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Abstract—Many modern software applications have perfor-
mance requirements, like mobile and embedded systems that
must keep up with sensor data, or web services that must return
results to users within an acceptable latency bound. For such
applications, the goal is not to run as fast as possible, but to meet
their performance requirements with minimal resource usage, the
key resource in most systems being energy. Heuristic solutions
have been proposed to minimize energy under a performance
constraint, but recent studies show that these approaches are not
portable – heuristics that are near-optimal on one system can
waste integer factors of energy on others. The POET library
and runtime system provides a portable method for resource
management that achieves near-optimal energy consumption
while meeting soft real-time constraints across a range of devices.
Although POET was originally designed and tested on embedded
and mobile platforms, in this paper we evaluate it on a manycore
server-class system. The larger scale of manycore systems adds
some overhead to adjusting resource allocations, but POET
still meets timing constraints and achieves near-optimal energy
consumption. We demonstrate that POET achieves portable
energy efficiency on platforms ranging from low-power ARM
big.LITTLE architectures to powerful x86 server-class systems.

I. Introduction

Portability has long been a design goal for software systems
– when new hardware platforms become available, we would
ideally reuse software without modification. As software per-
formance became increasingly important, attention turned to
performance portability. Today, energy is increasingly becom-
ing a key concern for developers, making energy portability an-
other important design consideration for software. Put simply,
energy-portable software should achieve near-minimal energy
across a range of devices without requiring software rewrites
or platform-specific code optimizations.

As energy concerns have come to dominate computer
system designs, architects have responded by making proces-
sors increasingly configurable. For example, current processors
expose multiple processor speeds, multiple cores, and even
different core types. All these resources must be managed by
software. While increasing configurability increases the poten-
tial energy savings, it can also reduce portability if a software’s
resource management strategies are specific to a particular
architecture, platform, or system design implementation. A
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recent study shows that on heterogeneous multicores, e.g.,
ARM big.LITTLE [24], cores should be kept busy much of
the time [6]. Another study compares an Intel mobile Haswell
processor to a Samsung ARM big.LITTLE System-on-Chip
and demonstrates that resource allocation heuristics that are
near-optimal for one can be extremely inefficient on the other
[21]. Even different models of processor intended for the same
market and built by the same manufacturer can radically differ
in their response to heuristic resource allocation strategies [25].
Thus, it is currently up to software developers to understand the
nuances of energy consumption on target platforms and write
code that can achieve good energy consumption on all possible
target platforms. This problem becomes even more challenging
if attempting to “future-proof” software so that it will achieve
good energy efficiency on platforms that do not even exist yet.
Clearly, it is necessary to support energy-portable code and
relieve software developers from this burden.

Recent work proposed POET, the Performance with Opti-
mal Energy Toolkit, to enable energy portability for applica-
tions with performance constraints1. With POET, application
developers specify performance requirements through a soft-
ware interface and available resources using configuration files.
The POET runtime system is linked into applications and then
automatically manages resources to meet goals. POET uses
control theory to meet performance goals and mathematical
optimization to determine minimal-energy resource schedules.

While POET has demonstrated energy portability on em-
bedded and mobile systems, it has not been evaluated on large-
scale multicores (or manycores) which are currently used in
server-class processors and will become increasingly prevalent
in other systems as well – e.g., the TILEPro architecture
supports up to 64 cores and is designed to run embedded work-
loads [18]. This paper evaluates POET on a large multicore
system. We find that, despite an order of magnitude increase
in configurability, POET is still able to meet performance goals
with minimal energy.

We use a dual-socket Intel Xeon system with 16 physical
cores, hyperthreading, and 16 different DVFS clockspeeds,
including TurboBoost. Whereas the prior evaluation platforms
had at most 68 configurations, this evaluation platform has 512.
Naturally, the larger configuration space results in higher over-
head. However, we find that the overhead comes predominantly
from the time it takes the system to change configurations,
which any adaptive resource scheduling strategy requires, not
from POET itself. We conclude that future multicore and

1POET is open source – the code is available by following links on the
project web page at http://poet.cs.uchicago.edu/
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Fig. 1: Overview of the POET runtime.

manycore systems must not only support configurability, but
must make changing configurations efficient and low-overhead.

II. General and Portable Resource Allocation

This section reviews POET’s design, originally presented
in [22]. POET has two design goals: (1) providing predictable
timing and (2) minimizing energy consumption given the
timing constraint. POET addresses the first goal using control
theory and the second using mathematical optimization.

Figure 1 illustrates POET’s design. The application speci-
fies a target job latency. POET’s runtime measures job latency
and the error between the desired and measured latency.
The controller then calculates a generic speedup signal. The
optimizer treats the speedup signal as a constraint and then
determines a minimal-energy resource allocation that will
respect the specified speedup constraint. For portability, both
the controller and the optimizer are independent of any partic-
ular application and system. POET assumes applications are
composed of repeated jobs with soft deadlines. POET targets
many and multicore platforms, so we assume each job may be
processed by multiple, communicating threads.

A. Controller

The controller cancels the error between the desired job
deadline dr and its measured latency dm(t) at time t. We
consider the error e(t) using the abstraction of the job speed,
where the required speed is 1/dr and the measured speed at
time t is 1/dm(t).

e(t) =
1

dr

−
1

dm(t)
(1)

POET models latency as:

dm(t) =
1

s(t − 1) · b(t − 1)
(2)

where s(t) is the speedup to achieve with respect to b(t), the
base application speed, i.e., the speed of the application when
it uses the minimum amount of resources. POET’s controller
uses the error computed by Eqn. 1 to calculate the speedup
signal s(t) in Eqn. 2. The controller acts at discrete time
intervals and implements the integral control law [13]:

s(t) = s(t − 1) + (1 − p) ·
e(t)

b(t)
(3)

where p is a user-configurable pole of the closed loop charac-
teristic equation [11]. To ensure the controller reaches a steady
state without oscillations, we enforce 0 ≤ p < 1. A small p will
cause the controller to react quickly, potentially producing a
noisy speedup signal. A large p ensures robustness with respect
to transient fluctuations, making it slow to respond to external
changes, and may be beneficial for very noisy systems.

The application’s base speed is represented by b(t). Differ-
ent applications will have different base speeds and may even
have phases, where base speed changes over time. Therefore,

POET continually estimates base speed using a Kalman fil-
ter [38], which adapts b(t) to the current application behavior.
More details on the Kalman filter are presented in the original
POET paper [22].

POET’s control formulation is independent of a particular
application as it uses the Kalman filter to estimate the applica-
tion base speed. Unlike prior work, the POET controller does
not reason about a particular set of resources, but computes a
generic control signal s(t).

B. Optimizer

The optimizer turns the speedup signal into a system-
specific resource allocation strategy, producing a schedule for
the available resources. To translate the continuous signal into
a schedule for discrete resources, the optimizer considers the
next τ time units. Specifically, POET completes I(t) jobs in
the next interval, with I(t) = τ · s(t) · b(t). Both the number of
jobs to be completed and an acceptable scheduling period τ
are specified by the application.

As shown in Figure 1, the POET optimizer is given a
resource specification that defines the available configurations.
There are C possible configurations in the system and we
number the configurations from 0 to C−1. c = 0 corresponds to
the minimal-resource configuration, while configuration C − 1
makes all resources available. Each configuration c has a power
consumption pc and speedup sc, normalized to c = 0.

POET assigns a time τc to spend in each configuration c
such that I(t) iterations complete and the total energy con-
sumption is minimized. Formally, POET solves the following
optimization problem:

minimize

C−1
∑

c=0

τc · pc (4)

s.t.

C−1
∑

c=0

τc · sc · b(t) = I(t) (5)

C−1
∑

c=0

τc = τ (6)

0 ≤ τc ≤ τ, ∀c ∈ {0, . . . ,C − 1} (7)

Eqn. 4 minimizes the total energy consumption. Eqn. 5 con-
strains all jobs to complete within the next period. Eqn. 6
ensures that the time is fully scheduled and Eqn. 7 imposes
that a non-negative time is assigned to each configuration.
Recent work shows that an optimal solution to this problem
will correspond to at most two τc , 0 [25]. Furthermore, one
configuration will be the most energy-efficient configuration
above the required speedup, while the other will be the most
energy efficient configuration below the required speedup.

C. Portability

The controller and the optimizer both reason about speedup
instead of absolute performance or latency. The application’s
absolute performance, measured by the average latency of its
jobs, will vary as a function of the application itself and the
platform it executes on. However, speedup is a general concept
and can be applied to any application and system, providing
a more general metric for control. Moreover, the controller
customizes the behavior of a specific application using the base
speed estimate produced by the Kalman filter. The optimizer
operates in a platform-independent manner, using the available



1 #id speedup powerup

2 0 1.000 1.000

3 1 1.078 1.020

4 2 1.157 1.029

5 3 1.973 1.056

6 ...

7 109 34.935 5.271

8 110 35.223 5.296

9 111 35.501 5.483

1 #id frequency cores

2 0 1200000 0

3 1 1300000 0

4 2 1400000 0

5 3 1200000 1

6 ...

7 109 2901000 28

8 110 2901000 25

9 111 2901000 15

Fig. 2: Example of POET system-independent (left) and
system-specific (right) configuration files.

configurations provided as input to find the optimal solution
without relying on a particular heuristic that may be system-
specific or application-dependent. Finally, the customizable
pole p in Eqn. 3 allows for flexibility and robustness to
inaccuracies and noise.

III. Implementation

This section describes how the POET framework is realized
in a C library and runtime system.

A. POET’s External Inputs

POET requires three user-specified inputs: (1) the available
system configurations, (2) timing and power measurement
capabilities, and (3) the performance target2.

Two data structures track system configurations. The first is
system-independent and contains a configuration identifier and
speedup and powerup values. The second is system-specific
and can take any form a developer considers appropriate to
define a system configuration. In our evaluation, we specify
the configuration identifier, the DVFS setting, and the number
of processor cores to execute on. Figure 2 shows samples of
actual configuration files representing these data structures.

POET uses the Heartbeats API [14, 17] to monitor perfor-
mance and power. Applications are modified to emit heartbeats
at key intervals. POET then queries the heartbeat data structure
to extract the average job performance and power consumption
between two consecutive heartbeats over the previous window
period. The user provides the performance target through
the Heartbeats API, which is described in more detail in
Section IV-B. The timing targets can change during runtime,
and POET will adapt automatically.

B. POET’s Interface

Users interact with three POET functions. poet init
initializes POET and returns a poet state data structure ref-
erence. poet apply control executes the controller, com-
putes the optimal-energy configuration schedule, and config-
ures the platform. poet destroy cleans up the poet state
data structure.

POET’s initialization function requires references to: the
heartbeat data structure, the system’s configurations, and the
function that applies the given configurations. It also re-
ceives an optional reference to the function that determines
the system’s current state and a log file name. The first
configuration data structure (system-independent) is of type
poet control state t, and the second (system-specific)
has type void.

The two functions passed by reference are the only ones
that need to know the second data structure’s format, and are

2Performance is easily derived from a latency target or timing deadline.

TABLE I: System power characteristics.
Idle Power Min Power Max Power

17.90 W 37.80 W 199.26 W

therefore passed the void type reference given to poet init
as parameters. The first of these two functions must have a
signature that matches the poet apply func definition and
the second must match the poet curr state func defi-
nition. The other two API functions, poet apply control
and poet destroy, take the poet state reference as their
only parameter. This variable contains all the control state
required to implement the framework described in Section II.

Auxiliary functions are also provided to load system con-
figurations from files, discover the initial system configuration,
and apply system configurations. The latter two of these
meet the poet curr state func and poet apply func
definitions, respectively, and can be passed to poet init.
These auxiliary functions are platform-dependent and thus
kept separate to maintain portability, allowing users to easily
substitute their own versions. They are, however, generic
enough that most Linux users do not need to write their own.

C. POET’s Runtime

After issuing a heartbeat, the application calls the
poet apply control function, which contains POET’s
core logic. Heartbeats are initialized with a window size
indicating how many jobs to complete in a given time interval.
The window size is the interval I(t) from Eqn. 5, while the
time interval is τ from Eqn. 7. When the window completes,
POET estimates base speed, computes error with Eqn. 1, and
computes the speedup control signal with Eqn. 3. Having
computed the speedup signal, POET uses mathematical opti-
mization to determine the resource configuration schedule [25].
Once POET has determined the schedule, it puts the system in
the scheduled configuration by calling the poet apply func
function at the appropriate work interval.

IV. Using POET

A. Testing Platform

We evaluate POET on a dual-socket server system, where
each socket contains 8 cores. With hyperthreading, the sys-
tem exposes 32 virtual cores. There are 16 DVFS settings
available, including TurboBoost. A configuration is a unique
combination of allowable values for the system resources. The
system runs Ubuntu 14.04 LTS with Linux kernel 3.13.0. We
control core allocation with taskset and DVFS settings with
cpufrequtils. For both simplicity and consistency, we set
the DVFS frequency on all cores, regardless if a particular
core is being used.

We capture runtime energy data from each socket’s Model-
Specific Register (MSR) [34]. Capturing power metrics natu-
rally requires hardware resources that expose power or en-
ergy data to software. The Heartbeats implementation we use
includes energy readers for some common hardware (e.g.,
the MSR) and exposes a simple interface for extending to
new hardware. Collecting power data on new platforms with
different power or energy monitors is easy and does not require
any modifications to POET.

B. Applications

Our analysis uses the same eight benchmarks that POET
was originally evaluated with [22]. None of the applications



were originally written to provide predictable performance,
which challenges POET’s approach as much as possible.

The first five applications are from the PARSEC benchmark
suite [3]. Specifically, we use blackscholes, bodytrack,
facesim, ferret, and x264. Blackscholes uses partial dif-
ferent equations to price financial investment portfolios. Both
bodytrack and x264 process video input. Ferret performs
content-based similarity search of non-text data. Facesim an-
imates a human face from a model and time sequence of
muscle movements. The next two applications are from the
ParMiBench benchmark suite [23] – dijkstra and sha.
Dijkstra computes single-source shortest paths in graphs. SHA
is a hashing algorithm used for secure data transmission and
storage. The sha application is also unique in that it only
supports up to 8 threads, so we do not execute it on more
cores than that. The final application is STREAM [30], which
represents memory-bound applications.

The applications were modified as discussed in Section III,
and remain unchanged from POET’s original evaluation on
embedded systems. The following snippet is an example of
application code, highlighting the POET function calls.

1 // initialization

2 heartbeat_t* heart =

3 heartbeat_acc_pow_init(window_size , buffer_depth ,

4 "heartbeat.log", min_heartrate , max_heartrate ,

5 min_accuracy , max_accuracy , 1,

6 hb_energy_impl_alloc(), min_power , max_power);

7 get_control_states(NULL, &control_states , &nstates);

8 get_cpu_states(NULL, &cpu_states , &nstates);

9 poet_state* state = poet_init(heart, nstates,

10 control_states , cpu_states , &apply_cpu_config ,

11 &get_current_cpu_state , buffer_depth , "poet.log");

12 // execution of main loop

13 while(running) {

14 heartbeat_acc(heart, count++, 1);

15 poet_apply_control(state);

16 doWork();

17 }

18 // cleanup

19 poet_destroy(state);

20 free(control_states);

21 free(cpu_states);

22 heartbeat_finish(heart);

Listing 1: Example of POET application code.

POET requires only minimal changes to application code.
A trivial example requires only an additional 14 lines of code:
nine function calls and associated variable declarations. The
user provides a desired performance target via the Heart-
beats API using the min heartrate and max heartrate
variables. These variables represent a desired minimum and
maximum speed in terms of jobs completed per second. POET
simply averages these two values, so in practice they can be
the same. Given I(t) jobs in a window period and a target job
latency τ, the performance values are simply computed as:

min heartrate = max heartrate =
I(t)

τ
(8)

As demonstrated above, the Heartbeats initialization also
accepts requests for minimum and maximum accuracy and
power. Since POET does not use these fields, they can safely
be set to any value, e.g., 0. When initializing POET, the user
specifies the system’s configurations, which are encoded in the
control states and cpu states variables. The former is
an array of type poet control state t. As described in
Section III, the latter can be of any type the developer sees fit –
in our evaluation, it is an array of type poet cpu state t.

TABLE II: Input and Configuration Details.
Application Input Jobs Window Size

blackscholes 10 million options 400 batches 50

bodytrack sequenceB 261 frames 50

facesim Storytelling 100 frames 20

ferret corel:lsh 2,000 queries 50

x264 rush hour 1,500 frames 100

dijkstra input large 1,000 paths 50

sha in file(1-16) 1,000 hashes 50

STREAM self-generated 1,000 updates 50
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Fig. 3: Application Latency Variability.

C. Application Inputs

Table II lists the inputs used for each application. All inputs
are packaged with the original benchmarks, except for the x264
input which comes from a set of standard test sequences. The
server-class system used in this paper is significantly more
powerful than the embedded systems POET was originally
evaluated with. The overhead of changing resource allocations
is also higher due to the larger core count. As a result, we
increased both the size or length of some inputs and the
window period size.

We quantify the inherent unpredictability of the applica-
tions by measuring the each job’s latency, then computing the
standard deviation and mean over all jobs in an application.
Figure 3 demonstrates the ratio of standard deviation to mean
for each application when running without POET. The applica-
tions have a range of natural behavior, from low variance which
implies natural predictability (e.g., bodytrack and dijkstra), to
high variance which means that the application naturally has
widely distributed latencies (e.g., ferret and x264).

V. Experimental Evaluation

POET’s experimental evaluation on the manycore server is
divided into four parts. First, we demonstrate POET’s ability
to meet the latency requirements, then compare the energy
consumption results to optimal. Next, we evaluate POET’s
ability to adapt to input with multiple phases, and finally, its
ability to run subject to interference from another application.

A. Meeting Latency Targets

We demonstrate that POET is able to meet latency targets
for each application on the manycore server system. First, we
characterize each application i by executing in all possible
configurations without POET. With these results, we determine
the minimum average job latency mi for each application
and derive an oracle to be used for our analysis. This ora-
cle determines an optimal resource schedule for each target
without missing any deadlines, and has no computation or
configuration switching overhead. Then we set latency targets
for each application that range from 25% to 95% of their
respective performance capacities. For example, a 25% goal
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means that the target is set to 4×mi. Applications are launched
in the maximum-resource configuration (configuration C − 1
as described in Section II-B). POET observes application
behavior during the first window period, then begins applying
system changes.

To quantify POET’s ability to meet the latency goals, we
measure each job’s latency and compare it to the goal. As was
done in POET’s prior analysis, we compute the Mean Absolute
Percentage Error (MAPE), a standard metric in control theory
for evaluating controller behavior [11]. For an application
composed of n jobs:

MAPE = 100% ·
1

n

n
∑

i=1



















dm(i) > dr :
dm(i) − dr

dr
dm(i) ≤ dr : 0

(9)

where dr is the specified latency requirement and dm(i) is the
measured latency for the i-th job. In short, for each missed
deadline we add a term that depends on the relative tardiness
between the target and measured latency.

Figure 4 presents the MAPE values for each application for
the four latency targets. The relationship between application
variability (Figure 3 in Section IV-C) and MAPE is clear
– higher variance typically results in higher MAPE. More
volatile applications are more unpredictable and therefore more
difficult to control. Still, the error values are generally low – on
par with POET’s behavior on embedded systems [22]. There
are a few outliers, particularly with ferret and x264, which
are both high variability applications. Ferret’s threads are
asynchronous, so work continues to be performed while system
changes are being applied which introduces unpredictability
into timing measurements. X264 is continuously creating and
destroying threads, sometimes causing errors when assigning
threads to cores with taskset. Further increasing the size
of the window period or adjusting the pole value in POET’s
controller helps offset these kinds of issues, and is described
further in Section V-E. MAPE penalizes every latency target
violation, and error cannot be made up later by finishing jobs
early. Still, POET achieves low MAPE for most executions on
the manycore server system, despite the applications not being
originally designed to provide predictable timing.

B. Energy Minimization

We now evaluate POET’s energy efficiency in meeting the
four latency targets by using the oracle derived from each
application’s characterization. Although the oracle has zero
overhead, meeting all latency targets while simultaneously
achieving optimal energy is not actually possible in practice
as it would require knowledge of the future and no overhead.

Figure 5 presents the ratio of energy consumption to opti-
mal for each latency target, where unity is optimal and values
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Fig. 5: Energy (lower is better, 1 is optimal).

greater than 1 show energy consumed over optimal. Executions
include the POET runtime overhead and the overhead imposed
by changing system configurations. There are more resources
to manage on the manycore server than on the embedded
systems POET was originally evaluated on, which increases
time and energy overhead. Despite the challenges, POET still
achieves near-optimal energy consumption.

The 25% target is clearly the most inefficient, and in
fact is not actually achievable for STREAM without idling,
which POET does not support. Ferret and x264 appear to be
efficient at the 25% target, but this is just a side effect of their
high MAPE. These observations are consistent with studies
on server-class systems that demonstrate how inefficient these
machines are when running at low utilizations [2, 41].

C. Responding to Application Phases

We examine POET with an application input that exhibits
changes in its behavior over time. In POET’s prior analysis,
we executed a video with the x264 application that was a
combination of three videos of varying encoding difficulty.
This analysis is the same, except that we have increased each
video phase length so that each phase is 1,500 jobs (frames),
for a total of 4,500 jobs.

Figure 6 shows the time series data for latency and power
consumption when running the application without POET in
the highest resource configuration (C − 1). We normalize
latency to the maximum recorded value. Frames that take less
time are easier to encode, and require fewer system resources
to meet a performance target compared to the frame that takes
the most time. The phases are clearly distinguishable by the
change in latency at frames 1,500 and 3,000. In the prior
evaluation, we noted that the two embedded systems did not
process each phase with the same relative latency. The first
phase was the most difficult (highest latency) for both systems,
but the second phase was the easiest (lowest latency) on one
while the third was the easiest on the other. Now on our server
system we find that the first and third phases are just about
the same level of difficulty, and the second phase is easiest.

Figure 7 demonstrates enabling POET with a target that
is about half of the system’s maximum performance (twice
the minimum latency). We launch the application in the
highest resource configuration. During the first 100 frames,
POET observes the application behavior, hence the low latency
and higher power consumption. The first resource adjustment
overshoots the latency target, reducing power consumption
below where it will stabilize. Latency and power settle around
frame 300, or the end of the second adjustment period. Later
fluctuations are a result of variability in the input video (x264
inputs exhibit high variance – see Figure 3). There is a
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Fig. 6: Processing x264 input with distinct phases.
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Fig. 7: Processing x264 input with distinct phases using POET.

discernible drop in power after frame 1,500, indicating the
start of the second phase where fewer resources are required to
meet the latency target. Power then increases after frame 3,000
when the processing again becomes more difficult. Despite
these variations, latency goals are respected: MAPE is 5.6%
and energy is 20.2% greater than optimal, which are similar
to the x264 results in Sections V-A and V-B.

D. Adapting to Other Applications

Finally, we demonstrate POET adapt to changes in system
resource behavior at runtime. For this experiment, we launch
the bodytrack application with POET and a performance
target of about 50% capacity. Halfway through the execu-
tion, we launch an application in the background that does
not use POET. This second application consumes system
resources, slowing down the POET-controlled bodytrack ex-
ecution. POET adapts by allocating more system resources,
i.e., increasing the DVFS speeds and/or allocating more cores
to bodytrack. Bodytrack then continues to meet the original
soft latency goal.

Figure 8 presents a time series for this scenario, including
the POET-controlled execution and another that uses a static
resource allocation strategy that fixes the resource assignments
at the start of the execution. The y-axis is normalized to the
latency target, and the vertical line indicates when the second
application is launched. For this test, we reduce the window
size from 50 to 40 frames which allows for more window
periods during the execution but increases volatility. As with
the previous experiments, we launch the POET-controlled
bodytrack application in the highest-resource setting, configu-
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Fig. 8: POET adapting to a background application.
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Fig. 9: POET with insufficient window size.

ration C − 1. During the first window period, POET observes
application behavior, then makes its first resource allocation
decision at frame 40. By frame 80, the end of the first period
of adjustment, the average window job latency is near the
target. After the second application is launched, there is a
temporary increase in latency. POET detects this change and
allocates additional resources so that the latency goal continues
to be met. This adaptation results in 5.0% MAPE for the entire
execution. In contrast, the static allocation strategy fails to meet
job deadlines after the second application begins, resulting in
23.9% MAPE.

POET adjusts resource allocations to adapt to changes
in system resource behavior. Assuming there are sufficient
resources still available, a POET-controlled application will
continue to meet its soft deadlines, despite interference within
the system.

E. Discussion of Results and Limitations

An important difference from the original POET analysis
is the choice of the window period size for applications. For
example, the bodytrack executions used a window size of
20 on the embedded systems, but we used a size of 50, and
later 40, for evaluations on the manycore server-class system
for the same application. Faster application performance and
larger number of resources on the server-class system increase
the relative overhead of changing system resource allocations
at runtime, making window size changes necessary. Figure 9
demonstrates the results of using a window size of 20, which
is too small, for a latency target of about 50% capacity (the
same one used in Section V-D). Although MAPE is still low
at 2.95%, the controller fails to converge, causing oscillations.

We measure the overhead of three resource allocation tasks:
(1) the POET controller and optimizer, which we call POET
Core, (2) application core assignment with taskset, which we
call Affinity, and (3) changing frequency settings with DVFS
for the 32 virtual cores. The latter two are executed by the
platform-specific function defined by poet apply func (see
Section III-B). Compared to a perfect implementation that
requires no computation or resource allocation overhead and
always meets the latency goal, each POET Core execution



adds 0.12 ms average latency overhead, each Affinity change
averages 62.24 ms, and each DVFS change averages 65.08 ms.
The POET Core overhead is negligible, but the others add
2.36% and 2.47% timing overhead to the example in Figure 9,
totaling almost 5%. That cost is like adding a whole additional
frame to the window period. Increasing the window size to
50 reduces the Affinity and DVFS overhead to less than 1%
each for this bodytrack performance target. Faster applications
require longer window periods to reduce the performance
impact caused by the fixed overhead of changing resource
allocations.

The POET design models overhead as error and lets the
control dynamics naturally correct any overhead. This ap-
proach works best on small-scale systems like those evaluated
in the original POET paper [22], but clearly has drawbacks on
the larger system evaluated in this paper. As explained above,
we can overcome this drawback by using larger windows to
amortize overhead. We could also extend POET to explicitly
account for overhead and the cost of switching configurations.
Such an approach would force POET to be conservative about
switching configurations and likely reduce energy savings.
A third approach would be to build hardware and operating
system support for rapid configuration changes. We believe
supporting this kind of adaptability is key for future multicore
systems, as faster configuration changes increase the potential
for energy savings.

Our results show that POET provides predictable timing
and near-minimal energy across multiple platforms. These
results are obtained despite the facts that 1) the tested ap-
plications were not originally designed to offer predictable
latency and 2) the test platforms have completely different
latency/energy tradeoffs. Applications require only minimal
modifications to run with POET, but no other changes are
needed to exploit the different resources and latency/energy
tradeoffs that different platforms offer. In summary, POET
achieves our design goal of enabling predictable timing with
near-optimal energy in a portable library. The code for POET
and the configurations used for the experiments are available
to reproduce the results.

The results also demonstrate some limitations of POET’s
approach. POET supports only soft real-time constraints. The
controller is guaranteed to converge to the desired latency
and is provably robust to errors, but latency goals may be
violated during the settling time, as seen in Figure 8 when
POET adapts to the presence of the new application. In
addition, highly variable applications can still cause temporary
latency violations before the control action settles again, as
seen in Figure 7 when controlling the high-variance x264
application. This is further evidence that there is a tension
between timeliness and energy reduction [5]. Recent work
has shown how to augment soft real-time systems with an
additional layer to achieve hard real-time constraints [10]. Such
an approach uses a system like POET to allocate resources for
energy efficiency, but uses an additional mechanism to ensure
that the deadlines are still met, even in the case of variability.
However, such hard real-time guarantees come at some other
costs.

POET is also sensitive to the resource specifications pro-
vided by the user. While the controller can tolerate large
errors, in practice it is best to classify applications by their
behavior, e.g., compute or memory-bound, and use different

configurations for each class of application. POET’s models
do not currently account for the time required to switch
between configurations. Instead, this overhead is modeled as
an inaccuracy in the specified speedup. Our results show that
this simplification works well in practice, but it may not be
sufficient with different resources that have extremely long
configuration transition latencies. In that case, the POET con-
troller and optimizer should be extended to account explicitly
for the overhead of switching configurations.

Finally, POET currently assumes that only one of the
running applications (consisting of multiple, possibly commu-
nicating threads) should meet a deadline. POET’s Kalman filter
guarantees that even when other applications are present in
the system, the controller will compute the correct speedup
to be applied, as demonstrated in Figure 8. However, future
work could extend POET with a priority scheme allowing
multiple POET-enabled applications to work concurrently. In
that scheme, high priority applications would be allocated the
needed resources and lower priority applications would run in
a best-effort mode.

VI. RelatedWork

Multicore processors are becoming increasingly config-
urable. They expose a variety of configurable resources, which
software can adjust to tune the tradeoff between delivered
performance and power or energy consumption. Examples
include exposing multiple DVFS settings, low-power idle
states, cores with aggressive clock-gating that use little energy
when idle, and heterogeneous cores of varying capability. This
flexibility allows the system to adapt to different circumstances
or different application needs, but it comes at the cost of
increasing software complexity. The problem is exacerbated
when software must achieve portability across a range of
different systems, all of which expose different resources to
software.

One simple heuristic for minimizing energy is race-to-idle,
which allocates all resources until a job completes and then
idles the system until the next job arrives [2]. This heuristic is
portable since it does not require knowledge about the system,
but empirical studies show that it is not optimal [2, 7, 39, 40].
A recent study by Kim et al. demonstrates that an optimal
solution requires knowledge of how the different configurable
resources in a system affect the specific application under
control – information which race-to-idle does not use [25]. The
same study shows that race-to-idle is dominated by a pace-to-
idle heuristic, i.e., pace-to-idle is theoretically never worse than
race-to-idle and can be much better.

It is not surprising that a number of different frameworks
have arisen for intelligently controlling multiple resources
to minimize energy. For example, Dubach et al. coordinate
several microarchitectural features [8]. Many approaches co-
ordinate various aspects of clockspeed and core usage [1,
4, 28, 32, 40]. METE is a control theoretic approach that
simultaneously manages clockspeed, memory bandwidth, and
core usage [35]. All of these approaches achieve great energy
savings, but do so in a system-specific manner. For example,
porting METE to a new system would require retuning the
controller. If the new system exposes new resources (e.g.,
heterogeneous core types), then the controller would have to
be redesigned from scratch. Clearly portability across a range
of multicore hardware requires a different approach.



Several frameworks have been proposed to meet real-time
constraints by managing multiple resources. These approaches
are typically implemented as middleware that take a speci-
fication of available resources and a performance goal, and
then meet that goal [33, 36, 42]. These approaches provide
portable real-time guarantees, which is itself a hard problem,
but they do not provide energy savings. LEO is a machine
learning system that can meet performance constraints with
minimal energy consumption [31]. LEO is very accurate and
provides high energy savings, even with no prior knowledge
of the application currently running. Its approach is extremely
portable, but also incurs very high overhead. Interestingly, LEO
and POET have complementary weaknesses – POET has low
runtime overhead, but requires prior knowledge in the form
of a configuration model while LEO has high overhead, but
requires no prior knowledge. The prior work most similar to
POET is PTRADE, which also uses control theory to manage
general collections of resources [14]. PTRADE minimizes
power consumption, but not necessarily energy. In addition,
PTRADE uses heuristic optimizations, which are not portable,
while POET uses a true minimal-energy scheduling algorithm.

Cross-layer approaches coordinate approximate applica-
tions and with system resource usage [12, 15, 16, 26, 27,
29, 37]. This approach has shown great benefits for media
applications which can switch to reduced accuracy algo-
rithms in response changing system constraints, e.g., reduced
resource availability [37]. Such cross-layer approaches can
achieve greater energy savings than adapting application or
system configurations alone, but they require the application
to alter its behavior dynamically. In contrast, POET provides
portable, energy-minimal resource usage without application-
level changes.

POET is inspired by prior approaches that abstract resource
management for portability [14, 33, 36, 42]. It is unique in its
energy awareness and the fact that it works across multiple
systems without application-level changes (apart from adding
POET calls in the first place).

VII. Conclusion

Prior work presented POET, a library and runtime de-
signed to provide portable energy efficiency under performance
constraints. Previous evaluations were confined to small-scale
embedded and mobile systems, like an ARM big.LITTLE
System-on-Chip with only 8W chip peak power dissipation.
This paper expands POET’s evaluation by running on a larger-
scale multicore – an Intel dual-socket server with about 200W
total peak power dissipation and an order of magnitude more
configurations. The combined evaluations demonstrate that
POET provides portable energy efficiency with soft perfor-
mance guarantees on a large range of systems. POET’s ability
to adapt its own internal control models (via the Kalman filter)
make it an example of a self-aware computing system, an
emerging class of management systems that helps navigate
conflicting requirements (e.g., achieving high performance
with low power consumption) [9, 19, 20].
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