been proposed [22, 23, 27, 43, 51, 57, 65,
68]. Among these, Cinder [51] comes closest to meeting
our needs as it provides energy guarantees for individual
system components. It is a user’s responsibility, however,
to request energy from individual components such that the
total system energy respects the guarantee. To provide an
overall system energy guarantee users must know precisely
how much energy to request from each component and how
much performance they will get from that combination. To
determine the best overall configuration on our system, we
must search the entire configuration space to determine if
there is a combination of cores, clockspeed, hyperthreading,
and memory controllers that meets the energy goal. (For
more detail on the difficulty of finding the most energy
efficient configuration for an application on this system,
see Sec. 4.) Using the configuration found by brute force,
swish++ processes 1750 qps at a cost of 125 Watts, or 0.07
Joules per query. This value is 20% higher than the goal,
although this system-level approach results in no accuracy
loss (as shown in Fig. 1).

The system-level approach has two drawbacks. First and
foremost, it did not meet the goal. By itself, the system
simply cannot reduce energy consumption to 0.06 Joules
per query. Second, obtaining any energy reduction requires
a tremendous knowledge of the system to request the best
combination of different components. In this example, we

exhaustively searched the space. In practice, we will need a
more intelligent way to determine the system configuration.

2.2 Application-level Approach
Finding the system-level approach insufficient for our needs,
we turn to approximate applications. Several application-
level frameworks trade accuracy for other benefits [1, 5,
25, 53, 58]. None provide formal energy guarantees, but
PowerDial guarantees performance [25]. We can use this
performance guarantee, plus the knowledge of the system’s
default power consumption to meet our energy goal. We tell
PowerDial to operate at 4700 qps knowing the default power
is 280 Watts. Doing so, we obtain 0.06 Joules per query –
exactly on target – but at a high cost of accuracy loss. On
average, each query returns 83% fewer results.

2.3 Uncoordinated Application and System
The application-level approach met the energy goal, but with
high accuracy loss. The system-level approach shows there
are more energy-efficient system configurations. It is tempt-
ing, then to combine these approaches and meet the energy
goal by decreasing system power and increasing application
performance. A straightforward approach uses the applica-
tion and system-level solutions concurrently, but without any
communication between the two.

The problem with this uncoordinated approach is that
both the application and system act without knowledge of
each other. Prior work demonstrates that uncoordinated de-
ployment of adaptive systems leads to instability and oscil-
latory behavior, even when the individual adaptive compo-
nents are provably well-behaved [18, 20]. Indeed, this os-
cillatory behavior is demonstrated for the uncoordinated ap-
proach in Fig. 1. This oscillatory behavior results in an av-
erage performance of 2080 qps, an average power of 147
Watts, and an average return of 81% fewer results than the
default. Rather than improving over application or system
alone, the uncoordinated combination achieves the same en-
ergy efficiency as the system only approach with an accuracy
loss close to the application-only approach.

The intuition behind the oscillatory behavior is the fol-
lowing. Both the application and system reason about per-
formance under the assumption that no other actor is ma-
nipulating performance. When application and system act
concurrently without knowledge of each other, this assump-
tion is violated and instability occurs.

2.4 Coordinated Application and System Approaches
Rather than abandon the combination of application and sys-
tem approaches, we propose actively coordinating the two.
JouleGuard’s coordinated approach is detailed in the next
section, but we show the results here for swish++. Joule-
Guard uses machine learning to find the most energy effi-
cient system configuration, which provides the performance
of 1750 qps at 125 Watts. Recall, this configuration resulted
in 0.07 Joules per query, 20% above the target. Therefore,

Figure 2. The JouleGuard runtime system.

JouleGuard then uses control theory to speedup the appli-
cation by an additional 20% to 2100 qps. Thus, JouleGuard
hits the target of 0.06 = 125/2100 Joules per query – at a
cost 24% fewer results per query than the default setup of
application and system.

Of all four approaches we have explored, this coordinated
one is clearly the best. It meets the energy goal while deliv-
ering the smallest possible loss in accuracy – a significant
savings over the application-level approach.

2.5 Lessons Learned
This example highlights the key intuition into optimizing
accuracy within a guaranteed energy budget:
• The best solution 1) finds the most energy efficient sys-

tem configuration and then 2) sacrifices accuracy for any
additional speedup required to meet the energy goal.

• The application and system must be coordinated to avoid
unpredictable, deleterious effects.

The next section formally addresses these issues.

3. JouleGuard
This section presents JouleGuard, illustrated in Fig. 2. Fol-
lowing the example of the previous section, we split the
problem of meeting an energy goal while maximizing ac-
curacy into two components. The first, labeled System En-
ergy Optimizer (SEO) in the figure, is responsible for putting
the system into the most energy efficient system configura-
tion. The expected speed and power of this configuration
are passed to the Application Accuracy Optimizer (AAO),
which determines how much additional performance must
come from tuning application accuracy.

If the performance, power, and accuracy of all combi-
nations of application and system configuration are known
ahead of time and do not change, then the application and
system configuration need only be configured once. In gen-
eral, however, we expect unpredictable dynamic fluctuations
making it impossible to predict the highest energy efficiency
system configuration ahead of time. Furthermore, this con-
figuration may be both application and input dependent [19,
34, 43, 44]. Therefore, we solve the optimization at runtime
using dynamic feedback. Both the SEO and AAO adapt to
changes in the other, yet still converge to reliable steady-
state behavior. This section first describes SEO and AAO,
then formally analyzes JouleGuard’s guarantees.

Symbol Meaning

G
en

er
al

Sys set of all system configs
App set of all application configs
sys an individual system config
app an individual application config
bestsys most energy efficient system config
bestapp most accurate app config achieving required speedup
default the default config of application or system
r computation rate
p power consumption
a accuracy
s speedup
f factor by which to decrease energy consumption
W application workload
E energy budget
vsys represents variable v in system config sys
vapp represents variable v in application config app
v̄ represents a measured value of variable v
v̂ this symbol represents an estimated value of variable v
v(t) this denotes the value of v at time t

L
ea

rn
in

g α

parameters balancing exploration and exploitationx
ρ
ε

C
on

tr
ol

pole pole of control system
error error between required speed and current speed
δ multiplicative error in learned models
C(z) Z-transform of the controller
A(z) Z-transform of the application
z unit delay operator

Table 1. Notation used in the paper.

3.1 Notation
Table 1 summarizes the notation used throughout this sec-
tion. The table has three parts. One contains general notation
that is necessary throughout this section. The other two con-
tain notation specific to either the learning or control pieces.
As shown in the table, we distinguish between measured, es-
timated and true values of variables. For variable v, v̄, v̂ and
v represent these three characteristics, respectively. We use
subscripts to refer to the value of a variable in different con-
figurations of the application or system. We use parenthetical
notation to refer to values of variables at particular times.

3.2 System Energy Optimization
JouleGuard uses reinforcement learning to identify the most
energy efficient system configuration, employing a bandit-
based approach [32]. We model system configurations as
arms in a multi-armed bandit (essentially levers in different
slot machines). The reward for pulling an arm is the energy
efficiency of that configuration. Our goal is to quickly deter-
mine which arm (configuration) has the highest energy ef-
ficiency. Specifically, JouleGuard estimates system config-
uration sys’s energy efficiency by estimating performance
and power r̂sys(t) and p̂sys(t) using exponentially weighted
moving averages:

p̂sys(t) = (1− α) · p̂sys(t− 1) + α · p̄sys(t)
r̂sys(t) = (1− α) · r̂sys(t− 1) + α · r̄sys(t)

(1)

We use α = .85, which provides the best outcomes on
average across all applications and systems.

In a typical bandit problem, the initial estimates might
be random values. This is not a good choice for estimating
performance and power as we know a general trend: power
and performance tend to increase with increasing resources.
Therefore, JouleGuard initializes its performance and power
estimates so that the performance increases linearly with in-
creasing resources and power increases cubically with in-
creasing clockspeed and linearly with increasing cores. This
is an overestimate for all applications, but it is not a gross
overestimate. Such an initialization performs exceedingly
well in practice.

The final component of a bandit solution is balancing ex-
ploration (i.e., trying different configurations) and exploita-
tion (i.e., making use of the best configuration found so
far). In addition, JouleGuard must be reactive to changes
caused by application-level adaptation. Therefore, Joule-
Guard explores the system configuration space using Value-
Difference Based Exploration (VDBE) [62]. VDBE bal-
ances exploration and exploitation by dynamically comput-
ing a threshold, ε(t) where 0 ≤ ε(t) ≤ 1. When selecting a
system configuration, JouleGuard generates a random num-
ber rand (0 ≤ rand < 1). If rand < ε(t), JouleGuard
selects a random system configuration. Otherwise, Joule-
Guard selects the most energy efficient configuration found
so far. ε is initialized to 1 and updated every time the run-
time is invoked. A large difference between the measured
efficiency r̄sys(t)/p̄sys(t) and the estimate r̂sys(t)/p̂sys(t)
results in a large ε, while a small difference makes ε small.
At each iteration of the runtime ε(t) is updated as:

x(t) = e
−
∣∣α(

r̄sys(t)

p̄sys(t)
−
r̂sys(t)

p̂sys(t)

∣∣
5

ρ(t) = 1−x(t)
1+x(t)

ε(t) = 1
|Sys| · ρ(t) + (1− 1

|Sys|) · ε(t− 1)

(2)

If the random number is below ε(t), JouleGuard selects
a random system configuration. Otherwise, JouleGuard
searches for the system configuration with the highest es-
timated energy efficiency:

bestsys = argmax
sys

{
r̂sys(t)

p̂sys(t)

∣∣∣∣ sys ∈ Sys} (3)

JouleGuard then puts the system into this configuration and
uses the expected performance and power consumption to
perform application accuracy optimization.

This bandit-based approach has the nice property that
when the system models are correct ε(t) = 0, so Joule-
Guard will not randomly explore the space; i.e., JouleGuard
will not use a random configuration after it has learned
accurate models. If the system is disturbed in anyway, or
the application has an unexpected impact on system perfor-
mance and power, the models will be inaccurate and ε(t)
will increase, so JouleGuard will likely explore new states to
find more efficient configurations. This learning mechanism

makes JouleGuard extremely robust to external variations,
but it is stable when the system does not vary.

3.3 Application Accuracy Optimization
Given the system configuration found above (from Eqn. 3,
JouleGuard determines the application configuration that
will meet the energy goal while maximizing accuracy. Given
the system performance and power estimates determined by
SEO (r̂c and p̂c) and a factor f by which to decrease energy
consumption, JouleGuard must find the application configu-
ration that provides speedup:

s(t) = f(t) · r̂default
p̂default

· p̂bestsys(t)
r̂bestsys(t)

(4)

The difficulty is that ensuring energy requires that Joule-
Guard maintains this performance despite unpredictable
events (e.g., application workload fluctuations), temporary
disturbances (e.g., page faults), or unmodeled dependences
between application configuration and system power con-
sumption. Therefore, JouleGuard continually adjusts the
speedup applied as a function of time t. JouleGuard mod-
els the problem of meeting speedup s as a control prob-
lem and minimizes the error error(t) between the mea-
sured performance r̄(t) and the required performance r(t) =
f(t) · r̂bestsys(t) at time t; i.e., error(t) = r(t)− r̄(t).

Maintaining performance despite dynamic environmental
changes is a classical control problem; many cross-layer ap-
proaches incorporate control for this reason [16, 20, 36, 59,
63, 67]. JouleGuard builds on these examples, formulating a
proportional integral (PI) controller eliminating error(t):

s(t) = s(t− 1) +
(1− pole(t)) · error(t)

r̂bestsys(t)
(5)

Where s(t) is the speedup required beyond r̂bestsys, and
pole(t) is the adaptive pole of the control system, which
determines the largest inaccuracy in the system model that
JouleGuard can tolerate while maintaining stability and en-
suring that the energy goal is met. While many systems use
control, JouleGuard’s approach is unique in that the con-
troller constantly adapts its behavior to account for potential
inaccuracies introduced by the learning mechanism.

The formal mechanism that sets the pole is discussed in
Sec. 3.4). Intuitively, control techniques make it possible to
determine how inaccurate the models can be and still sta-
bilize at the goal (i.e., meet the target energy while avoid-
ing the oscillations shown for the uncoordinated approach
in Fig. 1) [13]. The learning system used in SEO is con-
stantly measuring the inaccuracy between its models and the
actual performance and power (see Eqn. 2). JouleGuard uses
this measured difference to set the pole. When the differ-
ence is large, the controller acts slowly, avoiding oscillations
and allowing SEO to learn independently of any application
changes. When the system model inaccuracy is low, the pole
is small and the controller works quickly.

In summary, JouleGuard determines the application con-
figuration by 1) measuring the performance at time t, com-

puting the error between the required and measured per-
formance, then computing a speedup s(t). JouleGuard then
searches application configurations on the Pareto-optimal
frontier of performance and accuracy tradeoffs to select the
highest accuracy configuration delivering that speedup:

bestapp = argmax
app
{aapp|sapp > s(t) ∧ app ∈ A} (6)

3.4 Control Theoretic Formal Guarantees
JouleGuard’s control system provides formal guarantees of
energy consumption. We first show that the the control sys-
tem converges to the desired speedup. This can be done
through standard analysis in the Z-domain [35].

3.4.1 Stable and Convergent
We want to analyze the behavior of the closed loop sys-
tem that maps the performance goal r into measured per-
formance r̄(t). In this section we perform the analysis for a
fixed pole pole. This analysis is necessary to understand how
to adaptively set the pole in the next section.

The Z-transform of the application is simply A(z) =
r̂bestsys

z . The Z-transform for the control system’s transfer
function is C(z) = (1−pole)z

(z−1) . Therefore, the transfer func-
tion of the closed loop system is:

F (z) = C(z) ·A(z)
1+C(z) ·A(z)

=
(1−pole)z

(z−1)
· r̂bestsysz

1+
(1−pole)z

(z−1)
· r̂bestsysz

= 1−pole
z−pole

(7)

Following standard control analysis, we can evaluate the sys-
tem’s stability and convergence to the goal [35]. The system
is stable, in the control theoretic sense, that it will not oscil-
late around the goal if and only if 0 ≤ pole < 1. Therefore,
pole must be chosen to meet these restrictions. Furthermore,
the system is convergent, meaning that when it stabilizes
error(t) = 0 if and only if F (1) = 1. From Eqn. 7 we can
see that this condition is clearly met. We therefore conclude
that the control system is stable and convergent. These guar-
antees, however, are based on the implicit assumption that
r̂bestsys is an accurate estimate of the performance delivered
in bestsys. In the next section we discuss how to ensure sta-
bility even when the estimate is inaccurate (as it likely is at
system initialization).

3.4.2 Robust to Learning Inaccuracies
We determine the controller’s robustness to inaccurate esti-
mates of r̂bestsys by analyzing Eqn. 7. Suppose the estimate
is incorrect and the true value is rsys = δr̂sys(t) where δ is
a multiplicative error in the estimation. For example, δ = 5
indicates that model is off by a factor of 5. We determine
JouleGuard’s robustness to these inaccuracies by substitut-

ing δr̂sys into F (z):

F (z) = C(z) ·A(z)
1+C(z) ·A(z)

=
(1−pole)z

(z−1)
· δr̂sysz

1+
(1−pole)z

(z−1)
· δr̂sysz

= (1−pole)δ
z+(1−pole)δ−1

(8)

The controller represented by Eqn. 8 is stable if and only if
the pole is between 0 and 1. Thus, for a stable system

0 < δ <
2

1− pole
. (9)

So, the value of pole determines how robust JouleGuard is
to model inaccuracies. For example, pole = 0.1 implies that
r̂sys(t) can be off by a factor of 2.2 and JouleGuard will still
converge.

To provide convergence guarantees – and, thus, energy
guarantees – JouleGuard must set the pole to provide stabil-
ity and avoid the oscillations seen in the swish++ example.
JouleGuard has a bound on model inaccuracies as it is con-
stantly updating its estimates of system performance using
Eqn. 1. Thus, JouleGuard computes δ(t), the multiplicative
inaccuracy at time t as:

δ(t) =

∣∣∣∣ r̄(t)

r̂sys(t− 1)
− 1

∣∣∣∣ (10)

and computes the pole as:

pole(t) =

{
δ(t) > 2 : 1− 2/δ(t)
δ(t) ≤ 2 : 0

(11)

JouleGuard automatically adapts the pole so that controller
is robust to inaccuracies in the system models. In practice,
the pole is large when the learner is unsure and likely to ran-
domly explore the space. This means that the controller will
be slow to change configurations when the learner is aggres-
sive. In contrast, when the learner converges the inaccuracy
is low (by definition) and the controller can be more aggres-
sive. This adaptive pole placement combined with machine
learning is the unique feature of JouleGuard which distin-
guishes it from prior approaches and allows JouleGuard to
split the energy guarantee problem into two subproblems yet
still provide robust guarantees.

3.4.3 Impossible Goals
A user may request an energy goal that is impossible to meet
given the application and the system. In this case, Joule-
Guard reports that the goal is infeasible and then configures
application and system to provide the smallest possible en-
ergy consumption.

3.5 Implementation
JouleGuard’s runtime is summarized in Algorithm 1. We im-
plement this algorithm through a straightforward coding of
the math described above and summarized in the algorithm
listing. The two key challenges are measuring feedback and
configuring the application and system. These are really in-
terface issues rather than technical issues. JouleGuard needs

Application Configs Speedup Acc. Loss (%) Accuracy Metric
x264 560 4.26 6.2 Peak Signal to Noise Ratio (PSNR) [25]
swaptions 100 100.35 1.5 swaption price [25]
bodytrack 200 7.38 14.4 track quality [25]
swish++ 6 1.52 83.4 precision and recall [25]
radar 26 19.39 5.3 signal to noise ratio [21]
canneal 3 1.93 7.1 wire length [56]
ferret 8 1.24 18.2 similarity [56]
streamcluster 7 5.52 0.55 quality of clustering [56]

Table 2. Approximate Application configurations.

Algorithm 1 The JouleGuard Runtime.
Require: W . Workload provided by user
Require: E . Energy budget provided by user

loop
Measure work done W (t) and energy consumed E(t).
Measure performance r̄(t) and power p̄(t) in configuration c.
Update performance and power estimates r̂c and p̂c (Eqn. 1).
Update ε(t) (Eqn. 2).
Generate random number rand
if rand < ε(t) then

Select random system configuration
else

Select energy optimal system configuration sys (Eqn. 3).
end if
Compute the controller’s pole (Eqns. 10 and 11)
Compute remaining energy and work.
Use those values to compute speedup target (Eqn. 4).
Compute speedup control signal (Eqn. 5).
Select the application configuration to deliver speedup (Eqn. 6).

end loop

to be supplied a function that reads performance and power.
Any performance metric can be used as long as it increases
with increasing performance. Similarly, power can be read
from an external power monitor or from modern hardware
devices that support on-board power measurement. Prior
work defined a general interface for specifying system-level
configurations [23]. A straightforward extension of this in-
terface allows it to support application configuration changes
as well. Given these interfaces, we implement JouleGuard
as a C runtime that can be compiled directly into an applica-
tion. It can replace existing runtime systems for approximate
applications, or it can convert a statically configured approx-
imate application into one dynamically configurable to meet
energy goals.

3.6 Application Accuracy Requirements
JouleGuard does not require precise quantification of appli-
cation accuracy, rather it requires an ordering on application
configurations. Many frameworks provide precise accuracy
quantification (e.g., [5, 24, 25, 48]), others do not (e.g., [9,
14, 58]), and some leave it to the programmer (e.g., [38, 53]).
Approaches that do not quantify accuracy still order configu-
rations, but the order represents preferences rather than abso-
lute numerical differences. JouleGuard never needs a precise
value for accuracy. The only place it reasons about accuracy
is in Eqn. 6 when selecting an application configuration. This

equation only requires a total order on available configura-
tions. Thus, JouleGuard is compatible with a wide range of
approximate approaches including those that do not specifi-
cally quantify accuracy.

3.7 Modification for Approximate Hardware
This section has assumed that all accuracy tradeoffs occur
at the application level. Recent proposals, however, propose
approximate hardware that provides reduced energy con-
sumption in exchange for occasionally returning the wrong
result [4, 11, 12, 38, 45, 46]. In most cases, these approx-
imate hardware implementations maintain the same timing,
but reduce power consumption. For those cases, it is straight-
forward to modify the above control system to work with
approximate hardware. We would begin by using the learn-
ing engine to find the most energy efficient system config-
uration that sacrifices no accuracy (this step is the same as
the above). We then modify the JouleGuard control system
to manage power (rather than speedup) by tuning hardware
level approximation. The approach would be very similar,
but the controller would reduce power instead of increase
performance. Yet another problem would be to coordinate
approximate applications with approximate hardware. Such
a combination likely requires a significant modification of
JouleGuard.

4. Experimental Setup
To demonstrate generality, we test JouleGuard with eight
different applications on three different hardware platforms.

4.1 Applications
We draw on existing approximate applications from two
sources. The first is PowerDial, which automatically turns
static command line parameters into a data structure which
alters runtime performance and accuracy tradeoffs [25]. The
second is Loop Perforation, which eliminates some loop it-
erations to trade accuracy for performance [56]. We build
x264, swaptions, bodytrack, radar, and swish++ with Power-
Dial. We build canneal, ferret, and streamcluster with Loop
Perforation. Table 2 summarizes the available application
configurations, showing the total available configurations,
the maximum speedup, maximum accuracy loss (as a per-
centage of the default value), and the accuracy metric.

System Configuration Settings Speedup Powerup
M
o
b
il
e

clock speed 8 2.72 1.94
big cores 4 4.52 2.00
big core speeds 19 10.23 10.42
LITTLE cores 4 4.52 1.32
LITTLE core speeds 13 7.11 2.62

T
a
b
le
t clock speed 8 2.72 1.94

core usage 2 1.81 1.22
hyperthreading 2 1.10 1.03
idle n/a 1.00 1.00

S
er
ve
r clock speed 16 3.23 2.05

core usage 16 15.99 2.03
hyperthreading 2 1.92 1.11
idle n/a 1.00 1.00
mem controllers 2 1.84 1.11

Table 3. System configurations.

These applications represent several different workloads.
x264 is a video encoder, which can trade increased noise in
the output video for increased frame rate. swaptions is a fi-
nancial analysis benchmark that trades accuracy of price for
speed of pricing. bodytrack does image analysis to follow a
person moving through a scene. It trades the precision of the
track for increased throughput. The swish++ search engine is
a webserver which supports document search and can trade
the precision and recall of the search results for decreased
search time. radar is a digital signal processing program that
detects targets in the returns of a phased array antenna [21].
canneal is an engineering application that performs place-
and-route on a netlist; it can trade increased wire length for
decreased routing time. ferret is a image similarity search
that can decrease the similarity of the results it returns in ex-
change for decreased search time. Finally, streamcluster is a
clustering algorithm that can decrease the quality of its clus-
tering for increased performance. Each application supports
a different accuracy metric. To standardize the presentation,
we report accuracy as a proportion of that achieved when
running in the application’s default configuration; i.e., with-
out PowerDial or Loop Perforation.

These benchmarks might easily be run in an environment
where predictable energy consumption is essential for suc-
cessful operation. For example, x264, bodytrack, and radar
might be executed on either a mobile or embedded device
with limited battery; ferret and swish++ might be executed
on a server where administrators want to deliver better re-
sults to higher paying users. We note that swish and canneal
do not run on Mobile, but it is unlikely that a user would
want to run a webserver or engineering application on their
mobile phone.

4.2 System
In the introduction, we argue that maximizing accuracy on
an energy budget could be useful for both mobile and server
systems. Therefore, we evaluate JouleGuard on three plat-
forms representative of both domains. The first, Mobile, is

an ODROID-XU3 from HardKernel with a Samsung Exynos
5 heterogeneous ARM big.LITTLE processor consisting of
4 Cortex-A15 (big) cores and 4 Cortex-A7 (LITTLE) cores.
It has 2GB of RAM and a 64 GB SD card for permanent
storage. The second, Tablet, is a Sony Vaio SVT11226CXB
tablet with an Intel i5-4210Y processor, 4GB RAM, and
a 128GB SSD. The third, Server is a dual socket system
with two eight-core Intel Xeon E5-2690 processors, 64GB
RAM, and a 256 GB HDD. We monitor power and energy
on Mobile with INA-231 power sensors that provide power
data for the big Cortex-A15 cluster, the LITTLE Cortex-A7
cluster, the DRAM and the GPU. Both Intel platforms sup-
port hyperthreading and TurboBoost, and both allow power
and energy consumption to be read directly from registers
at runtime in millisecond intervals [50]. Mobile idles at ap-
proximately .12 Watts, Tablet idles at 2.4 Watts, and Server
approximately 12 Watts. The maximum power consumption
on the mobile processor is 6 Watts, on the tablet 9 Watts, and
270 Watts on the server. For the Intel systems, in addition to
the on-chip power meters, we use an external power meter to
measure the power consumption of the other components in
each system. The mobile system has an additional 5.8 Watts
of power consumption beyond the processor; the server sys-
tem has an additional 75-90 Watts.

To provide energy guarantees, we must account for the
full energy consumption of the system. This presents a prob-
lem for both the Intel-based systems as their total energy
consumption is much higher than what the on-chip moni-
tors report. We account for this by using the on-chip mon-
itors (which return results at a millisecond granularity) and
simply adding a fixed amount of power to this quantity to
account for the additional power consumption. The exter-
nal power meters are too slow to provide dynamic feedback
(1s granularity), but they can be used to verify total sys-
tem power and energy. Therefore, we use the on-chip power
meters plus a fixed constant for dynamic feedback and use
the external power meters to measure the full system energy
over the life of the experiments. All measurements in the
evaluation section report full system power and energy.

Mobile runs Ubuntu Linux 14.04 using a modified ker-
nel 3.10.58+. The other systems run Linux 3.2.0 with the
cpufrequtils package to change clock speeds. We use
process affinity masks to assign an application to cores and
hyperthreads. We use the numalib package to assign mem-
ory controllers to an application on the server. The available
system configurations on all three platforms are summarized
in Table 3, which shows the total number of available config-
urations and the maximum increase in speed and power mea-
sured on each machine. There are effectively an unlimited
number of idle settings, as any application could be stalled
arbitrarily.

4.3 System Characterization
The JouleGuard framework contains a learning engine to
determine the most energy efficient system configuration.

bodytrack
M

o
b

il
e

ferret
T

a
b

le
t

S
er

ve
r

0 17 34 51 68

4

6

8
E

n
er

g
y

E
ffi

ci
en

cy

0 17 34 51 68

4

6

8

0 11 22 33 44

0.2

0.3

E
n

er
g

y
E

ffi
ci

en
cy

0 11 22 33 44

0.1

0.15

0.2

0 256 512 7681024
0

0.075

0.150

E
n

er
g

y
E

ffi
ci

en
cy

0 256 512 7681024

0.2

0.4

0.6

0.8

1

Figure 3. Example energy efficiencies.

In this section, we justify the need for this approach by
characterizing our platforms. We run each application in
its default (full accuracy) mode and measure the energy
efficiency (performance divided by power consumption) for
each possible system configuration.

The results for two example applications (bodytrack and
ferret) are shown in Fig. 3. All three systems contain multi-
ple configurable resources, so we linearize the configuration
space into a configuration index, which is shown on the x-
axis of each chart. The y-axes show the energy efficiency.
We have chosen configuration indices so that the highest in-
dex always represents all resources assigned to an applica-
tion at their highest setting (this is the default configuration
for both systems). The lowest index is always a single core
at the slowest clockspeed. The configuration indices for dif-
ferent applications on the same platform are the same; i.e.,
index i for bodytrack represents the same resource usage as
index i for ferret.

The two applications are representative of the extremes
in our benchmark set, the others are omitted to save space.
bodytrack is generally easy to manage as it presents smooth
curves with no local extrema. ferret is harder to manage
and exhibits complicated behavior on the most configurable
system, Server.

Examining this data, it is significant to compare the peak
energy efficiency to the default system configuration (the
highest index) for a given application. It is also important
to compare the location of the peak across different applica-
tions. We observe:
• All applications show significant differences between the

highest and lowest energy efficiency on all platforms.
Thus, there is a penalty for choosing the system configu-
ration incorrectly.

• On Mobile, the large cores are the least energy efficient
(they are clustered in the bottom right of the chart. On this
system, the learner will need to move off the big cores
and recognize the importance of using smaller cores for
energy savings.

• On the Tablet platform, the peak energy efficiency occurs
at the default setting for all applications. This implies it
should be easy to select the peak for that platform. In ad-
dition, many of the clockspeed settings appear to produce
the same energy efficiency. It appears that the firmware
on this platform disables most of the clockspeeds that the
processor supports. The real difficulty of managing this
system will be for JouleGuard to recognize that many set-
tings produce identical results.

• On the Server platform, each application has a unique
configuration providing maximum energy efficiency, im-
plying it is much harder to select the most energy efficient
configuration on that platform. Furthermore, none of our
test applications achieve peak energy efficiency in the de-
fault configuration; i.e., the default is wasteful.
These results broadly indicate that it should be easy to

perform the system energy optimization on Mobile and
Tablet and difficult on Server. The difference in platform
characteristics creates a unique challenge: the learner should
be low-overhead so that it does not greatly impact the be-
havior of the easy platform and agile so that it can overcome
the difficulties imposed by the difficult platform. The next
section evaluates JouleGuard’ ability to overcome the chal-
lenges of these platforms.

5. Evaluation
This section evaluates JouleGuard. We begin by measur-
ing the runtime overhead. We then demonstrate that Joule-
Guard converges to the desired energy consumption and
does so with near optimal accuracy. Next, we compare Joule-
Guard’s coordinated approach to the best accuracy that can
be achieved by application or system alone. Finally, we show
that JouleGuard maintains energy goals during application
phase changes.

5.1 JouleGuard Overhead

Platform Latency (µs)
Mobile 249
Tablet 164
Server 82

Table 4. Runtime overhead.

We expect JouleGuard to
be low-overhead as the
algorithm detailed in Al-
gorithm 1 is low com-
plexity. The most expen-
sive parts involve search-
ing for particular con-
figurations according to
Eqns. 3 and 6, which we implement with binary search. To
measure overhead, we time 100 iterations of the runtime
managing x264 (the application with the largest number of
application-level configurations) on each of the three plat-
forms. The time per iteration (in microseconds) is shown in

Normalized Energy/Frame Accuracy

0
0.25
0.50
0.75

1.0

M
o
b
il
e

0.90
0.92
0.94
0.96
0.98

1.0

0
0.25
0.50
0.75

1.0

T
a
b
le
t

0.90
0.92
0.94
0.96
0.98

1.0

0 65 130 195 260
0

0.25
0.50
0.75

1.0

time [frame]

S
er
ve
r

0 65 130 195 260
0.90
0.92
0.94
0.96
0.98

1.0

time [frame]

Figure 4. JouleGuard stabilizes to a consistent energy con-
sumption subject to application and system noise.

Table 4. The mobile system has less work to do (because it
has the fewest configurations to consider), but it also has the
smaller computational capacity. Regardless, these overheads
are small enough to permit millions of runtime iterations per
second. This is far faster than we can receive power feed-
back, so JouleGuard’s overhead is negligible for its intended
use.

5.2 Methodology
For each application and platform, we first measure accu-
racy and energy consumption in the default configuration;
i.e., we run out-of-the-box on our platforms with no changes.
Having established a baseline energy consumption, we then
deploy each application with JouleGuard for a several en-
ergy goals which decrease energy by some factor f where
f ∈ {1.1, 1.2, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0}. For exam-
ple, f = 2.0 reduces energy consumption by 2× compared
to the default. For each goal we measure both the achieved
energy and accuracy.

To quantify JouleGuard’s ability to meet energy goals, we
compute relative error:

Relative Error =

{
ē > egoal :

ē−egoal
egoal

· 100%

otherwise : 0
(12)

between the measured energy and the goal. We only count
the error if it is above the target; i.e., JouleGuard consumed
too much energy. Energies below the target, however, will
likely result in less than optimal accuracy. Low relative error
indicates the energy consumption is close to the target, while
high error means JouleGuard missed the target substantially.
Relative error is a percentage, allowing comparisons across
different targets.

To quantify optimality, we construct an oracle represent-
ing the best possible accuracy for an application, system, and
energy target. We exhaustively profile the application and
system in every possible configuration to determine the opti-

mal accuracy for different energy targets. We then calculate
the best system and application state for every application
iteration. The oracle thus represents the best accuracy that
could be accomplished by dynamically managing applica-
tion and system with perfect knowledge of the future and no
overhead. We quantify optimality as effective accuracy:

effective acc = ā/aoracle(goal) (13)

Where ā is the measured accuracy for the application run-
ning with JouleGuard and aoracle(goal) represents the ac-
curacy our oracle returns for the given energy goal.

5.3 Stability and Convergence
One of JouleGuard’s essential properties is convergence to
desired energy targets. Previous sections demonstrate con-
vergence analytically, this section evaluates it empirically.

We begin by showing a representative application operat-
ing under JouleGuard. Fig. 4 shows bodytrack’s energy per
frame (in the left column) and achieved accuracy (in the right
column). Energy per frame measures how well JouleGuard
tracks the goal. In these figures, JouleGuard is maintaining
an average energy per frame of 1/4 the default for Mobile
and 1/3 the default for the other systems (i.e., f = 3, rep-
resenting a three fold decrease in energy consumption). The
solid black lines represent the target energy per frame. These
figures clearly demonstrate that JouleGuard can track the de-
sired energy. They also show how accuracy is affected by
the target platform – Tablet and Server have less energy ef-
ficient configurations available so they must sacrifice more
accuracy to meet a less aggressive goal.

To demonstrate the stability and convergence in general
we compute relative error for all applications, hardware plat-
forms, and energy targets. These results are shown in Fig. 5
with benchmark name on the x-axis and relative error (as
a percentage) on the y-axis. There is a bar for each energy
target if the target is feasible (e.g., given the available appli-
cation configurations ferret can only achieve reductions up
to 1.2× on Tablet and Server). In general, relative error is
low – demonstrating that JouleGuard meets energy guaran-
tees on a number of platforms for a number of applications.
Generally, the more aggressive the target the higher the error.
This relationship is not surprising as, if the controller makes
an error in one iteration it may be hard to make up for it in
another iteration with highly aggressive energy targets.

5.4 Optimality
We now quantify accuracy for all benchmarks, platforms,
and energy targets by presenting the effective accuracy cal-
culated according to Eqn. 13.

These results are shown in Fig. 6. The effective accuracy
is close to unity, representing accuracy very close to the ora-
cle. This accuracy is achieved despite JouleGuard’s overhead
and the inherent noise in the benchmarks. The only bench-
mark that causes some issues is swish++ on Tablet at the
1.5× energy efficiency mark. In this case, JouleGuard meets

M
o
b
il
e

T
a
b
le
t

S
er
ve
r

2

6

10
1.1× 1.2× 1.5× 1.75× 2.00× 2.25× 2.50× 2.75× 3.00×

2

6

10

R
el
.
E
rr
or
(%

)

bod
ytr

ack

can
nea

l
ferr

et
rad

ar

stre
am

clu
ste

r

swa
ptio

ns
swi

sh x26
4

2

6

10

Figure 5. JouleGuard’s low relative error shows it is within a few % of the desired energy.

M
o

b
il
e

T
a

b
le

t
S

er
ve

r

0.2
0.4
0.6
0.8
1.0

1.1× 1.2× 1.5× 1.75× 2.00× 2.25× 2.50× 2.75× 3.00×

0.2
0.4
0.6
0.8
1.0

E
ff

ec
ti

ve
A

cc
u

ra
cy

bodytra
ck

canneal
ferre

t
radar

stre
amcluste

r

swaptions
swish x264

0.2
0.4
0.6
0.8
1.0

Figure 6. JouleGuard achieves near optimal accuracy for different energy goals.

the energy requirement (see Fig. 5), but sacrifices more ac-
curacy than strictly necessary. This lack of optimality is re-
lated to a point made above: this energy target represents the
extreme operating range for this application and platform.
While our oracle never makes mistakes, JouleGuard does. In
this case, missing an energy goal in one iteration requires
JouleGuard to make it up in others. As JouleGuard is al-
ready operating near the limit, making up energy requires
further sacrifices of accuracy. Furthermore, the accuracies
for Mobile are uniformly higher showing almost no devia-
tion from the oracle. This level of optimality on that platform
is due to the fact that all the energy goals are well within the
operating range for that platform (see Fig. 3 for examples of
the much greater range of operating points on Mobile).

5.5 Comparison to Other Approaches
Many existing frameworks for approximate computing con-
sider only the application [5, 25, 56, 58]. Similarly, many
energy optimization approaches consider only system re-

source usage [27, 43, 51, 57]. We now compare the accuracy
achieved by JouleGuard’s coordinated approach to the best
possible accuracy that could be achieved by adapting just
application or system alone. Recall Sec. 2 describes how to
maximize accuracy for an application or energy efficiency
for a system in isolation. In this section, we run JouleGuard
for a number of energy targets and compare its accuracy to
the best possible that considers only application-level adap-
tation. In addition, we compare the best possible energy sav-
ings that can be achieved by manipulating the system alone.

Fig. 7 shows the results for Server. Results for the other
systems are omitted for space. Each chart shows the energy
savings goal on the x-axis and the achieved accuracy for
both JouleGuard and the application only approach. In ad-
dition, a dotted horizontal line shows the maximum range
of increased energy savings possible by manipulating the
system’s resource usage only. In most cases, the system-
only approach reduces performance for decreased energy. In
some cases, (e.g., ferret – see Fig. 3), the system can find

2.0 3.0 4.0 5.0

0.94

0.96

0.98

1.00

A
cc
u
ra
cy

x264

2.0 3.0 4.0 5.0

0.88

0.91

0.94

0.97

1.00
bodytrack

2.0 3.0 4.0 5.0
.98

.985

.99

.995

1.000
swaptions

JouleGuard Application Only System Only

1.3 1.6 1.9 2.2
0.30

0.65

1.00
swish++

2.0 3.0 4.0 5.0
0.95

0.96

0.97

0.98

0.99

1.00

Energy Savings Goal

A
cc
u
ra
cy

radar

1.3 1.6 1.9 2.2

0.94

0.96

0.98

1.00

Energy Savings Goal

canneal

1.1 1.2 1.3 1.4

0.85
0.88
0.91
0.94
0.97
1.00

Energy Savings Goal

ferret

2.0 3.0 4.0 5.0

0.992

0.994

0.996

0.998

1.00

Energy Savings Goal

streamcluster

Figure 7. Comparison of JouleGuard and application- or system-only approaches on Server (higher is better).

Normalized Energy/Frame Accuracy

0
0.25
0.50
0.75
1.00

M
o
b
il
e

0.90
0.92
0.94
0.96
0.98

1.0

0
0.25
0.50
0.75
1.00

T
a
b
le
t

0.90
0.92
0.94
0.96
0.98

1.0

0 200 400 600
0

0.25
0.50
0.75
1.00

time [frame]

S
er
ve
r

0 200 400 600
0.90
0.92
0.94
0.96
0.98

1.0

time [frame]

Figure 8. JouleGuard adapts to application phases.

a more energy efficient configuration that is faster than the
default. If no data is shown for an energy goal, it is not
feasible. These results show that proactive coordination –
used by JouleGuard – provides uniformly higher accuracy
for the same energy compared to approaches that work at
application-level only. In addition, JouleGuard’s combina-
tion of application and system-level optimization provides
a greater range of possible energy efficiencies than can be
achieved by either alone. In addition, these results show that
JouleGuard does not needlessly waste accuracy – for Joule-
Guard, accuracy only starts to decrease at the point where
system-level manipulations are no longer effective.

5.6 Reaction to Application Phases
Our final experiment shows JouleGuard adapting to appli-
cation phases. In this example, we concatenate three videos
together to form a new input with three distinct phases. Each

phase lasts for 200 frames. The first and third phases are
the same. The second phase is an easier scene that naturally
(without any control) encodes about 40% faster than the first
scene. Thus, the second scene naturally requires less energy
than the first or third. Ideally, when it encounters the sec-
ond scene, JouleGuard would maintain the same target en-
ergy per frame and turn the energy savings into increased
accuracy. Doing so would clearly demonstrate the ability to
maximize accuracy while ensuring energy consumption.

Fig. 8 shows the results with time (in frames) measured
on the x-axes and energy per frame (normalized to the goal)
on the y-axes. At frame 200, the scene changes and we
see a very short spike in energy followed by an increase in
accuracy as JouleGuard turns the energy efficiency gain into
improved accuracy. This effect can be seen in the accuracy
charts as all three platforms produce higher accuracy during
the middle 200 frames.

5.7 Results Summary
These results empirically demonstrate the claims made in the
introduction. Specifically, JouleGuard is:
• Low Overhead: it configures rapidly (Table 4).
• Convergent: it meets a range of energy goals with low

error for all applications (built from two different approx-
imate computing frameworks) on two different hardware
platforms (Fig. 5).

• Near-Optimal: it achieves close to the best possible ac-
curacy for almost all applications across the different
platforms and energy goals (Fig. 6). In addition, Joule-
Guard’s proactive approach coordinating application and
system is uniformly better than approaches that consider
application only (Fig. 7).

• Responsive: it maintains energy goals with high accu-
racy during application phase changes (Fig. 8).

6. Related Work
We describe several related efforts in approximate appli-
cations, energy-aware systems, cross-layer approaches, and
adaptive control.

6.1 Approximate Applications
Approximate applications trade accuracy for performance,
power, energy, or other benefits. Approaches include both
static analysis [2, 7, 8, 49, 53, 56] and dynamic support for
tradeoff management [1, 5, 9, 25, 30, 31, 48, 58]. Static
analysis guarantees that accuracy bounds are never violated,
but it is conservative and may miss chances for additional
savings through dynamic customization.

Dynamic approximation tailors runtime behavior to spe-
cific inputs. For example, Green maintains accuracy goals
while minimizing energy [5], and Eon extends battery life
in exchange for accuracy [58]. Both Green and Eon use
heuristic techniques for managing the tradeoff space. Pow-
erDial [25], uses control theoretic techniques to provide per-
formance guarantees while maximizing accuracy. Each of
these approaches supports a single constraint. For example,
Green uses heuristics to ensure accuracy bounds are not vi-
olated, but it cannot guarantee energy consumption. Power-
Dial formally guarantees performance (so it can meet real-
time or quality-of-service goals), but it does not manage en-
ergy. Eon uses heuristics to prevent embedded devices from
running out of energy, making it well-suited for systems that
harvest energy, but it does not maximize accuracy on an en-
ergy budget. Furthermore, these approaches are designed to
work at the application-level only. Fig. 7 demonstrates the
benefits of JouleGuard’s approach which combines applica-
tion and system adaptation.

6.2 Energy-aware Systems
Many system-level approaches coordinate the use of mul-
tiple resources to provide performance guarantees with re-
duced power or energy consumption. For example, Li et al.

manage memory and processor speed [37], Dubach et al. co-
ordinate several microarchitectural features [10], and Mag-
gio et al. coordinate core allocation and clock speed [41].
Meisner et al. propose coordinating CPU power states, mem-
ories, and disks to meet performance goals while minimizing
power consumption [42]. Bitirgen et al. coordinate clock-
speed, cache, and memory bandwidth in a multicore [6]. The
METE system controls cache, processor speed, and mem-
ory bandwidth to meet performance requirements [54]. Still
other approaches manage arbitrary sets of system-level com-
ponents [23, 47, 59, 67]; however, none of these approaches
coordinates system resource usage with application-level
adaptation. Furthermore, these approaches all ensure perfor-
mance is met while minimizing energy consumption – none
can ensuring energy budgets are met.

Several OS designs support the measurement, allocation,
and management of energy as a first class object. The Koala
system uses a predictive model to minimize application en-
ergy while maintaining performance [57]. Similarly, power
containers support fine-grain tailoring of heterogeneous re-
sources to varying workloads [55]. Cinder creates abstrac-
tions which allow energy to be stored and allocated on mo-
bile devices [51]. These OS-level approaches all provide
mechanisms for allocating energy, but not policies for per-
forming the allocation or enforcing energy budgets, other
than halting if the budget is exceeded.

6.3 Cross-layer Approaches
Static approaches coordinate application and system by
marking application regions as candidates for accuracy loss
and then statically determining when the system can turn
that loss into performance or energy savings. The Truffle ar-
chitecture [11] supports applications which explicitly mark
some computations and data as “approximate.” Parrot re-
places approximate regions of an application with a neural
network implementation, which is then executed on a spe-
cial hardware neural processing unit [12]. Flikker, allows
applications to mark some data as “non-critical,” and store
it in a DRAM that trades accuracy for energy savings [38].
The codesign of application with inexact hardware has been
proposed to reduce energy consumption dramatically in ex-
change for reduced application accuracy [4, 45, 46].

JouleGuard is inspired by prior work that dynamically
coordinates across application and system layers. Flinn and
Satyanarayanan coordinate operating systems and appli-
cations to meet user defined energy goals [14, 15]. This
system trades application quality for reduced energy con-
sumption. The GRACE OS employs hierarchy to provide
predictable performance for multimedia applications, mak-
ing system-level adaptations first and then application-level
adaptations [63, 66]. Like GRACE, Agilos uses hierarchy,
combined with fuzzy control, to coordinate multimedia ap-
plications and systems to meet a performance goal [36].
Maggio et al. propose a game-theoretic approach for a de-
centralized coordination of application and system adapta-

tion which provides real-time guarantees [39]. xTune uses
static analysis to build a model of application and system in-
teraction and then refines that model with dynamic feedback
[33]. The CoAdapt system uses a control theoretic approach
to meet a performance, power, or accuracy constraint [20].

Two key features distinguish JouleGuard from prior
cross-layer approaches. First, prior work does not provide
energy guarantees, most, instead, guarantees performance
while minimizing energy consumption. Second, prior work
splits the system and application into two linear problems,
which is possible because of the focus on performance [20,
36, 63, 66]. JouleGuard also splits the problem into two sub-
problems, but acknowledges that these problems are not in-
dependent. A key contribution of JouleGuard is to formulate
a solution that is provably robust despite the dependence
between the subproblems. JouleGuard’s approach requires
novel solutions for both subproblems rather than repurpos-
ing existing work to target energy.

In summary, JouleGuard complements prior work on ap-
proximate computing by adding the capability to meet en-
ergy budgets with near maximum accuracy, benefiting mo-
bile users who need to finish a task given the current charge
on their battery and desktop or server users who want to
maximize the quality of a result given an energy budget.

6.4 Adaptive Control Systems
Integrating control systems into software is one way to cre-
ate self-adaptive software systems [52]. Control theory pro-
vides a general technique that can be applied to tune various
aspects of the software system to meet goals [17]. A clas-
sical control system provides numerous formal guarantees
about its behavior; however, these guarantees are all depen-
dent on how well the difference model used to construct the
controller captures the underlying system dynamics. Adap-
tive control is an approach that allows the controller itself to
be adjusted online [3].

In an adaptive control system, the controller becomes
a meta-model which is dynamically tuned as the control
system runs. Adaptive control has been used to tune resource
usage in webservers [28, 29] and to minimize energy in
embedded systems [27, 41]. Filieri et al. propose a general
methodology for constructing adaptive controllers [13] and
some middleware frameworks incorporate adaptive control
[67]. A recent survey finds that adaptive control significantly
increases generality compared to classical control [40].

Typically, adaptive control systems make the control sys-
tem more robust to external variations that might invalidate
a static model. In this paper, we use adaptive control to make
the control system robust to another adaptive system: the
learning engine. The interface between the two is the error
in the learned models. As adaptive systems proliferate, it is
increasingly likely that multiple adaptive systems, each de-
signed by different engineers will be deployed concurrently.
Simple interfaces which coordinate adaptive computing sys-
tems will be necessary to avoid the type of bad behavior il-
lustrated in Sec. 2 and documented in other studies [18, 20].
This paper contributes one such interface.

7. Conclusion
This paper introduces JouleGuard, an optimizing runtime
system that coordinates approximate applications and energy-
aware systems to meet energy goals while maximizing ac-
curacy. JouleGuard is based on the key insight that we can
solve this particular optimization by dividing the problem
into two sub-problems, each of which can be solved effi-
ciently. The first sub-problem moves the system to the most
energy efficient configuration, while the second dynami-
cally manages performance. JouleGuard proposes a machine
learning approach to the first problem and a control theo-
retic solution to the second. We have implemented Joule-
Guard and tested it with a number of applications and two
systems. We find that – both empirically and analytically –
JouleGuard meets energy budgets with near optimal accu-
racy, while adapting to application phases and consistently
outperforming approaches that consider only application or
system configurations.

Acknowledgments
We are grateful to Shan Lu and Anne Rogers, who both read
early drafts of this work and provided extremely valuable
feedback. We also thank the anonymous reviewers, who
hopefully find the final version of this paper improved from
the submitted version. Finally, we thank Bryan Ford for
shepherding the paper.

Henry Hoffmann’s effort on this project is funded by the
U.S. Government under the DARPA PERFECT program, by
the Dept. of Energy under DOE DE-AC02-06CH11357, and
by the NSF under CCF 1439156.

References
[1] J. Ansel, M. Pacula, Y. L. Wong, C. Chan, M.

Olszewski, U.-M. O’Reilly, and S. Amarasinghe.
“Siblingrivalry: online autotuning through local
competitions”. In: CASES. 2012.

[2] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski,
A. Edelman, and S. Amarasinghe. “Language and
compiler support for auto-tuning variable-accuracy
algorithms”. In: CGO. 2011.

[3] K. J. Astrom and B. Wittenmark. Adaptive Control.
2nd. 1994. ISBN: 0201558661.

[4] L. Avinash, C. C. Enz, K. V. Palem, and C. Piguet.
“Designing Energy-Efficient Arithmetic Operators
Using Inexact Computing”. In: J. Low Power Elec-
tronics 9.1 (2013).

[5] W. Baek and T. Chilimbi. “Green: A Framework for
Supporting Energy-Conscious Programming using
Controlled Approximation”. In: PLDI. June 2010.

[6] R. Bitirgen, E. Ipek, and J. F. Martinez. “Coordi-
nated management of multiple interacting resources
in chip multiprocessors: A machine learning ap-
proach”. In: MICRO. 2008.

[7] M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard.
“Proving acceptability properties of relaxed nonde-
terministic approximate programs”. In: PLDI. 2012.

[8] M. Carbin, S. Misailovic, and M. C. Rinard. “Veri-
fying quantitative reliability for programs that exe-
cute on unreliable hardware”. In: OOPSLA. 2013.

[9] F. Chang and V. Karamcheti. “Automatic Configu-
ration and Run-time Adaptation of Distributed Ap-
plications”. In: HPDC. 2000.

[10] C. Dubach, T. M. Jones, E. V. Bonilla, and M. F.
P. O’Boyle. “A Predictive Model for Dynamic Mi-
croarchitectural Adaptivity Control”. In: MICRO.
2010.

[11] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D.
Burger. “Architecture support for disciplined ap-
proximate programming”. In: ASPLOS. 2012.

[12] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D.
Burger. “Neural Acceleration for General-Purpose
Approximate Programs”. In: MICRO. 2012.

[13] A. Filieri, H. Hoffmann, and M. Maggio. “Auto-
mated design of self-adaptive software with control-
theoretical formal guarantees”. In: ICSE. 2014.

[14] J. Flinn and M. Satyanarayanan. “Managing battery
lifetime with energy-aware adaptation”. In: ACM
Trans. Comp. Syst. 22.2 (May 2004).

[15] J. Flinn and M. Satyanarayanan. “Energy-aware
adaptation for mobile applications”. In: SOSP. 1999.

[16] A. Goel, D. Steere, C. Pu, and J. Walpole. “SWiFT:
A Feedback Control and Dynamic Reconfiguration
Toolkit”. In: 2nd USENIX Windows NT Symposium.
1998.

[17] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M.
Tilbury. Feedback Control of Computing Systems.
John Wiley & Sons, 2004. ISBN: 047126637X.

[18] J. Heo and T. F. Abdelzaher. “AdaptGuard: guarding
adaptive systems from instability”. In: ICAC. 2009.

[19] H. Hoffmann. “Racing vs. Pacing to Idle: A Com-
parison of Heuristics for Energy-aware Resource
Allocation”. In: HotPower. 2013.

[20] H. Hoffmann. “CoAdapt: Predictable Behavior for
Accuracy-Aware Applications Running on Power-
Aware Systems”. In: ECRTS. 2014.

[21] H. Hoffmann, A. Agarwal, and S. Devadas. “Se-
lecting Spatiotemporal Patterns for Development
of Parallel Applications”. In: IEEE Trans. Parallel
Distrib. Syst. 23.10 (2012), pp. 1970–1982.

[22] H. Hoffmann and M. Maggio. “PCP: A General-
ized Approach to Optimizing Performance Under
Power Constraints through Resource Management”.
In: ICAC. 2014.

[23] H. Hoffmann, M. Maggio, M. D. Santambrogio, A.
Leva, and A. Agarwal. “A Generalized Software
Framework for Accurate and Efficient Managment
of Performance Goals”. In: EMSOFT. 2013.

[24] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agar-
wal, and M. Rinard. Using Code Perforation to Im-
prove Performance, Reduce Energy Consumption,
and Respond to Failures. Tech. rep. MIT-CSAIL-
TR-2009-042. MIT, 2009.

[25] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Mi-
sailovic, A. Agarwal, and M. Rinard. “Dynamic
Knobs for Responsive Power-Aware Computing”.
In: ASPLOS. 2011.

[26] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu.
“Dynamic Voltage Scaling in Multitier Web Servers
with End-to-End Delay Control”. In: Computers,
IEEE Transactions on 56.4 (2007), pp. 444 –458.

[27] C. Imes, D. H. K. Kim, M. Maggio, and H. Hoff-
mann. “POET: A Portable Approach to Minimiz-
ing Energy Under Soft Real-time Constraints”. In:
RTAS. 2015.

[28] E. Kalyvianaki, T. Charalambous, and S. Hand.
“Self-adaptive and self-configured CPU resource
provisioning for virtualized servers using Kalman
filters”. In: ICAC. 2009.

[29] E. Kalyvianaki, T. Charalambous, and S. Hand.
“Adaptive Resource Provisioning for Virtualized
Servers Using Kalman Filters”. In: TAAS 9.2 (2014).

[30] M. Kambadur and M. Kim. Energy Exchanges: In-
ternal Power Oversight for Applications. Tech. rep.
CUCS-009-14. Columbia, 2014.

[31] M. Kambadur and M. Kim. “Trading Functionality
for Power within Applications”. In: APPROX. 2014.

[32] M. N. Katehakis and A. F. Veinott. “The Multi-
Armed Bandit Problem: Decomposition and Com-
putation”. In: Mathematics of Operations Research
12.2 (1987), pp. 262–268. DOI: 10.1287/moor.
12.2.262.

[33] M. Kim, M.-O. Stehr, C. Talcott, N. Dutt, and N.
Venkatasubramanian. “xTune: A Formal Methodol-
ogy for Cross-layer Tuning of Mobile Embedded
Systems”. In: ACM Trans. Embed. Comput. Syst.
11.4 (Jan. 2013).

[34] E. Le Sueur and G. Heiser. “Slow Down or Sleep,
That is the Question”. In: Proceedings of the 2011
USENIX Annual Technical Conference. Portland,
OR, USA, 2011.

[35] W. Levine. The control handbook. Ed. by W. Levine.
CRC Press, 2005.

[36] B. Li and K. Nahrstedt. “A control-based middle-
ware framework for quality-of-service adaptations”.
In: IEEE Journal on Selected Areas in Communica-
tions 17.9 (Sept. 1999).

[37] X. Li, R. Gupta, S. V. Adve, and Y. Zhou. “Cross-
component energy management: Joint adaptation of
processor and memory”. In: ACM Trans. Archit.
Code Optim. 4.3 (Sept. 2007).

[38] S. Liu, K. Pattabiraman, T. Moscibroda, and B.
G. Zorn. “Flikker: saving DRAM refresh-power
through critical data partitioning”. In: ASPLOS.
2011.

[39] M. Maggio, E. Bini, G. C. Chasparis, and K.-E.
Årzén. “A Game-Theoretic Resource Manager for
RT Applications”. In: ECRTS. 2013.

[40] M. Maggio, H. Hoffmann, A. V. Papadopoulos, J.
Panerati, M. D. Santambrogio, A. Agarwal, and
A. Leva. “Comparison of Decision-Making Strate-
gies for Self-Optimization in Autonomic Comput-
ing Systems”. In: ACM Trans. Auton. Adapt. Syst.
7.4 (Dec. 2012), 36:1–36:32. ISSN: 1556-4665. DOI:
10.1145/2382570.2382572. URL: http:
/ / doi . acm . org / 10 . 1145 / 2382570 .
2382572.

[41] M. Maggio, H. Hoffmann, M. D. Santambrogio, A.
Agarwal, and A. Leva. “Power Optimization in Em-
bedded Systems via Feedback Control of Resource
Allocation”. In: IEEE Trans. on Control Systems
Technology 21.1 (2013).

[42] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D.
Weber, and T. F. Wenisch. “Power management of
online data-intensive services”. In: ISCA (2011).

[43] N. Mishra, H. Zhang, J. D. Lafferty, and H. Hoff-
mann. “A Probabilistic Graphical Model-based Ap-
proach for Minimizing Energy Under Performance
Constraints”. In: ASPLOS. 2015.

[44] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R.
Rajamony, and R. Rajkumar. “Critical Power Slope:
Understanding the Runtime Effects of Frequency
Scaling”. In: ICS. 2002.

[45] K. V. Palem. “Energy aware algorithm design via
probabilistic computing: from algorithms and mod-
els to Moore’s law and novel (semiconductor) de-
vices”. In: CASES. 2003.

[46] K. V. Palem and L. Avinash. “Ten Years of Building
Broken Chips: The Physics and Engineering of In-
exact Computing”. In: ACM Trans. Embedded Com-
put. Syst. 12.2s (2013), p. 87.

[47] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek.
“A resource allocation model for QoS manage-
ment”. In: RTSS. 1997.

[48] M. Rinard. “Probabilistic accuracy bounds for fault-
tolerant computations that discard tasks”. In: ICS.
2006.

[49] M. C. Rinard, H. Hoffmann, S. Misailovic, and
S. Sidiroglou. “Patterns and statistical analysis for
understanding reduced resource computing”. In:
OOPSLA. 2010.

[50] E. Rotem, A. Naveh, D. R. amd Avinash Ananthakr-
ishnan, and E. Weissmann. “Power management ar-
chitecture of the 2nd generation Intel Core microar-
chitecture, formerly codenamed Sandy Bridge”. In:
Hot Chips. Aug. 2011.

[51] A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D.
Mazières, and N. Zeldovich. “Energy Management
in Mobile Devices with the Cinder Operating Sys-
tem”. In: EuroSys. 2011.

[52] M. Salehie and L. Tahvildari. “Self-adaptive soft-
ware: Landscape and research challenges”. In: ACM
Trans. Auton. Adapt. Syst. 4.2 (2009), pp. 1–42.
ISSN: 1556-4665. DOI: http://doi.acm.org/
10.1145/1516533.1516538.

[53] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapra-
gasam, L. Ceze, and D. Grossman. “EnerJ: approx-
imate data types for safe and general low-power
computation”. In: PLDI. 2011.

[54] A. Sharifi, S. Srikantaiah, A. K. Mishra, M. Kan-
demir, and C. R. Das. “METE: meeting end-to-end
QoS in multicores through system-wide resource
management”. In: SIGMETRICS. 2011.

[55] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang,
and Z. Chen. “Power Containers: An OS Facility
for Fine-grained Power and Energy Management on
Multicore Servers”. In: ASPLOS. 2013.

[56] S. Sidiroglou-Douskos, S. Misailovic, H. Hoff-
mann, and M. Rinard. “Managing performance vs.
accuracy trade-offs with loop perforation”. In: ES-
EC/FSE. 2011.

[57] D. C. Snowdon, E. Le Sueur, S. M. Petters, and
G. Heiser. “Koala: A Platform for OS-level Power
Management”. In: EuroSys. 2009.

http://dx.doi.org/10.1287/moor.12.2.262
http://dx.doi.org/10.1287/moor.12.2.262
http://dx.doi.org/10.1145/2382570.2382572
http://doi.acm.org/10.1145/2382570.2382572
http://doi.acm.org/10.1145/2382570.2382572
http://doi.acm.org/10.1145/2382570.2382572
http://dx.doi.org/http://doi.acm.org/10.1145/1516533.1516538
http://dx.doi.org/http://doi.acm.org/10.1145/1516533.1516538

[58] J. Sorber, A. Kostadinov, M. Garber, M. Brennan,
M. D. Corner, and E. D. Berger. “Eon: a language
and runtime system for perpetual systems”. In: Sen-
Sys. 2007.

[59] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee,
C. Pu, and J. Walpole. “A Feedback-driven Propor-
tion Allocator for Real-rate Scheduling”. In: OSDI.
1999.

[60] SWISH++. http://swishplusplus.sourceforge.
net/.

[61] A. Tannebaum. Modern Operating Systems. Pear-
son/Prentice Hall, 2008.

[62] M. Tokic. “Adaptive ε-Greedy Exploration in Rein-
forcement Learning Based on Value Differences”.
In: KI. 2010.

[63] V. Vardhan, W. Yuan, A. F. H. III, S. V. Adve,
R. Kravets, K. Nahrstedt, D. G. Sachs, and D. L.
Jones. “GRACE-2: integrating fine-grained applica-
tion adaptation with global adaptation for saving en-
ergy”. In: IJES 4.2 (2009).

[64] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R.
Kothari. “Server workload analysis for power mini-
mization using consolidation”. In: USENIX Annual
technical conference. 2009.

[65] M. Weiser, B. B. Welch, A. J. Demers, and S.
Shenker. “Scheduling for Reduced CPU Energy”.
In: OSDI. 1994.

[66] W. Yuan and K. Nahrstedt. “Energy-efficient soft
real-time CPU scheduling for mobile multimedia
systems”. In: SOSP. 2003.

[67] R. Zhang, C. Lu, T. Abdelzaher, and J. Stankovic.
“ControlWare: A middleware architecture for Feed-
back Control of Software Performance”. In: ICDCS.
2002.

[68] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fe-
dorova, and M. Prieto. “Survey of Energy-Cognizant
Scheduling Techniques”. In: IEEE Trans. Parallel
Distrib. Syst. 24.7 (2013), pp. 1447–1464. DOI:
10 . 1109 / TPDS . 2012 . 20. URL: http :
//doi.ieeecomputersociety.org/10.
1109/TPDS.2012.20.

http://swishplusplus.sourceforge.net/
http://swishplusplus.sourceforge.net/
http://dx.doi.org/10.1109/TPDS.2012.20
http://doi.ieeecomputersociety.org/10.1109/TPDS.2012.20
http://doi.ieeecomputersociety.org/10.1109/TPDS.2012.20
http://doi.ieeecomputersociety.org/10.1109/TPDS.2012.20

	Introduction
	Energy Guarantees with JouleGuard
	Summary of Results
	Contributions

	Motivation
	System-level Approach
	Application-level Approach
	Uncoordinated Application and System
	Coordinated Application and System Approaches
	Lessons Learned

	JouleGuard
	Notation
	System Energy Optimization
	Application Accuracy Optimization
	Control Theoretic Formal Guarantees
	Stable and Convergent
	Robust to Learning Inaccuracies
	Impossible Goals

	Implementation
	Application Accuracy Requirements
	Modification for Approximate Hardware

	Experimental Setup
	Applications
	System
	System Characterization

	Evaluation
	JouleGuard Overhead
	Methodology
	Stability and Convergence
	Optimality
	Comparison to Other Approaches
	Reaction to Application Phases
	Results Summary

	Related Work
	Approximate Applications
	Energy-aware Systems
	Cross-layer Approaches
	Adaptive Control Systems

	Conclusion

