
ESP: A Machine Learning Approach to Predicting

Application Interference

Nikita Mishra

University of Chicago

Dept. of Computer Science

nmishra@cs.uchicago.edu

John D. Lafferty

University of Chicago

Dept. of Statistics

lafferty@galton.uchicago.edu

Henry Hoffmann

University of Chicago

Dept. of Computer Science

hankhoffmann@cs.uchicago.edu

Abstract—Independent applications co-scheduled on the same
hardware will interfere with one another, affecting performance
in complicated ways. Predicting this interference is key to effi-
ciently scheduling applications on shared hardware, but forming
accurate predictions is difficult because there are many shared
hardware features that could lead to the interference. In this
paper we investigate machine learning approaches (specifically,
regularization) to understand the relation between those hard-
ware features and application interference. We propose ESP, a
highly accurate and fast regularization technique for application
interference prediction. To demonstrate this practicality, we
implement ESP and integrate it into a scheduler for both single
and multi-node Linux/x86 systems and compare the scheduling
performance to state-of-the-art heuristics. We find that ESP-based
schedulers increase throughput by 1.25-1.8× depending on the
scheduling scenario. Additionally, we find that ESP’s accurate
predictions allow schedulers to avoid catastrophic decisions,
which heuristic approaches fundamentally cannot detect.

I. INTRODUCTION

Applications co-scheduled on the same physical hardware
interfere with one another by contending for shared resources
[11, 18, 24, 36]. We quantify interference as slowdown—the
performance loss one application experiences in the presence
of co-scheduled applications. By accurately predicting slow-
down, a scheduler can optimally assign applications to physical
machines—leading to higher throughput in batch systems and
better quality-of-service for latency-sensitive applications.

Data center and super computer operators often have a great
deal of accumulated data about past jobs and their interference,
yet turning this data into effective interference predictors is
difficult [18]. To apply machine learning to build an accurate
predictor from this data, two fundamental decisions must be
made: (1) what features should be measured and (2) what
model maps these features into an accurate prediction. Smaller
feature spaces provide more computationally efficient models,
but may miss key data and reduce prediction accuracy. The
art to modeling is managing the tradeoffs between feature set
size and the model accuracy. One family of machine learning
techniques—regularization— addresses the particular problem
where the number of features is much larger than the number
of samples; i.e., the problem is ill-posed and unsolvable with
standard regression analysis. Regularization methods solve
such ill-posed problems by simultaneously selecting both the
features and the model [14, 32, 38].

This paper explores such state-of-the-art regularization
models for predicting application interference. We find that
regularized linear regression methods require a relatively small

number of features, but produce inaccurate models. In contrast,
non-linear models that include interaction terms—i.e., permit
features to be multiplied together—are more accurate, but are
extremely inefficient and not practical for online scheduling.

We therefore combine linear and non-linear approaches to
produce accurate and practical predictions. We call our ap-
proach ESP for Estimating co-Scheduled Performance. ESP’s
key insight is to split regularization modeling into two parts:
feature selection and model building. ESP uses linear tech-
niques to perform feature selection, but uses quadratic tech-
niques for model building. The result is a highly accurate
predictor that is still practical and can be integrated into real
application schedulers.

ESP assumes there is a known (possibly very large) set of
applications that may be run on the system and some offline
measurements have been taken of these individual applications.
Specifically, ESP measures low-level hardware features like
cache misses and instructions retired during a training phase.
At runtime, applications from this set may be launched in any
arbitrary combination. The goal is to efficiently predict the
interference (i.e., slowdown) of co-scheduled applications.

We evaluate ESP by integrating it into both single and
multi-node schedulers running on Linux/x86 servers. In the
single-node case, we construct a batch scheduler that orders
application execution to minimize the total completion time. In
the multi-node case, we build a first-come-first-serve scheduler
that assigns applications to nodes as they arrive to minimize
application slowdown. We compare ESP-based schedulers to
prior scheduling techniques that use contention-aware heuris-
tics to avoid interference [10, 24, 31]. We also compare ESP’s
accuracy to predictors built with a number of cutting-edge
regularization methods. We find:

• The single-node ESP schedules are, on average, 27%
faster than techniques based on heuristics. Even with its
runtime overhead, the ESP results are only 5% worse (on
average) than an oracle that has perfect knowledge of
interference and no overhead. See Section IV-B.

• The multi-node ESP schedules are 60% faster than ac-
tivity vector based schedules and only 5% to 13% worse
than an oracle. See Section IV-C.

• Critically, ESP produces better results as more appli-
cations are scheduled. ESP produces quantifiable per-
formance predictions while heuristic techniques simply
produce a binary decision: co-schedule or not. ESP’s
quantifiable predictions allow schedulers to make optimal
decisions even when interference cannot be avoided. In

contrast, heuristic techniques do not quantify interference
and thus cannot rank decisions. As the number of appli-
cations increases, the chance of heuristics making a very
poor choice in the face of unavoidable contention also
increases. See Section IV-D.

• ESP is more accurate than existing linear regression tech-
niques. When considering two applications, ESP is similar
to existing regularized linear regression techniques. Con-
sidering more than two applications, ESP is uniformly
more accurate than standard linear regression techniques.
See Section IV-E. For reasons explained in Section II-B,
existing regularized regression methods with interaction
terms cannot be evaluated for accuracy because their
models are too complex to be implemented in practice.

This paper makes the following contributions: 1) ESP, a
regularization method for predicting application interference,
2) Demonstration of ESP in both single and multi-node sched-
ulers, 3) Comparison to existing heuristic techniques on real
systems, 4) Comparison of ESP’s predictive accuracy to other
regularization methods, 5) Open-source code release1.

ESP is designed for relatively long running applications or
applications which are run multiple times. ESP requires access
to low-level hardware metrics, which its learning algorithm
uses as features. These features are not always accessible in
virtualized environments; however, we believe the improved
performance of ESP’s scheduling algorithms presents a strong
argument for making these low-level metrics accessible.

ESP helps scheduling at multiple levels: it determines
which applications should run together on a single node, it
determines which node a new application should be scheduled
on, and it avoids disastrous decisions that heuristic schedulers
cannot. Support for data analytics has become an important
research topic in computing systems, and this paper explores
how data analytics can be used to improve computing systems.

II. REGULARIZATION

This section discusses current state-of-the-art regularization
methods and how they could be used to predict application
interference. While complete coverage is beyond the paper’s
scope, our goal is to present enough background for readers
to understand ESP’s unique approach.

We use a running example to build intuition:
Example Suppose we have 4 applications given as, {bfs,
cfd, jacobi, kmeans }. For each application, we mea-
sure 4 features of its execution when run by itself: instructions
per clock (IPC), L2 Access Rate(L2), L3 Access Rate(L3)
and its memory bandwidth (MEM). The goal is to predict the
slowdown that each of these applications will experience when
run together in any combination knowing only these 4 features
for each application run individually.

A. Regularization Overview

We are interested in predicting applications’ slowdown
when co-scheduled with other applications as a function of
individual applications’ features. The following is a general
formulation of this problem:

z ∼ f(X), (1)

1The code is available at https://github.com/ESPAlg/ESP

where z is a vector each element is one application’s slowdown
when run with the other applications. X is a matrix containing
the measured features of applications when run individually.
f(.) is theprediction function that maps the measured features
into predicted slowdown. The ∼ sign indicates that z is a
random variable drawn from a distribution given by f(.).

To go from Equation (1) to a useful model two issues must
be addressed: (1) which features we choose to include in X
and (2) what function f(.) best represents this problem. In
fact, these issues are intertwined; depending on the features
we include we can choose different functions. It is important
to choose a function that captures the data without overfitting
so that the model’s generalization error is small. The model
also must be computationally fast so that it is practical.

Example Suppose we want to predict the interference of
bfs and cfd when co-scheduled. The vector z represents
slowdown, with the first element bfs’s slowdown and the
second is cfd’s. X in Equation (1) is constructed using IPC,
L2, L3 and MEM of the bfs and cfd when they run in
isolation. The first four columns of X are the features for bfs
and the last four columns are cfd’s features. The goal is to
find the f(.) that produces the best prediction of slowdown.

B. Linear Regression

Regression models are the most commonly used statistical
models for predictions. A linear model predicts outcomes as a
linear combination of input features:

z = Xβ + ǫ, (2)

z ∈ R
n is the dependent variable to be predicted. X ∈ R

n×p is
the measured independent features. β ∈ R

p is the coefficient
vector that combines the features to produce the prediction.
ǫ ∈ R

n is a vector representing inherent noise.

Building a linear model is the process of determining β
by running experiments and measuring both the features and
the corresponding outcomes. These measurements are samples
of z and X, written as (s(z), s(X)). After sampling, s(z) and
s(X) are known and we can solve for β. Then we use β and
new features (X) to predict z for unobserved instances.

C. Regularized Linear Regression

When determining β, if the number of samples in z (or
length of s(z)) is less than the number of features p the prob-
lem is ill-posed; i.e., X is not invertible and there are infinitely
many solutions. This particular case where p > n is called the
high-dimensional setting. Machine learning researchers have
developed several regularization methods which add structure
to high-dimensional problems to make them solvable.

Example To apply linear regression, f(.) is chosen to be
f(.) = Xβ and β is the parameter that to be learned from
the data. For example, we could observe 3 pairs from the set
of 6 pairs (for the 4 example applications) and predict the
performance for the other 3 pairs. z denotes our applications’
performance vector, thus for 3 pairs, z ∈ R

6. The matrix X
in Equation (1) is X ∈ R

6×8 and β ∈ R
8. Now, the system of

equations z = Xβ has infinitely many solutions so we must
regularize—i.e., add more structure to—the problem.

There are several methods to add structure to a regression
problem. In general, none are uniformly better than the others

and their performance is data-dependent. Hence, standard
practice is to use the model with the highest out-of-sample
predictive power; i.e., to separate samples into training and
test data, build multiple models with the training data, and use
the model that most accurately predicts the test data.

1) Ridge regularization: One way to add structure to the
problem is to include additional constraints. Ridge regression
penalizes large coefficients in β [14] by requiring that ‖β‖22 ≤
t, where t is a threshold:

min
β

‖z−Xβ‖22 s.t. ‖β‖22 ≤ t (3)

Example Adding the ridge regularizer to our example, the

modified problem is ‖z − Xβ‖22 and
∑8

i=1 β
2[i] < t. This

problem has a unique solution for a given t. This method
shrinks large β values but does not make them 0. Hence, even
if feature i is not important it has a positive coefficient βi.
Thus this approach may incorporate irrelevant features into
the model. In our example, it is unlikely that L2 Access Rate
is a valuable feature for predicting application interference,
as L2 caches are private in most server-class processors and
therefore not a source of contention.

2) Lasso regularization: feature selection is another regu-
larization method equivalent to setting some elements of β to
0, so those features cannot influence z. Formally, feature se-
lection can be achieved by adding L0 constraint—‖β‖0 ≤ t—
to Equation (2), but doing so makes the problem non-convex
and NP-hard. L1 regularization—known as lasso—is the best
convex relaxation for L0 regularization:

min
β

‖z−Xβ‖22 s.t. ‖β‖1 ≤ t (4)

Using lasso, the number of selected features will be smaller
than the number of samples. A potential drawback, however,
is that it cannot capture models where there are more relevant
features than samples.

Example The modified example looks like, ‖z−Xβ‖22 and
∑8

i=1 |β[i]| < t. Lasso regularization will set n − p features
to 0. In our example, that means three features will be zeroed
out. This could be a problem because it is likely that IPC, L3
accesses, and Memory Bandwidth for both applications (i.e., a
total of 6 features for the two applications) will be necessary to
predict interference as all three of these features correspond to
shared hardware structures. Specifically, lasso regularization
will probably zero-out the L2 Accesses for both applications,
but by construction, it must also zero-out at least one of the
relevant features, likely producing lower accuracy estimates.

3) Elastic-net regularization: Elastic-net addresses the
drawbacks of the two previous techniques [38]:

min
β

‖z−Xβ‖22 s.t. α‖β‖22 + (1− α)‖β‖1 ≤ t (5)

where α = λ1/(λ1 + λ2) and λ1 and λ2 are the regularization
parameters. In practice, setting α = 0.5 is common and λ1 is
set during model training using cross-validation. Thus under
these settings elastic-net is,

EN(z,X) = argmin
‖β‖2

2
+‖β‖1≤t

‖z−Xβ‖22 (6)

Elastic-net groups variables so that strongly correlated vari-
ables tend to be selected or rejected together.

Example Adding elastic-net to our example, the modified

problem looks like, ‖z − Xβ‖22 and
∑8

i=1 α|β[i]| + (1 −
α)‖β[i]‖2 < t. The regularization in this case would shrink
large values for β and some coefficients would shrink to
0. It would zero-out unimportant feature like L2 for both
applications, yet capture all the important features (IPC, L3,
MEM) for both applications even when the number of samples
is smaller than the number of features.

D. Higher-order Models

In some cases, linear models do not accurately predict the
problem. One higher-order approach is to add interaction terms
to the model, meaning that the dependent variable is possibly
a multiplicative combination of some features.

A model with interaction terms can be found by adding
additional terms to X and β. Thus, a high dimensional
problem becomes even higher dimensional, increasing model
complexity and overhead. For a matrix X with dimensions
n× p, n ≪ p elastic-net is O(p3) [38], hence for a quadratic
model the computational complexity blows up to O(p6). Even
though this model is richer and captures complex interactions
among features, it is prohibitively expensive. ESP’s motivation
is to achieve the prediction accuracy of interaction terms while
maintaining the practicality of linear models.

Example We believe the interaction between our features
captures the interference more accurately than a linear model.
However, we do not know which of these feature interactions
are important in advance—e.g., is it IPC and L3, L3 and
MEM, the L3 features for both applications, or something
else? Clearly, even in our simple example, the design space
has become much more complex. Specifically, we capture the

new interaction terms by extending the feature matrix X to X̃,
which has 8 linear terms plus

(

8
2

)

higher order terms. The new

design matrix X̃ in Equation (1) is X̃ ∈ R
6×36 and β ∈ R

36.
We see—even for our simple example—the model complexity
has greatly increased.

E. A New Regularization Method

To summarize, regression models map features into pre-
dictions. When the feature space is large, regularization adds
structure to make the problem well-formed. Higher-order mod-
els may provide more accurate predictions, but increase the
cost of both training and applying the model.

Inspired by these observations, we present ESP, which
splits regression modeling into two parts: (1) feature selection
and (2) model building with interactive terms. First, ESP builds
a linear model with elastic-net, which greatly reduces feature
size without capturing interaction terms. Second, ESP builds
a higher-order model with interaction terms using just those
features selecting in the first step. By reducing the feature
size in the first step, the complexity of the higher-order model
remains tractable and we get the benefits of both approaches:
highly accurate predictions with manageable complexity.

Given a set of m applications k applications to be co-
scheduled, there are n =

(

m
k

)

possible sets of k applications.

We use p to denote the number of features. Let f (k)(.) be the

prediction function; i.e., f (k)(.) predicts the slowdown of each
of the k co-scheduled applications using features measured

Algorithm 1 ESP

Input: Training samples:
(

s(z(k)), x(k) = s(X(k))
)

; Features: X(k),
1: Variable selection using elastic-net on linear model: S : {i ∈

S if β(k)[i] 6= 0}, where β(k) = EN(s(z(k)),x(k)).
2: New feature matrix with higher order terms: X̃ = [XS , Int(XS))].
3: Estimating performance: ẑ(k) = X̃(k)β(k), where β(k) =

EN(s(z(k)), s(X̃(k))
4: return Slowdown: ẑ(k).

when each application runs individually:

z(k) = f (k)(X(k)) + ǫ, (7)

where z(k) ∈ R
nk is the slowdown vector, X(k) ∈ R

nk×2p is
feature matrix and ǫ ∈ R

nk is the Gaussian error vector. For
any index j = index(i,S) of vector z, zj is the slowdown
of application-i when co-scheduled with applications from
set S. X(j,:) = [features of application-i,

∑

s∈S(features of
application-s)]. In practice, the set of possible features includes
everything that can be measured with the Intel performance
counter monitor tool [34]. Taking these measurements for each
core on our test system we get p = 409 unique features per
individual application.

Algorithm 1 summarizes ESP, which predicts slowdown
when k applications are co-scheduled. The algorithm takes a
few samples of random combinations of applications running
together, denoted by

(

s(z(k)), x(k) = s(X(k))
)

, a design ma-

trix containing the low-level-features for all
(

n
k

)

combinations

(denoted by X(k)) and outputs a slowdown vector for all com-
binations of applications. The first step does a feature selection

on the linear model using Elastic-net as β(k) = EN(y(k),x(k)).
The non-zero coefficients of β(k) indicate the selected features,
denoted by S . Then, we construct a higher-order feature matrix

X̃ for those selected features only. We run elastic net again for
the new feature space to obtain the final model which makes
the performance prediction, denoted by ẑ(k).

Algorithm 1 is run entirely offline. It produces the slow-
down estimates for all applications (even those not sampled)
in up to k co-scheduling groups. These slowdown estimates
can then be used to predict performance for new combinations
of applications in online schedulers. We show examples in the
next section. We also show how the estimates can be trivially
updated as new measurements become available online.

III. SCHEDULING WITH ESP

We examine two use cases for ESP: (1) batch scheduling
applications on a single processor, (2) and scheduling dynam-
ically arriving applications on multiple processors.

A. Single-node Scheduling

We assume a set S of applications with |S| = m. Each
of the applications have work w1, w2, ...wm. They can be
scheduled to run alone or with other applications. Our goal
is to compute the schedule that completes all applications’
work in the minimal total time. The optimal schedule can be
described as a solution to a linear program if the performance
of every application was known ahead of time. Since we do not
know the exact performance, our algorithm uses ESP to predict
the performance and then generate near-optimal schedules.

We assume that at most k-tuples of applications can run
together at a time, meaning we must predict the performance

for 2
(

m
2

)

+ 3
(

m
3

)

+ . . .+ k
(

m
k

)

application combinations. The
intuition behind the restriction on k is that the system will
become saturated at some point and it is no longer beneficial
to continue to add applications to a saturated node.

We first develop a linear program for optimal scheduling
assuming known performance. We will relax that assumption
momentarily. We also assume that preemption is allowed.
Then, an optimal schedule is given by:

y = argmin
y≥0

‖y‖1

subject to Ay = w
(8)

This equation is quite simple, but the complexity is in the
structure of the y vector and A matrix. Each element of y is
the time for a specific set of applications to be co-scheduled,
while the columns of A represent the each application’s
performance when co-scheduled in that set. For example, if
m = 3, the superset of all possible sets of applications
is {{1}, {2}, {3}, {1, 2}, {1, 3}, {1, 3}, {1, 2, 3}}. If we order
these sets, then yj in Equation (8) is the time spent when all
the applications in set j run together and Aij is the speed
of application i when co-scheduled with applications from set
j. This linear program has a sparse solution with at most 2m
non-zero solutions, hence the context switching cost is not very
high and is bounded by the total number of applications.

Equation (8) produces a minimal time schedule but is
not practical. It requires all application interference is known
and it assumes deterministic application performance. Real
performance is subject to inherent noise. We therefore extend

Equation (8) by assuming that the observed performance Â is
drawn from a Gaussian distribution:

Âij ∼ N (Aij ,Σij). (9)

Thus, we sample Âij to predict Aij and Σij . If Ã is our
prediction for A, then instead of solving Equation (8) we solve:

y = argmin
y≥0

‖y‖1

subject to Ãy = w
(10)

This equation is a proxy for Equation (9), but it cannot
guarantee that the required work is finished because it uses
predictions rather than true performance. To deal with this
uncertainty we design an iterative algorithm which repeatedly
solves the approximate linear program in Equation (10) until
all work is finished. This approach accounts for inherent noise
due to error in both performance measurement and prediction.

Algorithm 2 takes four parameters: an error tolerance (de-
faulted to 10−6), ESP’s predicted performance matrix, a vector
representing the total work for each application, and a scalar
η controlling the trade-off between exploration-exploitation. If
we believe that ESP’s performance prediction is very good, we
set η = 1 to run fewer iterations, saving computation. If we
have less confidence, then we send a smaller amount of work to
the linear program, reducing each iteration’s error and learning
more about the application mix scheduled that iteration.

This algorithm loops until all work is complete. For each
loop iteration, the algorithm takes a step, with the step size
inversely proportional to η. It then solves Equation (10)
using the predicted performance and schedules the applications
according to this solution. After running the schedule for

Algorithm 2 Iterative Scheduling Algorithm

Input: Tolerance: TOL = 10−6

Performance prediction matrix from ESP: Ã
Total work: w
Exploration-exploitation parameter: η (η ≥ 1)

1: Initialize scheduling matrix y(0) = 0, work remaining: wrem = w,
total scheduling time: s = 0.

2: while ‖wrem‖2 ≥ TOL do

3: Work to be processed, wsent = wrem/η.
4: Solve linear program based on the prediction,

y = argmin
y∈C ‖y‖1,

where C = {y : Ãy = wsent,y ≥ 0}.
5: Schedule/run applications according to time slices given by y. Update

scheduling time as, s = s+ ‖Ay‖1.

6: Update predicted performance Ã based on true performance observed

Â and update remaining work, wrem = (wsent − Ây)+.
7: end while

8: return Total scheduling time: s.

the specified time, the algorithm updates the performance
prediction using its latest observations and updates the work
vector with the work accomplished in this step. Given perfect
knowledge of the application interference and no system noise,
the algorithm requires only a single step and would be optimal.

B. Multi-node Scheduling

We now consider scheduling dynamically arriving applica-
tions on multiple processors. Applications arrive in a stream
and a centralized scheduler assigns an application to a proces-
sor (which may already have applications). We assign jobs in
FIFO order; a new job is immediately assigned a processor
with the goal of minimizing job completion time.

The multi-node scheduler (see Algorithm 3) takes as input:
(1) an error tolerance (again defaulted to 10−6), (2) ESP’s

performance prediction Ã, (3) a job sequence (we do not
look ahead, so in practice the sequence does not need to
be known in advance), (4) the number of nodes q, and the
exploration-exploitation trade-off η. Each job is denoted as
Ji = (ai, vi), where ai is the application index and vi is
that application’s work. The algorithm loops until all jobs are
completed. Each iteration takes the next job and determines
the expected work and time if assigned to each processor
(lines 4–7). It chooses the processor that has the fastest
predicted completion time (line 8) and schedules that job on
the processor using Algorithm 2 (line 9).

IV. EVALUATION

A. Experimental Setup

1) Experimental System and Benchmarks: Our test plat-
form is composed of four dual-socket Ubuntu 14.04 system
with SuperMICRO X9DRL-iF motherboards and two Intel
Xeon E5-2690 processors. These processors have eight cores,
hyper-threading (eight additional virtual cores), and Turbo-
Boost. Each node has 64 GB of RAM.

We use 15 benchmarks from different suites including
PARSEC (blackscholes, fluidanimate, swaptions,
x264) [2], Minebench (Kmeans, HOP, svmrfe) [26], Ro-
dinia (cfd, particlefilter, vips, btree, backprop,
bfs) [3] and SEEC (Dijkstra, jacobi) [16]. These
benchmarks test a range of important applications with both
compute-intensive and I/O-intensive workloads. All the appli-
cations run with up to 32 threads (the maximum supported in
hardware on our test machine). We construct multiprocessor

Algorithm 3 Multi-node Iterative Scheduling Algorithm

Input: Tolerance: TOL = 10−6

Performance prediction matrix from ESP: Ã
Jobs arriving in stream: J1, J2, . . . , JT
Number of processors: q.
Exploration-exploitation parameter: η (η ≥ 1)

1: Initialize work matrix: W = 0m×q

2: for all i = 1:T do

3: Obtain job Ji = (ai, vi). where ai is the application index and vi
denotes the work for that application.

4: for all j = 1:q do

5: Expected work, wtmp = W(:, j); updated with new job’s work
wtmp[i] = w[ai, j] + vi

6: Expected schedule time, s[j] = miny∈C ‖y‖1,

where C = {y : Ãy = wtmp,y ≥ 0}.
7: end for

8: Greedily choose processor P : P = argmini∈[q] si with least
expected scheduling time and update corresponding entry in W.

9: Run Algorithm 2 for processor P with wtmp amount of Total work,

Ã as the performance prediction matrix and η = 5.
10: end for

11: return Total scheduling time for all processors: s.

workloads by randomly selecting benchmarks from this list.
When we need more than 15 benchmarks, we allow duplicates.

We measure performance of all applications as wall-clock
execution time. Interference is the slowdown one applica-
tion experiences when co-scheduled with one or more other
applications. We evaluate the schedulers in terms of time
to complete scheduled jobs. We evaluate the accuracy of
interference predictors in terms of the difference between the
predicted and actual slowdown.

2) Points of Comparison: We compare ESP with:

• Activity Vectors – Activity vectors maximize resource us-
age variance [24]; i.e., they co-schedule applications with
widely differing resource needs. Extensions to activity
vectors have made similar ideas suitable for dynamic
consolidation in virtualized data centers [31] and for
scheduling dynamically arriving applications [10]. We
compare against the original activity vector approach for
the single-node case and against the extension to dynam-
ically arriving applications in the multi-node case. This
approach results in compute-intensive and memory inten-
sive applications being scheduled together. Unlike ESP
none of these approaches produce quantified slowdown
predictions, but instead make decisions to co-schedule
or not. We find that biasing this approach to be more
sensitive to different resources produces different results.
We consider variants biased toward:
◦ Memory (MEM): favors co-scheduling applications

with different bandwidth needs.
◦ Instructions per cycle (IPC): favors co-scheduling ap-

plications with differing compute needs.
◦ L3 Request (L3R): favors co-scheduling applications

with differing L3 cache needs.
• Random (RND): co-schedules applications randomly.
• Oracle: represents the best schedule given perfect knowl-

edge of application interference; i.e., it is equivalent
to knowing the true performance A in Equation (9).
Not implementable in practice, we construct the oracle
through a brute force search for all application mixes.

Fig. 2. Comparison of schedules from different algorithms with up to 6 co-scheduled applications (k = 6) (more compact is better). Each
block represents an application running with other applications. The number in the top of the block is the application index. The number at
the bottom is the application’s slowdown. ESP’s schedule is significantly more compact than the MEM baseline.

Fig. 1. Single processor scheduling performance. On average ESP is
25% better than MEM, 29% better than IPC, 27% better than L3R,
26% better than RND, and only 5% worse than ORACLE.

B. Single Node Scheduling Results

To test single-node batch scheduling, we launch all 15
benchmarks listed in Section IV-A. The schedulers order
application execution to minimize total job completion time.
We vary k, the maximum number of applications that can be
co-scheduled from two to six. We find that it is never beneficial
to schedule more than six applications simultaneously and no
scheduler (other than random) ever attempted to do so even
when more were allowed. We run 15 separate experiments for
each k, where each experiment differs by the split between

training and testing data for ESP.

Fig. 1 shows the results. The x-axis is k, the y-axis is
the run time, and there is a bar showing the mean scheduling
time for each of our points of comparison with an error bar
showing one standard deviation. Overall, ESP performs much
better than the baseline algorithms and only slightly worse
than the ORACLE. On average over different k, ESP is 25%
faster than MEM, 29% faster than IPC, 27% faster than L3R
and 26% faster than RND. These results include prediction
and scheduling overhead, yet ESP is only 5% worse than the
ORACLE, which has no overhead and knows the future. We
conclude that ESP produces highly accurate predictions and
yet is efficient enough for practical use.

To provide intuition, Fig. 2 illustrates the schedules pro-
duced by: ORACLE (top), ESP (middle), and MEM (bottom)
when they are allowed to co-schedule up to six applications.
For each chart, the horizontal axis represents time in seconds.
Each colored block represents an application running with
other applications. The top number in the block represents the
application index (see the legend for mapping from index to
name), and the bottom number represents the actual slowdown
the application experienced at that time (this actual slowdown
is determined after the fact). A better schedule is more compact
and completes further to the left. Clearly, ESP’s schedule
is more compact and closer to the ORACLE than MEM.
ORACLE runs the maximum number of applications together
less than half of the time. MEM, in contrast, runs the maximum
allowed number of applications most of the time. Overall in

Fig. 3. Comparison of multi-node scheduling times for stream of 40 applications (lower is better). On an average over different processes and
tuples, ESP is 47% better than MEM, 61% better than IPC, 47% better than L3R and 54% better than RND.

Fig. 4. Multi-node scheduling performance with varying number of incoming jobs, allowing up to 4 co-scheduled applications per node (lower
is better). The left figure shows scheduling time (in seconds) – on average ESP is 60% better than MEM, 61% better than IPC, 58% better
than L3R and 58% better than RND. The right figure shows the load imbalance (the difference between the highest and lowest scheduling
time across nodes). As we increase the number of jobs the load imbalance increases faster for the baseline algorithms and seems relatively
constant for ESP and the ORACLE.

this particular instance, the scheduling time for the ORACLE
is 788 seconds, 832 for ESP, and 1089 for MEM.

C. Multi-node Scheduling Results

In this section we discuss multi-node scheduling perfor-
mance. We use two, three, and four copies of our base test
platform (described above). We assume that applications arrive
randomly from our set of 15 benchmarks (so some benchmarks
may have multiple instances live in the system). The challenge
is to assign an application to a processor as it arrives such
that the total impact on the system is minimized; i.e., put the
application on the node that minimizes interference.

The oracle computes the best possible schedule, the heuris-
tics use activity vectors to select the best node and the ESP-
based approach uses Algorithm 3. Fig. 3 summarizes the
results for 2, 3 and 4 processors and for k = 2, 3 or 4. As

we increase the number of processors, the scheduling time
improves for all approaches. ESP performs almost as well as
the ORACLE, performing 5% to 13% worse on an average. In
fact, ESP is always within 1 standard deviation of ORACLE.
ESP performs significantly better than the activity vector algo-
rithms. On average over different processes and tuples, ESP is
47% better than MEM, 61% better than IPC, 47% better than
L3R, and 54% better than RND. Additionally, the standard
deviation in performance for ESP is much lower compared to
the baseline algorithm, leading to much better performance
predictability. This predictability is further evidence of our
claim that ESP allows the schedulers to avoid bad predictions.

D. Multi-node Sensitivity to Job Size

We also study the scheduling performance as a function of
the total number of applications scheduled. To be clear, jobs

are still scheduled as they arrive (the multi-node scheduler
does not reorder applications), we simply have more of them.
Specifically, we send up to 100 jobs to a system with 4
nodes and we are allowed to co-schedule up to 4 applications
together. For each experiment, we perform 15 trials with
different random job arrivals. All results report the mean with
error bars indicating one standard deviation.

Fig. 4 shows how scheduling performance changes as a
function of the total number of applications scheduled. The
figure consists of two charts: the one on the left showing
scheduling time as a function of applications scheduled and
the one on the right showing load imbalance in terms of the
largest difference in execution time between one processor
and another. The number of applications scheduled is shown
on the x-axis and the time on the y-axis. As the number of
applications increases, ESP’s relative performance improves
compared to the activity vector approaches. The key to this
result is ESP’s accurate quantification of interference. The
ability to directly reason about slowdown allows the ESP-based
approach to rank scheduling decisions and always choose the
one with the least impact on the performance of both the
running applications and the application that just arrived.

ESP’s foresight becomes more crucial as the number of
jobs increase because bad decisions can create severe load
imbalance on the parallel machine, as shown on the right side
of Fig. 4. As we increase the number of jobs the processor load
imbalance increases vastly for the activity vector approaches
and seems relatively constant for ESP as well as ORACLE. On
an average ESP is 60% better than MEM, 61% better than IPC,
58% better than L3R and 58% better than RND. Again, the
standard deviation (shown by the error bars) for ESP is much
lower than the baselines—leading to much more predictable
performance for latency sensitive applications.

E. ESP Prediction Accuracy

We compare ESP with the elastic-net regularization method
on the linear model (Enet-lin) described in Section II-C3.
To evaluate quantitatively, we measure the accuracy of the
predicted performance ẑ with respect to the true data z, by
computing the coefficient of determination (R2 value):

accuracy(ẑ, z) =

(

1−
‖ŵ −w‖22
‖w − w̄‖22

)

+

, (11)

where w = min(z,1) and ŵ = min(ẑ,1). This metric
captures how well the predicted results correlate with the
measured results. Unity represents perfect correlation.

Fig. 5 shows a box-plot for out-of-sample predictive ac-
curacy of ESP and Enet-lin when we train both the models
with 70% data and test the prediction on the remaining data.
For k = 2, ESP performs only slightly better than the Enet-lin
with on average 76% accuracy whereas the baseline is 73%
accurate. For k > 2, the prediction accuracy for the ESP varies
from 93% to 96% with very small variance. On the other hand,
Enet-lin is only between 85% to 88% accurate.

F. ESP Accuracy versus the Netflix Algorithm

We compare ESP’s accuracy to that of collaborative fil-
tering; e.g., the Netflix algorithm, which is used by other
machine-learning based interference predictors [8, 9]. Specif-
ically, we use collaborative filtering to predict which pairs of

Fig. 6. Sample complexity plot for Netflix algorithm used by Paragon

applications will work well together. The intuition is that if two
applications we have never run together work well with some
third application, they may work well together themselves.

Fig. 6 compares the accuracy of the Netflix algorithm and
ESP for predicting the interference of pairs of applications. The
y-axis shows accuracy and the x-axis shows the percentage
of samples. This experiment shows that ESP always outper-
forms collaborative filtering for our benchmarks. These results
demonstrate the importance of incorporating low-level features
into the prediction.

G. Overhead

ESP has an offline sampling phase followed by an esti-
mation phase. Once we have collected the samples from the
batch of co-scheduled applications, we run ESP to obtain the
predictions for the rest of the combinations of the applications.
We have summarized the overhead results in the Table I. We
require less than 0.7 seconds to build the performance model
for a batch of k-tuples running together. Once the model is
built, the prediction time for ESP is very small and would
range from 0.5 milliseconds to 60 milliseconds. For such small
training data, the prediction accuracy for k = 2 is around 80%
and for k > 2 it is around 86%.

The scheduling overhead, again has two components: first
obtaining the application’s batch run profile which is done
using ESP, and then solving the linear program to obtain
the schedule. The first part (in the top of Table I) is done
offline. The vast bulk of online work is done by Equation
(10), which solves a very sparse optimization problem. The
total overhead per scheduled job for Algorithm 2 – the online
portion of the approach – ranges from 0.008 seconds for k = 2
to 0.22 seconds for k = 7. Almost all of this work could
be parallelized on a multicore (or accelerated with SIMD
instructions) but that is beyond the scope of this work. We
note that it is quite practical to consider co-scheduling up
to 4 jobs. The overhead of scheduling 7 jobs may become
prohibitive, but it is never useful on our test system. This is
not an insignificant amount of time but this approach is suitable
for long running applications and the benchmarks that we have
used in this paper are all long running benchmarks with at least
10 seconds of individual runtime.

V. RELATED WORK

Accurate performance estimates are essential for schedul-
ing and resource allocation [7], but these estimates are difficult
to obtain due to the complexity and diversity of large-scale

Enet-Lin ESP

0.6

0.65

0.7

0.75

0.8

0.85

A
c
c
u

ra
c
y

2- Apps

Enet-Lin ESP

0.84

0.86

0.88

0.9

0.92

0.94

A
c
c
u

ra
c
y

3- Apps

Enet-Lin ESP

0.85

0.9

0.95

A
c
c
u

ra
c
y

4- Apps

Enet-Lin ESP

0.84

0.86

0.88

0.9

0.92

0.94

A
c
c
u

ra
c
y

5- Apps

Enet-Lin ESP

0.88

0.9

0.92

0.94

A
c
c
u

ra
c
y

6- Apps

Enet-Lin ESP

0.89

0.9

0.91

0.92

0.93

0.94

A
c
c
u

ra
c
y

7- Apps

Fig. 5. Prediction accuracy comparison of elastic-net linear regression and ESP.

TABLE I. OVERHEAD

k 2 3 4 5 6 7

ESP
Model training (s) 0.42 0.59 0.68 0.69 0.48 0.51
Prediction time (s) 0.00056 0.003 0.0076 0.0198 0.04 0.06

Training sample size (%) 70% 40 % 10 % 4% 1 % 1%
Scheduling Alg. 2 Lin. prog. (in s/job) 0.008 0.014 0.023 0.06 0.117 0.22

systems [19]. A particular challenge is modeling performance
loss due to contention [18]. Better contention models could
improve system utilization while ensuring quality-of-service
in latency sensitive applications [36].

Several statistical machine learning approaches estimate
power, performance, and energy of a single application running
on a single system. Examples predict the power and perfor-
mance of various resource allocations to single applications
[29] or optimize energy efficiency under latency constraints
[25]. A recent approach combines machine learning with
control theory to guarantee energy consumption, but only
for a single application [15]. Mantis is very similar to ESP
as it also uses higher-order regularized regression models
(based on Lasso) to predict smartphone app performance [20].
Mantis, however, does not predict contention among multiple
applications, which is ESP’s focus.

Other approaches predict and mitigate contention in single-
node systems. Many decide to co-schedule or not, but they
do not produce quantitative slowdown estimates. For exam-
ple, Dwyer et al. propose a classifier that predicts whether
contention will be high or low, but this approach does not
produce a numerical estimate [11]. Similarly, ReSense detects
highly contended resources, but it never quantifies contention
[10]. Another approach estimates throughput (total system
performance), but does not produce estimates of individual
application performance [4, 35]. Subramanian et al. produce
accurate performance estimates (within 9.9%) based on only
last-level cache access rate and memory bandwidth [30]. These
results are achieved on a simulator rather than a real system,
however, and on our real system these two features are not
sufficient to predict contention with any level of accuracy.
Another single-node system, D-Factor, uses non-linear models
to predict the slowdown of a new application given current
resource usage [21]. Unlike ESP, D-Factor cannot predict how
two applications will interfere if neither is currently running.

Several approaches estimate and mitigate contention for
multi-node systems. Activity vectors work on single or multi-
node systems by maximizing the variance among resource
usage in co-scheduled applications [24]. This heuristic makes
intuitive sense—applications with very different resource needs
are less likely to interfere—but this approach does not produce

quantitative estimates and therefore can make bad decisions
when contention is unavoidable. Merlin also estimates con-
tended resources and migrates virtual machines to areas of
lower contention, but it also does not produce slowdown
estimates [31]. DejaVu classifies application workloads and
then schedules according to known good schedules for the
class [33]. DejaVu creates an interference index which ranks
slowdowns for VM migration or resource reallocation, but it
does not produce estimates of the actual slowdowns incurred.
Similarly, Quasar [9] and Stay-Away [27] predict applications
that are likely to interfere, but neither produces performance
estimates. POET can maintain a target application’s perfor-
mance in the presence of other applications, but it does
not optimally schedule application mixtures [17]. Bubble-flux
[36]—an improvement over the earlier Bubble-up [23]—does
produce slowdown estimates and—like ESP—it is efficient
enough to consider interference among more than two appli-
cations. The main difference between Bubble-flux and ESP is
that Bubble-flux uses no offline prior information and must
dynamically probe the system.

Table II compares ESP to some examples of prior work,
including both heuristic (Bubble-flux and Activity Vectors) and
machine learning (Paragon/Quasar) approaches. Both Bubble-
flux and Quasar require long periods of online measurement.
Quasar—based on the earlier Paragon—requires up to a few
minutes of online sampling before it can generate an interfer-
ence estimation [8]. Bubble-flux and ESP represent extreme
ends of interference estimation approaches. Bubble-flux needs
no prior knowledge, while ESP assumes prior measurements.
When a new application enters the system, Bubble-flux must
run it in an isolated setting with a special bubble benchmark
to estimate whether this application should be run alone or
consolidated. Bubble-flux then migrates the application to
a new server based on observed behavior with the bubble.
ESP requires much greater offline profiling, but makes an
immediate decision about where to place a new application.

Much prior work considers virtual machine consolidation,
which requires interference estimation between applications
running with some isolation guarantees [5, 28]. Govindan
et al. provide a heuristic which depends on measuring the
impact of cache interference [13]. Maji et al. design a control

TABLE II. COMPARISON OF ALGORITHMS WITH N APPLICATIONS

AND M FEATURES.

Category Example

Project
Online

measurements

Online

overhead

Heuristic
Bubble-flux [36] X O(1)

Activity vectors [24] × O(1)

Learning
Paragon/Quasar[8, 9] X O(NM)

ESP × O(M2)

based algorithm to consolidate VMs for QoS applications,
where the control parameters are estimated online using a
regression approach [22]. Chiang and Huang propose an
interference model that requires profiling not just individual
applications but also combinations of applications [6]. Unlike
these approaches, ESP requires access to low-level features
for predicting application interference; but these may not
be available in virtualized environments. Given the benefits
these feature provide for estimating interference, we propose
that VMs consider making this data available to improve co-
location and consolidation.

We model interference estimation as a high-dimensional
regression problem with prohibitively many dimensions. Many
statistical methods address high-dimensionality (e.g., SURE
[12]). In computer system performance, however, measurable
features are highly correlated and existing methods do not
provide high accuracy. Other statistical models emit more
accurate predictors given correlated features (e.g., [37] and
[1]), but they do not scale to our problem size. Even though
we make a strong assumption that the interaction terms are
present only if their individual linear terms are significant, we
achieve high accuracy and good schedules in practice.

VI. CONCLUSION

This paper explores machine learning methods for predict-
ing application interference in computing systems. Specifically,
we explore several state-of-the-art regularization techniques for
high-dimensional problems—when more features are available
than samples—and we conclude that existing linear techniques
are not accurate enough, while existing higher-order techniques
are accurate but slow. Inspired by these observations we
present ESP, a combination of linear feature selection with
higher-order model building that achieves the practicality of
linear models with the accuracy of higher-order models. We
demonstrate ESP’s quantitative predictions produce signifi-
cantly better schedules than existing heuristics for both single
and multi-node systems, with up to 1.8× improvement in
application completion time and significantly lower variance.
ESP achieves much higher prediction accuracies than prior
approaches—over 93% when considering three or more ap-
plications. We make source code available so that others may
improve on or compare with ESP.

Acknowledgments We thank the anonymous reviewers for
their feedback and Anshul Gandhi for paper shepherding. The
effort on this project is funded by the U.S. Government under
the DARPA BRASS program, by the Dept. of Energy under
DOE DE-AC02-06CH11357, by the NSF under CCF 1439156,
and by a DOE Early Career Award.

REFERENCES

[1] J. Bien et al. “A lasso for hierarchical interactions”. In: Annals of statistics 41.3

(2013), p. 1111.

[2] C. Bienia et al. “The PARSEC Benchmark Suite: Characterization and Architec-

tural Implications”. In: PACT. 2008.
[3] S. Che et al. “Rodinia: A Benchmark Suite for Heterogeneous Computing”. In:

IISWC. 2009.

[4] X. Chen et al. “Performance and power modeling in a multi-programmed multi-

core environment”. In: DAC. 2010.

[5] X. Chen et al. “Cloudscope: Diagnosing and managing performance interference

in multi-tenant clouds”. In: MASCOTS. 2015.

[6] R. C. Chiang and H. H. Huang. “TRACON: Interference-aware scheduling for

data-intensive applications in virtualized environments”. In: SC. 2011.

[7] S.-H. Chiang et al. “The impact of more accurate requested runtimes on pro-

duction job scheduling performance”. In: Job Scheduling Strategies for Parallel

Processing. 2002.

[8] C. Delimitrou and C. Kozyrakis. “Paragon: QoS-aware Scheduling for Heteroge-

neous Datacenters”. In: ASPLOS. 2013.

[9] C. Delimitrou and C. Kozyrakis. “Quasar: Resource-efficient and QoS-aware

Cluster Management”. In: ASPLOS. 2014.

[10] T. Dey et al. “ReSense: Mapping Dynamic Workloads of Colocated Multithreaded

Applications Using Resource Sensitivity”. In: ACM Trans. Archit. Code Optim.

10.4 (Dec. 2013).

[11] T. Dwyer et al. “A practical method for estimating performance degradation on

multicore processors, and its application to HPC workloads”. In: SC. 2012.

[12] J. Fan and J. Lv. “Sure independence screening for ultrahigh dimensional

feature space”. In: Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 70.5 (2008), pp. 849–911.

[13] S. Govindan et al. “Cuanta: quantifying effects of shared on-chip resource

interference for consolidated virtual machines”. In: Proceedings of the 2nd ACM

Symposium on Cloud Computing. ACM. 2011, p. 22.

[14] A Hoerl and R Kennard. Ridge regression, in Encyclopedia of Statistical Sciences,

Vol. 8. 1988.

[15] H. Hoffmann. “JouleGuard: energy guarantees for approximate applications”. In:

SOSP. 2015.

[16] H. Hoffmann et al. “SEEC: a general and extensible framework for self-aware

computing”. In: (2011).

[17] C. Imes et al. “POET: A Portable Approach to Minimizing Energy Under Soft

Real-time Constraints”. In: RTAS. 2015.

[18] M. Kambadur et al. “Measuring interference between live datacenter applications”.

In: SC. 2012.

[19] S. Kanev et al. “Profiling a warehouse-scale computer”. In: ISCA. 2015.

[20] Y. Kwon et al. “Mantis: Automatic performance prediction for smartphone

applications”. In: USENIX ATC. 2013.

[21] S.-H. Lim et al. “D-factor: A Quantitative Model of Application Slow-down in

Multi-resource Shared Systems”. In: SIGMETRICS Perform. Eval. Rev. 40.1 (June

2012).

[22] A. K. Maji et al. “Ice: An integrated configuration engine for interference

mitigation in cloud services”. In: ICAC. 2015.

[23] J. Mars et al. “Bubble-Up: Increasing Utilization in Modern Warehouse Scale

Computers via Sensible Co-locations”. In: MICRO. 2011.

[24] A. Merkel et al. “Resource-conscious scheduling for energy efficiency on multi-

core processors”. In: Eurosys. 2010.

[25] N. Mishra et al. “A Probabilistic Graphical Model-based Approach for Minimizing

Energy Under Performance Constraints”. In: ASPLOS. ACM. 2015.

[26] R. Narayanan et al. “MineBench: A Benchmark Suite for Data Mining Work-

loads”. In: IISWC. 2006.

[27] N. Rameshan et al. “Stay-Away, Protecting Sensitive Applications from Perfor-

mance Interference”. In: Middleware. 2014.

[28] A. Roytman et al. “PACMan: Performance Aware Virtual Machine Consolidation.”

In: ICAC. 2013, pp. 83–94.

[29] D. C. Snowdon et al. “Koala: A Platform for OS-level Power Management”. In:

EuroSys. 2009.

[30] L. Subramanian et al. “The Application Slowdown Model: Quantifying and

Controlling the Impact of Inter-application Interference at Shared Caches and

Main Memory”. In: MICRO. 2015.

[31] P. Tembey et al. “Merlin: Application- and Platform-aware Resource Allocation

in Consolidated Server Systems”. In: SOCC. 2014.

[32] R. Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal of

the Royal Statistical Society. Series B (Methodological) (1996), pp. 267–288.

[33] N. Vasić et al. “DejaVu: Accelerating Resource Allocation in Virtualized Envi-

ronments”. In: ASPLOS. 2012.

[34] T. Willhalm. Intel performance counter monitor-a better way to measure CPU

utilization. 2012.

[35] C. Xu et al. “Cache contention and application performance prediction for multi-

core systems”. In: ISPASS. 2010.

[36] H. Yang et al. “Bubble-flux: Precise Online QoS Management for Increased

Utilization in Warehouse Scale Computers”. In: ISCA. 2013.

[37] M. Yuan and Y. Lin. “Model selection and estimation in regression with grouped

variables”. In: Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 68.1 (2006), pp. 49–67.

[38] H. Zou and T. Hastie. “Regularization and variable selection via the elastic net”.

In: Journal of the Royal Statistical Society: Series B (Statistical Methodology)

67.2 (2005), pp. 301–320.

