
THE UNIVERSITY OF CHICAGO

STATISTICAL METHODS FOR IMPROVING DYNAMIC SCHEDULING AND RESOURCE

USAGE IN COMPUTING SYSTEMS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

NIKITA MISHRA

CHICAGO, ILLINOIS

JUNE 2017



Copyright c© 2017 by Nikita Mishra

All Rights Reserved



Dedicated to my family who have always supported me



CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 LEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 CALOREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 ESP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 BACKGROUND AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Application interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 LEO: ESTIMATION FOR SINGLE APPLICATION . . . . . . . . . . . . . . . . . . . 16
3.1 Motivational Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Energy Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Modeling Power and Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Introduction to Probabilistic Graphical Models . . . . . . . . . . . . . . . 21
3.4.2 Hierarchical Bayesian Model . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.3 Expectation Maximization Algorithm . . . . . . . . . . . . . . . . . . . . 25
3.4.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.2 Points of Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.3 Power and Performance using LEO . . . . . . . . . . . . . . . . . . . . . 34
3.5.4 Minimizing Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.5 Sensitivity to Measured Samples . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.6 Reacting to Dynamic Changes . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.7 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iv



4 CALOREE: CONTROLLING APPLICATIONS UNDER SYSTEM DYNAMICS . . . . 41
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Learning Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.2 Controlling Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.3 Challenges of Parameter-free Control . . . . . . . . . . . . . . . . . . . . 44

4.2 CALOREE: Learning Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Traditional Control for Computing . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 CALOREE Control System . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.3 Exploiting Structure for Fast Solutions . . . . . . . . . . . . . . . . . . . . 52
4.2.4 CALOREE Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . 54
4.2.5 Formal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Platform and Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.3 Points of Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.1 Performance and Energy for Single App . . . . . . . . . . . . . . . . . . . 63
4.4.2 Performance and Energy for Multiple Apps . . . . . . . . . . . . . . . . . 64
4.4.3 CALOREE on multi-core systems . . . . . . . . . . . . . . . . . . . . . . 67
4.4.4 Multiapp Details for bodytrack . . . . . . . . . . . . . . . . . . . . . . 67
4.4.5 Adapting to Phase Changes . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.6 The Pole’s Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.7 Sensitivity to the Measured Samples . . . . . . . . . . . . . . . . . . . . . 70
4.4.8 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 ESP: APPLICATION INTERFERENCE ESTIMATION . . . . . . . . . . . . . . . . . 73
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 Regularization Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.2 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.3 Regularized Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.4 Higher-order Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.5 A New Regularization Method . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Scheduling with ESP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.1 Single-node Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.2 Multi-node Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.2 Single Node Scheduling Results . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.3 Multi-node Scheduling Results . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.4 Multi-node Sensitivity to Job Size . . . . . . . . . . . . . . . . . . . . . . 90
5.3.5 CALOREE Prediction Accuracy . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.6 CALOREE Accuracy versus the Collaborative filter Algorithm . . . . . . . 91

v



5.3.7 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 FUTURE WORK AND CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

vi



LIST OF FIGURES

3.1 Power estimation for Kmeans clustering application using LEO, Online and Offline
algorithms. The estimations are made using only 6 observed values (Cores) out of
32.Add performance description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Conditional dependence in Bayesian Model. . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Hierarchical Bayesian Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 A illustrative example of covariance Σ between different configurations, in equation

(3.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Comparison of performance (measured as speedup) estimation by different techniques

for various benchmarks. On an average (over all benchmarks), LEO’s accuracy is
0.97 compared to 0.87 and 0.68 for Online and Offline respectively. The results are
normalized with respect to the Exhaustive search method. . . . . . . . . . . . . . . . 28

3.6 Comparison of power (measured in Watts) estimation by different techniques for var-
ious benchmarks. On an average (over all benchmarks), LEO’s accuracy is 0.98 com-
pared to 0.85 and 0.89 for Online approach and Offline approach respectively. Again,
the results are normalized with respect to the Exhaustive search method. . . . . . . . . 29

3.7 Examples of performance estimation using LEO. Performance is measured as applica-
tion iterations (or heartbeats) per second. (See Section 5.3.1). . . . . . . . . . . . . . . 30

3.8 Examples of power estimation using LEO. Power is measured as total system power. . 30
3.9 Pareto frontier for power and performance estimation using different estimation algo-

rithms. We compare estimated Pareto-optimal frontiers to the true frontier found with
exhaustive search, providing insight into how LEO solves equation (3.1). When the
estimated curves are below optimal plots, it represents worse performance i.e. missed
deadlines, whereas the estimations above the optimal waste energy. . . . . . . . . . . 32

3.10 Energy consumption vs utilization for different estimation algorithms. . . . . . . . . . 32
3.11 Comparison of average energy (normalized to optimal) by different estimation tech-

niques for various benchmarks. On an average (taken over all the benchmarks); LEO
consumes 6% over optimal, as compared to the Online, Offline, and Race-to-idle ap-
proaches, which respectively consume 24%, 29% and 90% more energy than optimal. 33

3.12 Sensitivity analysis of LEO and Online estimation. Our baseline method (online re-
gression) cannot perform below 15 samples because the design matrix of regression
model would be rank deficient – effectively 0 accuracy. On the other hand, with 0 sam-
ples, LEO behaves as the offline method and its accuracy increases with the sample
size until it quickly reaches near optimal accuracy. . . . . . . . . . . . . . . . . . . . 37

3.13 Power and performance for fluidanimate transitioning through phases with dif-
ferent computational demands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 (a) STREAM performance as a function of configuration. (b) Managing STREAM’s
performance: Learning handles the complex configuration space, but control oscillates. 42

4.2 (a) bodytrack performance as a function of configuration. (b) Managing bodytrack’s
performance with another application: control detects the change (at the vertical dashed
line) and adjusts, but learning cannot. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Comparison of carefully tuned and default poles. . . . . . . . . . . . . . . . . . . . . 45

vii



4.4 CALOREE overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Temporal relationship of learning and control. . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Data structure to efficiently convert required speedup into a resource configuration. . . 53
4.7 ODROID-XU3 boards used in the evaluation. . . . . . . . . . . . . . . . . . . . . . . 60
4.8 Lack-of-fit for performance vs clock-speed. Lower lack-of-fit indicates a more compute-

bound application, higher values indicate a memory-bound one. . . . . . . . . . . . . 61
4.9 Summary data for single-app scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.10 Comparison of application performance error and energy for single application scenario. 65
4.11 Summary data for multi-app scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.12 Comparison of application performance error and energy for multiple application sce-

nario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.13 Summary data for single-app scenario on multicore processors. . . . . . . . . . . . . . 68
4.14 Summary data for multi-app scenario on multicore processors. . . . . . . . . . . . . . 68
4.15 Time series of Bodytrack with phase change caused by multiple applications running. 69
4.16 Controlling x264 through scene changes. . . . . . . . . . . . . . . . . . . . . . . . . 69
4.17 (a) LAVAMD’s performance with different resources. (b) The pole’s effects on LAVAMD’s

behaviors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.18 Estimation accuracy versus sample size. . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Single processor scheduling performance. On an average over different k, CALOREE is 25%
better than MEM, 29% better than IPC, 27% better than L3R, 26% better than RND, and only
5% worse than ORACLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Comparison of schedules obtained from different algorithms with up-to 6 co-scheduled appli-
cations (k = 6) (more compact is better). Each block represents an application running with
other applications. The number in the top of the block represents the application index. The
number at the bottom represents the slowdown the application experiences. The schedule built
using CALOREE algorithm squeezes the applications together better than the MEM baseline. . 87

5.3 Comparison of multi-node scheduling times for stream of 40 applications (lower is better).
On an average over different processes and tuples, CALOREE is 47% better than MEM, 61%
better than IPC, 47% better than L3R and 54% better than RND. . . . . . . . . . . . . . . . 88

5.4 Multi-node scheduling performance with varying number of incoming jobs, allowing up to 4
co-scheduled applications per node (lower is better). The left figure shows scheduling time (in
seconds) – on average CALOREE is 60% better than MEM, 61% better than IPC, 58% better
than L3R and 58% better than RND. The right figure shows the load imbalance (the difference
between the highest and lowest scheduling time across nodes). As we increase the number
of jobs the load imbalance increases faster for the baseline algorithms and seems relatively
constant for CALOREE and the ORACLE. . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Prediction accuracy comparison between Enet-lin and CALOREE. . . . . . . . . . . . . . . 91
5.6 Sample complexity plot for Collaborative filter algorithm used by Paragon . . . . . . . 92

viii



5.7 A solution path diagram using elastic-net for a linear model (no interaction terms) with
just an important subset of variables so that it is easier to visualize. Each dark solid line
in the plot represents a variable’s coefficient. The corresponding variable is mentioned
on the line. The dashed blue line indicates largest λ such that MSE is within one
standard error of the minimum, a scalar and the dashed green line corresponds λ value
with minimum MSE. Since, the variables in the design matrix are highly correlated,
variable signs may not be correctly represented. . . . . . . . . . . . . . . . . . . . . . 93

ix



LIST OF TABLES

3.1 Relative energy consumption by various algorithms with respect to optimal. . . . . . . 37

5.1 Category of low level features using Intel Performance Counter Monitor. . . . . . . . 79
5.2 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

x



ACKNOWLEDGMENTS

I am grateful to so many people for all their support through my PhD. First, I would like to say

thanks to my parents who have always been there for me. I could only see them once a year, but

thanks to technology I could talk to them almost every day and they could not be more encouraging.

My brother has supported me throughout my efforts as well, he is probably the main reason that I

thought that graduate school would be a great place for me. He always discussed my research with

me and kept me focused.

I have to thank my advisors Professor John Lafferty and Professor Hank Hoffmann for helping

me so much in every aspect. John has been incredible advisor to me. He has taught me so much

about machine learning and how to spot good problems to work on. Since my first year, we had

been looking at different problems for a while until we met Hank who had some very interesting

problems in computer architecture. It goes without saying, but I would still like to point out that

John is great at statistical modelling. I remember I was trying out different models until John just

randomly pointed out some Bayesian models which have good properties and that model worked

like magic. I always noticed John never fits real world problems into machine learning but always

the other way round. ML models seems like black box and it is very tempting to just try all of them

in come combination. But unprincipled methods can lead to uninteresting results and obfuscate

the beauty of the original problem. He has always been very kind and helpful to me and he’s a

rockstar of an advisor. Everything I know about computer systems comes from my interactions

with Hank. He’s one of the smartest, most patient, hard-working and kind person I have known.

He is relentless in his efforts. One of my papers with him got us really bad reviews and I felt like

I should just give up on systems research because its really hard to satisfy all the comments that

reviewers told us. But, he reassured me that the work was good and the paper was finally selected

at another conference. He has attended so many of my bad trial presentations and always suggested

changes which made big difference later in my final talks. I am always a nervous speaker and he

has given me a lot of time to practice with him and great tips from his previous experiences on how

xi



to cope with the pressure. In terms of our work, Hank is a genius a extracting out machine learning

problems from seemingly regular and non-obvious systems problems. And clearly, it has helped

us a lot. He never made any of his students feel like we were working under him but rather with

him. He has contributed a lot in my thesis with not just discussion time but also running actual

algorithms and writing a lot in the papers which is not very common in advisors. Again, John and

Hank, I thank you so much from the bottom of my heart. I could not have asked for a better people

to work with.

I must thank Professor Shan Lu for agreeing to be on my thesis committee and helping me im-

prove my work. Shan has a knack for good writing and good presentation. Shan has pre-reviewed

many of our papers and her comments have improved our paper drastically. I have enjoyed her

questions during my candidacy exam and thesis defense. They are really good questions which are

educational for the audience.

I should thank Professor Lazlo Babai for always being helpful. He taught us discrete math in

first year. His class was great, perhaps the best class I have ever taken. He’s very devoted towards

his student’s success. Whenever we saw each other in the department he would make sure I had a

good progress and offered help. I will always remember him as a great teacher.

I must thank Bob, Collin and Phil for being super helpful techstaff. I have asked them for

help for the most embarrassing computer related questions and they have never refused or delayed

on getting things to work. Some of my problems have been very specific but they would always

find time to help me out. I still can’t forget when my hard drive crashed on my computer, Bob

spent over a week to make sure that I can get certain things out of it. I can easily say that my

life at UChicago was made 50% easier because of excellent techstaff in the department. They are

indispensable.

Finally, it goes without saying how helpful my friends Qinqing, Liwen and Jiajun have been

all this time. I have shared my worst and best moments with them. Qinqing has taught me great

coding practices and she has always been around for me to discuss my research with her. We have

xii



read so many papers together. She made me feel home when I missed my home the most. Liwen,

Jiajun and I worked a lot during courses and they have only been the best. They have helped my

sail through many courses and have been all ears for any research related question.

xiii



ABSTRACT

This thesis is about using statistical methods for performance and power estimation which would

allow us to develop better scheduling algorithms and also more energy efficient systems. In many

deployments, computer systems are underutilized – meaning that applications have performance

requirements that demand less than full system capacity. Ideally, we would take advantage of this

under-utilization by allocating system resources so that the performance requirements are met and

energy is minimized. This optimization problem is complicated by the fact that the performance

and power consumption of various system configurations are often application – or even input

– dependent. Thus, practically, minimizing energy for a performance constraint requires fast,

accurate estimations of application-dependent performance and power tradeoffs. We propose a set

of algorithms for different scenarios to tackle this problem. First, we propose LEO, a probabilistic

graphical model-based learning system that provides accurate online estimates of an application’s

power and performance as a function of system configuration. This work mostly focuses on the

performance estimation for single applications. As the second part of our work, we design a

system called CALOREE which allows the learnt models to be combined with a controller so that

the system is robust to dynamic situations with changing resource requirement. Finally, as the

third part of our work, we look into the estimation for application’s performance when they are

co-scheduled with other applications. Applications co-scheduled on the same physical hardware

interfere with one another by contending for shared resources. Predicting this interference ahead of

time would be particularly valuable for job scheduling. We therefore propose an efficient technique

for estimating application interference based on sparse regression. We call our approach ESP for

Estimating co-Scheduled Performance.

LEO uses a graphical model to integrate a small number of observations of the current appli-

cation with knowledge of the previously observed applications to produce accurate estimations of

power and performance trade-offs for the current application in all configurations. LEO produces

the most accurate estimates and near optimal energy savings. These estimates can greatly resource

xiv



allocation in static situation. But the second major challenge in real systems is dynamics, dynam-

ics—performance must be maintained despite unpredictable changes in operating environment or

input. Machine learning accurately predicts the performance of complex, interacting resources, but

does not address system dynamics; control theory adjusts resource usage dynamically, but strug-

gles with complex resource interaction. We therefore propose CALOREE, a combination of learn-

ing and control that automatically adjusts resource usage to meet performance requirements with

minimal energy in complex, dynamic environments. CALOREE breaks resource allocation into

two sub-tasks: learning speedup as a function of resource usage, and controlling speedup to meet

performance requirements. CALOREE also defines a general interface allowing different learners

to be combined with a controller while maintaining control’s formal guarantees that performance

will converge to the goal. We implement CALOREE and test its ability to deliver reliable per-

formance on heterogeneous ARM big.LITTLE architectures in both single and multi-application

scenarios. Compared to state-of-the-art learning and control solutions, we find that CALOREE

reduces deadline misses by 2–6x while reducing energy consumption by 7–10%. Finally, the ad-

ditional challenge that real systems face is performance loss due to application interference. We

quantify interference as slowdown, or the performance loss one application experiences in the

presence of co-scheduled applications. Given an accurate interference prediction, a scheduler can

determine optimal assignments of applications to physical machines, leading to higher throughput

in batch systems and better quality-of-service for latency-sensitive applications. In data centers

and super computers schedulers often have a great deal of accumulated data about past jobs and

their interference, yet turning this data into effective interference predictors is difficult. We explore

such state-of-the-art regularized regression models for estimating application interference. We find

that regularized linear regression methods require a relatively small number of features, but pro-

duce inaccurate models. In contrast, non-linear models that include interaction terms – i.e., permit

features to be multiplied together – are more accurate, but are extremely inefficient and not prac-

tical for online scheduling. The key insight in ESP is to split regression modeling into two parts:

xv



feature selection and model building. ESP uses linear techniques to perform feature selection, but

uses quadratic techniques for model building. The result is a highly accurate predictor that is still

practical and can be integrated into a real application scheduler.

xvi



CHAPTER 1

INTRODUCTION

1.1 Introduction

Large classes of computing systems—from embedded to cloud—must deliver reliable performance

to users while minimizing energy to increase battery life or decrease operating costs. Moreover,

energy is increasingly important; reducing energy consumption reduces operating costs in datacen-

ters and increases battery life in mobile devices. Computer systems are often underutilized, mean-

ing there are significant portions of time where application performance demands do not require

the full system capacity. To address these conflicting requirements, hardware architects expose

diverse, heterogeneous resources with a wide array of performance and energy tradeoffs. Soft-

ware must allocate these resources to guarantee performance requirements are met with minimal

energy. Barroso and Holzle [2007], Meisner et al. [2011]. The softwares must allocate available

resources to meet the current performance demand while minimizing energy consumption. This

problem is a constrained optimization problem. The current utilization level represents a perfor-

mance constraint (i.e., an amount of work that must be completed in a given time); system energy

consumption represents the objective function to be minimized. There are three primary difficulties

in determining how to allocate heterogeneous resources.

The first is complexity: resources interact in complicated ways, leading to non-convex opti-

mization spaces. This problem is challenging because it requires a great deal of knowledge to

solve. More than knowledge of the single fastest, or most energy efficient system configuration

solving this problem requires knowledge of the power and performance available in all configura-

tions and the extraction of those configurations that represent Pareto-optimal tradeoffs. Acquiring

this knowledge is additionally complicated by the fact that these power/performance tradeoffs are

often application – or even input – dependent. Thus, there is a need for techniques that accurately

estimate these application-dependent parameters during run-time.

1



The second is dynamics: performance requirements must be met despite unpredictable distur-

bances; e.g., phases in input or changes in operating environment. Prior work addresses each of

these difficulties individually. We want the benefits of both learning and control to ensure perfor-

mance requirements are met with minimal energy in complex and dynamic environments.

The third is application interference: Applications co-scheduled on the same physical hardware

interfere with one another by contending for shared resources Dwyer et al. [2012], Kambadur

et al. [2012], Yang et al. [2013], Merkel et al. [2010]. By accurately predicting this interference,

a scheduler can determine optimal assignments of applications to physical machines, leading to

higher throughput in batch systems and better quality-of-service for latency-sensitive applications.

Data center and super computer operators often have a great deal of accumulated data about past

jobs and their interference, yet turning this data into effective interference predictors is difficult

Kambadur et al. [2012].

In this thesis we present new statistical methods for performance and power estimation which

would allow us to develop better scheduling algorithms and also more energy efficient systems.

1.2 Contributions

In this work, we present

• LEO (Learning for Energy Optimization), a learning framework that combines the best of

both worlds, i.e., the statistical properties both offline and online estimation.

• CALOREE creates a general control system implementation that factors out the parameters

that must be learned.

• ESP (Estimating co-Scheduled Performance) for application interference estimation.

2



1.2.1 LEO

Machine learning techniques represent a promising approach to addressing this estimation prob-

lem. Offline learning approaches collect profiling data for known applications and use that to pre-

dict optimal behavior for unseen applications (examples include Yi et al. [2003], Snowdon et al.

[2009], Lee and Brooks [2006], Lee et al. [2008], Chen et al. [2011]). Online learning approaches

use information collected while an application is running to quickly estimate the optimal config-

uration (examples include Li and Martinez [2006], Petrica et al. [2013], Sridharan et al. [2013],

Ponomarev et al. [2001], Ansel et al. [2012], Lee and Brooks [2008], Maggio et al. [2012]). Of-

fline methods require minimal runtime overhead, but suffer because they estimate only trends and

cannot adapt to particulars of the current application. Online methods customize to the current ap-

plication, but cannot leverage experience from other applications. In a sense, offline approaches are

dependent on a rich training set that represents all possible behavior, while the online approaches

generate a statistically weak – i.e., inaccurate – estimator due to small sample size.

LEO uses a graphical model to integrate a small number of observations of the current appli-

cation with knowledge of the previously observed applications to produce accurate estimations of

power and performance tradeoffs for the current application in all configurations. LEO’s strength

is that it quickly matches the behavior of the current application to a subset of the previously ob-

served applications. For example, if LEO has previously seen an application that only scales to 8

cores, it can use that information to quickly determine if the current application will be limited in

its scaling.

LEO is a fairly general approach in that it supports many types of applications with different

resource needs. It is not, however, appropriate for all computer systems, especially ones, which run

many small, unique jobs. Instead, it focuses on supporting systems that 1) execute longer running

jobs (in the 10s of seconds) or many repeated instances of short jobs, 2) run at a wide range of

utilizations, and 3) might have phases where optimal tradeoffs may change online. For systems

that meet these criteria, LEO provides a powerful ability to reduce the energy consumption. For

3



systems that service short ( < 1 second), largely unique jobs, LEO will work, but other approaches

are probably better matched to those specific needs.

We have implemented LEO on a Linux x86 server and tested its ability to minimize energy

for 25 different applications from a variety of different benchmark suites. We first compare LEO’s

performance and power prediction accuracy to (1) the true value, (2) an offline approach, and (3)

an online approach (See Section 3.5.2). On average, LEO is within 97% of the true value while

the offline and online approaches only achieve 79% and 86% accuracy, respectively. We then

use LEO to minimize energy for various performance requirements (or system utilizations) (See

Section 3.5.4). Overall we find that our approach is within 6% of the true optimal energy, while

the offline approach exceeds optimal energy consumption by 29% and online approach by 24%.

Finally, we show that LEO provides near optimal energy savings when adapting to phases within

an application.

This work makes the following contributions:

• To the best of our knowledge, this is the first application of probabilistic graphical models

for solving crucial system optimization problems such as energy minimization.

• It presents a graphical model capable of accurately estimating the application-specific per-

formance and power of computer system configurations without prior knowledge of the ap-

plication. (See Section 3.4).

• It makes the source code for this learning system available in both Matlab and C++1.

• It evaluates LEO on a real system. (See Section 3.5).

• It compares the accuracy of LEO’s estimations to both the truth and to offline and online

learning approaches (See Section 3.5.3).

1. leo.cs.uchicago.edu

4



• It integrates LEO into a runtime for energy optimization and finds this learning framework

achieves near-optimal energy savings. Furthermore, LEO significantly reduces energy com-

pared to both offline and online approaches as well as the popular race-to-idle heuristic. (See

Section 3.5.4).

1.2.2 CALOREE

Many machine learning approaches model the complex performance/power tradeoff spaces in-

herent to heterogeneous computing Zhu and Reddi [2013], Dubach et al. [2010], Bitirgen et al.

[2008], Snowdon et al. [2009], Mishra et al. [2015], Petrica et al. [2013], Ponomarev et al. [2001],

Delimitrou and Kozyrakis [2013]. Learning handles non-convexity, identifying local optima and

moving to globally optimal solutions. These techniques are computationally expensive and lack

support for dynamics; i.e., when the environment changes the expensive model building process

must be restarted. Control theoretic solutions provide formal guarantees that they will converge to

the desired performance despite system dynamics Hellerstein et al. [2004], Chen and John [2011],

Imes et al. [2015a], Zhang et al. [2002], Li and Nahrstedt [1999], Vardhan et al. [2009], Hoff-

mann [2015]. Control provides formal guarantees of convergence to the desired performance, but

these guarantees require ground truth models and control will not converge if the models do not

accurately capture system complexity—including local optima and non-linearities.

CALOREE creates a general control system implementation that factors out the parameters

that must be learned. While traditional control designs assume all combinations of resource con-

figurations have been measured accurately (requiring 100s or 1000s of samples Ljung [1999],

Filieri et al. [2015]), CALOREE tunes its internal models and parameters while sampling only a

small subset of possible configurations. Among these, the controller’s pole is a key parameter.

CALOREE automatically tunes the pole, providing formal guarantees the controller converges to

the desired performance—even when behavior is estimated by a noisy learner rather than directly

measured. CALOREE implements modular abstractions and self-tuning mechanisms such that the

5



expensive learning can be offloaded to another system and the controller itself runs in constant—

O(1)—time. Thus, learning’s high cost can be amortized as CALOREE uses transfer learning to

apply knowledge from multiple devices and applications Pan and Yang [2010].

CALOREE’s generality allows a wide range of learning techniques to be paired with its con-

troller. So, CALOREE not only provides an advantage over existing individual learning and control

techniques, it allows us to explore different combinations of learning and control to find the best.

We evaluate CALOREE by implementing the learner on an x86 server and the controller on

heterogeneous ARM big.LITTLE devices. We compare CALOREE to existing, state-of-the-art

learning (including polynomial regression Snowdon et al. [2009], Dubach et al. [2010], the Net-

flix algorithm Bell et al. [2008], Delimitrou and Kozyrakis [2013], and a hierarchical Bayesian

model Mishra et al. [2015]) and control (including proportional-integral-derivative Hellerstein et al.

[2004] and adaptive, or self-tuning Levine [2005]) techniques. We set performance goals—as la-

tency requirements—for a set of benchmark applications and then measure both the percentage of

time the requirements are violated and the energy for each application. We test both single-app,

where an application runs alone, and multi-app environments, where other applications enter the

system and compete for resources. CALOREE achieves the:

• Most reliable performance:

– In the single-app case, the best prior technique misses 12% of deadlines on average, while

CALOREE misses only 5% on average—reducing deadline misses by more than 58% com-

pared to prior approaches.

– In the multi-app case, the best prior approach averages 30% deadline misses, but CALOREE

misses just 5.6% of deadlines—a huge improvement over prior work.

• Best energy savings: We compare to an oracle with a perfect model of the application, system,

and future events.

– In the single-app case, the best prior approach averages 12% more energy consumption than
6



the oracle, but CALOREE consumes only 5% more.

– In the multi-app case, the best prior approach averages 18% more energy than the oracle,

while CALOREE consumes just 8% more.

In summary, control approaches are well suited to dynamic environments and learning tech-

niques accurately model complex, heterogeneous processors. To the best of our knowledge, CALO-

REE is the first work to combine the two to ensure application performance without prior knowl-

edge of the controlled application. Our formal analysis of CALOREE’s convergence despite noisy

inputs shows how to incorporate learned variance into control theoretic guarantees. We demon-

strate the practical benefits of these contributions by implementing CALOREE for mobile/embed-

ded processors to show it provides more reliable performance and lower energy than individual,

state-of-the-art learning and control solutions.

1.2.3 ESP

To apply machine learning to build an accurate predictor from this data, two fundamental decisions

must be made: (1) what features should be measured and (2) what model maps these features into

an accurate prediction. Smaller feature spaces provide more computationally efficient models, but

may miss key data and reduce prediction accuracy. The art to modeling is managing the tradeoffs

between feature set size and the model accuracy. One family of machine learning techniques—

regularization— addresses the particular problem where the number of features is much larger

than the number of samples; i.e., the problem is ill-posed and unsolvable with standard regression

analysis. Regularization methods solve such ill-posed problems by simultaneously selecting both

the features and the model Hoerl and Kennard [1988], Tibshirani [1996], Zou and Hastie [2005].

To apply machine learning to build an accurate predictor from this data, two fundamental de-

cisions must be made: (1) what features should be measured and (2) what model maps these

features into an accurate prediction. Smaller feature spaces provide more computationally efficient

models, but may miss key data and reduce prediction accuracy. The art to modeling is managing
7



the tradeoffs between feature set size and the model accuracy. One family of machine learning

techniques—regularization— addresses the particular problem where the number of features is

much larger than the number of samples; i.e., the problem is ill-posed and unsolvable with stan-

dard regression analysis. Regularization methods solve such ill-posed problems by simultaneously

selecting both the features and the model Hoerl and Kennard [1988], Tibshirani [1996], Zou and

Hastie [2005].

This work explores such state-of-the-art regularization models for predicting application in-

terference. We find that regularized linear regression methods require a relatively small number

of features, but produce inaccurate models. In contrast, non-linear models that include interac-

tion terms—i.e., permit features to be multiplied together—are more accurate, but are extremely

inefficient and not practical for online scheduling.

We therefore combine linear and non-linear approaches to produce accurate and practical pre-

dictions. We call our approach ESP for Estimating co-Scheduled Performance. ESP’s key insight

is to split regularization modeling into two parts: feature selection and model building. ESP uses

linear techniques to perform feature selection, but uses quadratic techniques for model building.

The result is a highly accurate predictor that is still practical and can be integrated into real appli-

cation schedulers.

ESP assumes there is a known (possibly very large) set of applications that may be run on the

system and some offline measurements have been taken of these individual applications. Specif-

ically, ESP measures low-level hardware features like cache misses and instructions retired dur-

ing a training phase. At runtime, applications from this set may be launched in any arbitrary

combination. The goal is to efficiently predict the interference (i.e., slowdown) of co-scheduled

applications. We evaluate ESP by integrating it into both single and multi-node schedulers run-

ning on Linux/x86 servers. In the single-node case, we construct a batch scheduler that orders

application execution to minimize the total completion time. In the multi-node case, we build a

first-come-first-serve scheduler that assigns applications to nodes as they arrive to minimize ap-

8



plication slowdown. We compare ESP-based schedulers to prior scheduling techniques that use

contention-aware heuristics to avoid interference Dey et al. [2013], Merkel et al. [2010], Tembey

et al. [2014]. We also compare ESP’s accuracy to predictors built with a number of cutting-edge

regularization methods. We find:

• The single-node ESP schedules are, on average, 27% faster than techniques based on heuris-

tics. Even with its runtime overhead, the ESP results are only 5% worse (on average) than

an oracle that has perfect knowledge of interference and no overhead. See Section 5.3.2.

• The multi-node ESP schedules are 60% faster than activity vector based schedules and only

5% to 13% worse than an oracle. See Section 5.3.3.

• Critically, ESP produces better results as more applications are scheduled. ESP produces

quantifiable performance predictions while heuristic techniques simply produce a binary de-

cision: co-schedule or not. ESP’s quantifiable predictions allow schedulers to make optimal

decisions even when interference cannot be avoided. In contrast, heuristic techniques do

not quantify interference and thus cannot rank decisions. As the number of applications

increases, the chance of heuristics making a very poor choice in the face of unavoidable

contention also increases. See Section 5.3.4.

• ESP is more accurate than existing linear regression techniques in most cases. When con-

sidering two applications, ESP is similar to existing regularized linear regression techniques.

Considering more than two applications, however, ESP is uniformly more accurate than stan-

dard linear regression techniques. See Section 5.3.5. For reasons explained in Section 5.1.2,

existing regularized regression methods with interaction terms cannot be evaluated for accu-

racy because their models are too complex to be implemented in practice.

9



CHAPTER 2

BACKGROUND AND FUTURE WORK

In this section, we will discuss the related work on energy and power optimization. Previously,

some offline optimization techniques have been proposed (e.g., Yi et al. [2003], Lee and Brooks

[2006], Lee et al. [2008], Chen et al. [2011], Ansel et al. [2011], but they are limited by reliance

on a robust training phase. If behavior occurs online that was not represented in the training data,

then these approaches may produce suboptimal results. Several approaches augment offline model

building with online measurement. For example, many systems employ control theoretic designs

which couple offline model building with online feedback control Wu et al. [2004], Maggio et al.,

Chen and John [2011], Hoffmann et al. [2013], Imes et al. [2015b], Zhang et al. [2002], Li and

Nahrstedt [1999], Rajkumar et al. [1997], Sojka et al. [2011], Raghavendra et al. [2008]. Over a

narrow range of applications the combination of offline learning and control works well, as the

offline models capture the general behavior of the entire class of application and require negligible

online overhead. This focused approach is extremely effective for multimedia applications Vardhan

et al. [2009], Flinn and Satyanarayanan [1999, 2004], Kim et al. [2013], Maggio et al. and web-

servers Horvath et al. [2007], Lu et al. [2006], Sun et al. [2008]. Some approaches have combined

offline predictive models with online adaptation Zhang et al. [2012], Cochran et al. [2011], Winter

et al. [2010], Dubach et al. [2010], Snowdon et al. [2009], Roy et al. [2011], Wu and Lee [2012].

For example, Dubach et al. propose such a combo for optimizing the microarchitecture of a single

core Dubach et al. [2010]. Such predictive models have also been employed at the OS level to

manage system energy consumption Snowdon et al. [2009], Roy et al. [2011]. Wu and Lee [2012].

Other approaches adopt an almost completely online model, optimizing based only on dynamic

runtime feedback Li and Martinez [2006], Petrica et al. [2013], Sridharan et al. [2013], Ponomarev

et al. [2001], Ansel et al. [2012], Lee and Brooks [2008]. For example, Flicker is a configurable

architecture and optimization framework that uses only online models to maximize performance

under a power limitation Petrica et al. [2013]. Another example, ParallelismDial, uses online

10



adaptation to tailor parallelism to application workload.

Some approaches that combine offline modeling with online model updates Filieri et al. [2014],

Bitirgen et al. [2008]. For example, Bitirgen et al use an artificial neural network to allocate re-

sources to multiple applications in a multicore Bitirgen et al. [2008]. The neural network is trained

offline and then adapted online using measured feedback. This approach optimizes performance

but does not consider power or energy minimization.

We discuss related work in managing resources to meet performance goals and reduce energy.

2.1 Machine Learning

We break learning for resource management into 3 categories: offline, online, and hybrid ap-

proaches. Offline approaches build models before deployment and then use those fixed models to

allocate resources Yi et al. [2003], Lee and Brooks [2006], Lee et al. [2008], Chen et al. [2011],

Ansel et al. [2011]. The model-building phase is expensive, requiring both a large number of sam-

ples and substantial computation. Applying the model online, however, is low overhead. The main

drawback is that the models are not updated as the system runs: a problem for adapting workloads.

Carat is a good example of an offline learner that aggregates data across multiple devices to gen-

erate a report for human users about how to configure their device to increase battery life Oliner

et al. [2013]. While both Carat and CALOREE learn across devices, they have very different goals.

Carat returns very high-level information to human users; e.g., update a driver to extend battery

life. CALOREE automatically builds and applies low-level models to save energy.Online tech-

niques observe the current application to tune system resource usage for that application Li and

Martinez [2006], Petrica et al. [2013], Sridharan et al. [2013], Ponomarev et al. [2001], Ansel et al.

[2012], Lee and Brooks [2008]. For example, Flicker is a configurable architecture and optimiza-

tion framework that uses online models to maximize performance under a power limitation Petrica

et al. [2013]. Another example, ParallelismDial, uses online adaptation to tailor parallelism to

application workload Sridharan et al. [2013]. Hybrid approaches combine offline predictive mod-

11



els with online adaptation Zhang et al. [2012], Cochran et al. [2011], Winter et al. [2010], Dubach

et al. [2010], Snowdon et al. [2009], Roy et al. [2011], Wu and Lee [2012]. For example, Dubach et

al. use hybrid models to optimize the microarchitecture of a single core Dubach et al. [2010]. Such

predictive models have also been employed at the operating system level to manage system energy

consumption Snowdon et al. [2009], Roy et al. [2011], Wu and Lee [2012]. Other approaches

combine offline modeling with online updates Hoffmann [2015], Bitirgen et al. [2008]. For exam-

ple, Bitirgen et al use an artificial neural network to allocate resources to multiple applications in

a multicore Bitirgen et al. [2008]. The neural network is trained offline and then adapted online

using measured feedback. This approach maximizes performance but does not consider power or

energy minimization.

2.2 Control

Almost all control solutions can be thought of as a combination of offline model building with

online adaptation. The model building involves substantial empirical measurement that is used

to synthesize a control system Wu et al. [2004], Maggio et al., Chen and John [2011], Hoffmann

et al. [2013], Imes et al. [2015a], Zhang et al. [2002], Li and Nahrstedt [1999], Rajkumar et al.

[1997], Sojka et al. [2011], Raghavendra et al. [2008]. The combination of offline learning and

control works well over a narrow range of applications, as the offline models capture the general

behavior of a class of application and require negligible online overhead. This focused approach is

extremely effective for multimedia applications Vardhan et al. [2009], Flinn and Satyanarayanan

[1999, 2004], Kim et al. [2013], Maggio et al. and web-servers Horvath et al. [2007], Lu et al.

[2006], Sun et al. [2008] because the workloads can be characterized ahead of time so that the

models produce sound control.

Indeed, the need for good models is the central tension in developing control for computing

systems. It is always possible to build a controller for a specific application and system by exten-

sively modeling that pair. More general controllers, which work with a range of applications, have

12



addressed the need for models in various ways. Some provide libraries that encapsulate control

functionality and require user-specified models Zhang et al. [2002], Sojka et al. [2011], Rajku-

mar et al. [1997], Imes et al. [2015a], Goel et al. [1998]. Others automatically synthesize both a

model and a controller for either hardware Pothukuchi et al. [2016] or software Filieri et al. [2014,

2015]. JouleGuard combines learning for energy efficiency with control for managing application

parameters Hoffmann [2015]. In JouleGuard, a learner adapts the controller’s coefficients to model

uncertainty, but JouleGuard’s learner does not produce a new model for the controller. Because

JouleGuard’s learner runs on the same device as the controlled application, it must be computation-

ally efficient and thus it cannot identify correlations across applications or even different resource

configurations. CALOREE is unique in that a separate learner generates an application-specific

model automatically. By offloading the learning task, CALOREE (1) combines data from many

applications and systems and (2) applies computationally expensive, but highly accurate learning

techniques.

2.3 Application interference

Accurate performance estimates are essential for solving scheduling and resource allocation prob-

lems Chiang et al. [2002]. Accurate estimates are difficult to obtain due to the complexity and di-

versity of large-scale systems Kanev et al. [2015]. A particular challenge is modeling performance

loss due to contention among applications Kambadur et al. [2012]. Better contention models could

improve system utilization while ensuring quality-of-service in latency sensitive applications Yang

et al. [2013].

Several approaches investigate statistical and machine learning techniques for estimating power,

performance, and energy of a single application running on a single system. Many of these ap-

proaches improve the time of developing new hardware designs, but are not suitable for online

resource management Yi et al. [2003], Lee and Brooks [2006], Lee et al. [2008]. Other approaches

can predict the power and performance of various resource allocations to single applications Snow-

13



don et al. [2009] or optimize energy efficiency under latency constraints Mishra et al. [2015]. A

recent approach combines machine learning with control theory to guarantee energy consumption,

but only for a single application Hoffmann [2015]. Perhaps most similar to ESP is the Mantis

project which also uses higher-order regularized regression models (based on Lasso) to predict

smartphone app performance Kwon et al. [2013]. Mantis, however, does not predict contention

among multiple applications, which is ESP’s focus.

Other approaches predict and mitigate contention in single-node systems. Many decide to co-

schedule or not, but they do not produce quantitative slowdown estimates. For example, Dwyer et

al. propose a classifier that predicts whether contention will be high or low, but this approach does

not produce a numerical estimate Dwyer et al. [2012]. Similarly, ReSense detects highly contended

resources and reacts to reduce that contention, but it never estimates contention Dey et al. [2013].

Another approach estimates throughput (total system performance), but does not produce estimates

of individual application performance Xu et al. [2010], Chen et al. [2010]. Subramanian et al.

propose an approach that does produce accurate estimates of performance (within 9.9%) based

on only last-level cache access rate and memory bandwidth Subramanian et al. [2015]. These

results are achieved on a simulator rather than a real system, however, and on our real system these

two features are not sufficient to predict contention with any level of accuracy. Another single-

node system, D-Factor, uses non-linear models to predict the slowdown of a new application given

current resource usage Lim et al. [2012]. Unlike ESP, D-Factor is not capable of predicting how

two applications will interfere with each other if neither is currently running.

Several approaches estimate and mitigate contention to schedule for multi-node systems. The

activity vectors approach works on single or multi-node systems by maximizing the variance

among resource usage in co-scheduled applications Merkel et al. [2010]. This heuristic makes

intuitive sense – applications with very different resource needs are less likely to interfere with

each other – but this approach does not produce quantitative estimates and therefore can make bad

decisions when contention is unavoidable. Merlin, is somewhat similar, in that it tries to estimate

14



contended resources and migrate virtual machines to areas of lower contention, but it also does not

produce slowdown estimates Tembey et al. [2014]. DejaVu is a machine learning approach that

classifies application workloads and then schedules according to known good schedules for the

classification Vasić et al. [2012]. DejaVu creates an interference index which can be used to rank

slowdowns and migrate VMs or reallocate resources, but it does not produce accurate estimates of

the actual slowdowns incurred. Similarly, Quasar Delimitrou and Kozyrakis [2014] and Stay-Away

Rameshan et al. [2014] use classification schemes to predict and mitigate interference, but neither

produces performance estimates in the face of interference. Bubble-flux Yang et al. [2013], an

improvement over the earlier Bubble-up Mars et al. [2011] does produce slowdown estimates and,

like ESP, it is efficient enough to consider interference among more than two applications. The

main difference between Bubble-flux and ESP is that Bubble-flux uses no offline prior information

and must dynamically probe the system. This lack of prior information means that Bubble-flux

must suffer either poor utilization or inaccurate schedules during the probing phase. ESP uses a

highly accurate offline model and combines that with online updates to its predictions to further

improve accuracy while making use of the vast amount of data available to inform offline model

building.

We model interference estimation as a high-dimensional regression problem with prohibitively

many dimensions. Many statistical methods address high-dimensionality (e.g., SURE Fan and Lv

[2008]). In computer system performance, however, measurable features are highly correlated

and existing methods do not provide high accuracy. Other statistical models emit more accurate

predictors given correlated features (e.g., Yuan and Lin [2006] and Bien et al. [2013]), but they do

not scale to our problem size. Even though we make a strong assumption that the interaction terms

are present only if their individual linear terms are significant, the heuristic has very high accuracy

and produces good schedules in practice.

15



CHAPTER 3

LEO: ESTIMATION FOR SINGLE APPLICATION

3.1 Motivational Example

This section presents an example to motivate LEO and build intuition for the formal models pre-

sented subsequently. We consider energy optimization of the Kmeans benchmark from Minebench

Narayanan et al. [2006]. Kmeans is a clustering algorithm used to analyze large data sets. For this

example, we run on a 16-core Linux x86 server with hyperthreading (allowing up to 32 cores to

be allocated)1. We assume that Kmeans may be run with different performance demands and we

would like to minimize energy for any given performance demand. To do so for Kmeans on our

32-core system we must estimate its performance and power as a function of the number of cores

allocated to the application. Given this information, we can easily select the most energy efficient

number of cores to use for any performance demand.

To illustrate the benefits of LEO, we will compare it with three other approaches: a heuristic,

offline learning, and online learning. The heuristic uses the well know race-to-idle strategy –

simply allocating all resources (cores, clockspeed, etc.) to Kmeans and then idling the system once

1. Our full system evaluation tests more parameters than simply core allocation. See Section 3.5 for details.

(a) (b) (c)

Figure 3.1: Power estimation for Kmeans clustering application using LEO, Online and Offline
algorithms. The estimations are made using only 6 observed values (Cores) out of 32.Add perfor-
mance description

16



the application completes. The offline learning approach builds a statistical model of performance

and power for each configuration based on prior measurements of other applications. The online

approach uses polynomial regression to learn the tradeoffs for each configuration while Kmeans

is running. (More details on the specifics of these approaches can be found in Section 3.5.2).

Each of these three approaches has their limitations. The heuristic approach simply assumes

that the most energy efficient configuration is the one where all the system resources are in use,

but that has been shown to be a poor assumption for this type of application Hoffmann [2013],

Meisner et al. [2011]. The offline approach predicts average behavior for a range of applications,

but it may be a poor predictor of specific applications (Kmeans, in this case). The online approach

will produce a good prediction if it takes a sufficient number of samples, but the required number

of samples may be prohibitive.

LEO combines the best features of both the offline and online approaches. At runtime, it

changes core allocation (using process affinity masks), observes the power and performance, and

combines this data with that from previously seen applications to obtain the most probable esti-

mates for other unobserved cores. The key advantage of LEO’s graphical model approach is that

it quickly finds similarities between Kmeans and previously observed applications. It builds its

estimation not from every previous application, but only those that exhibit similar performance and

power responses to core usage. This exploitation of similarity is the key to quickly producing a

more accurate estimate than either strictly online or offline approaches.

Figure 3.1 shows the results for this example. Figure 3.1a shows each approach’s performance

estimates as a function of cores, while Figure 3.1b shows the estimate of power consumption.

These runtime estimates are then used to determine the minimal energy configuration for various

system utilizations. Figure 3.1c shows the energy consumption data where higher utilizations

mean more demanding performance requirements. As can be seen in the figures, LEO is the only

estimation method that captures the true behavior of the application and this results in significant

energy savings across the full range of utilizations.

17



Learning the performance for Kmeans is hard because the application scales well to 8 cores,

but its performance degrades sharply with more. It is quite challenging to find the peak without

exploring every possible number of cores. We observe the power and performance at 6 uniformly

distributed values (5, 10, · · · , 30 cores). The offline learning method predicts the highest per-

formance at 32 cores because that is the general trend over all applications. The online method

predicts peak performance at 24 cores, so it learns that performance degrades, but requires many

more samples to correctly place the peak. LEO – in contrast – leverages its prior knowledge of an

application whose performance peaks with 8 cores. Because LEO has previously seen an applica-

tion with similar behavior, it is able to quickly realize that Kmeans follows this pattern and LEO

produces accurate estimates with just a small number of observations.

The next three sections formalize this example. Section 3.2 describes the notation we will

use. Section 3.3 presents a general formalization of this energy minimization problem for any

configurable system (not just cores). Section 3.4 presents the technical description of how LEO in-

corporates online and offline approaches to find similar applications and produce accurate runtime

estimates of power and performance.

3.2 Notations

The set of real numbers is denoted by R. Rd denotes the set of d-dimensional vectors of real

numbers; Rd×n denotes the set of real d × n dimensional matrices. We denote the vectors by

lower-case and matrices with upper-case boldfaced letters. The transpose of a vector x (or matrix

X) is denoted by xT or just x′. ‖x‖2 is the L2 norm of vector x, i.e. x =
√

∑
d
i=1 x2[i]. ‖X‖F is

the Frobenius norm of matrix X; i.e., ‖X‖F =
√

∑
d
i=1 ∑

n
i=1 X2[i][ j]. Let A ∈ Rd×d denote a d-

dimensional square matrix. tr(A) is the trace of the matrix A and is given as, tr(A) = ∑
d
i=1 A[i][i].

And, diag(x) is a d-dimensional diagonal matrix B with the diagonal elements given as, B[i][i] =

x[i] and off-diagonal elements being 0.

We now review the standard statistical notation used below. Let x,y denote any random vari-

18



ables in Rd . The notation x ∼ D represents that x is drawn from the distribution D . Similarly,

the notation x,y∼D represents that x and y are jointly drawn from the distribution D , and finally

x|y ∼ D represents that x is drawn from the distribution after observing (or conditioned on) the

random variable y. The following are the operators on x: E[x] : expected value of x, var[x] : vari-

ance of x, Cov[x,y] : covariance of x and y. x̂ denotes the estimated value for the random variable

x.

3.3 Energy Minimization

This section formalizes the problem of minimizing an application’s energy consumption for some

performance constraint; i.e., work that should be accomplished by a particular deadline. We as-

sume a configurable system where each configuration has different application-specific perfor-

mance and power characteristics. Our aim is to select the configuration that finishes the work by

the deadline while minimizing the energy consumption.

Formally, the application must accomplish W work units in time T . The system has a set of

configurations (e.g., combinations of cores and clockspeeds) denoted by C . Assuming that each

configuration c∈C has an application-specific performance (or work rate) rc and power consump-

tion pc, then we formulate the energy minimization problem as a linear program in Equation (3.1):

min
t≥0 ∑

c∈C
pctc,

subject to ∑
c∈C

rctc =W,

∑
c∈C

tc ≤ T.

(3.1)

where pc: Power consumed when running on cth configuration; rc: Performance rate when running

on cth configuration; W : Work that needs to be done by the application; tc: Time spent by the

application in cth configuration; T : Total run time of the application. The linear program above

finds the times tc during which the application runs in the cth configuration so as to minimize the

19



total energy consumption and ensure all work is completed by the deadline. The values pc and

rc are the key to solving this problem. If they are known, the structure of this linear program

allows the minimal energy schedule to be found using convex optimization techniques Bradley

et al. [1977].

This formulation is abstract so that it can be applied to many applications and systems. To

help build intuition, we relate it to our Kmeans example. For Kmeans the workload is the num-

ber of samples to cluster. The deadline T is the time by which the clustering must be completed.

Configurations represent assigning Kmeans different resources. In Section 4.1, we restricted con-

figurations to be assignment of cores. In Section 3.5, we will expand configurations to include

assignment of cores, clockspeed, memory controllers, and hyperthreads. For Kmeans, each as-

signment of resources results in a different rate of computation (points clustered per time) and

power consumption.

Unfortunately, power and performance are entirely application dependent. For many appli-

cations, these values also vary with varying inputs. Hence, for any new application in use we

do not know the values of these coefficients. One way to solve the problem would be run this

new application on each configuration in a brute force manner. But, as we pointed out earlier, we

might have very large number of configurations and the brute force approach may not be tractable.

Alternatively, we can just run the application in small subset of configurations and use these mea-

surements to estimate the behavior of unmeasured configurations. We might also consider using

the data from other applications from the same system to estimate these parameters (we can collect

this data offline). The question now is how do we utilize this data to find our estimates. One simple

yet clever thing would be to simply take a mean of pc (similarly for rc) across all the applications.

Now, this offline method will work well for any application that follows the general trend exhibited

by all prior applications. Another quick solution could be to just use the small subset of collected

sample and run a multivariate polynomial regression on the configuration parameters vs pc (or rc)

to predict power (performance) in all other configurations. This online method might not work for

20



Figure 3.2: Conditional dependence in Bayesian Model.

all the applications s because they might have local minima or maxima that are not captured by a

small sample. In the next section, Section 3.4 we give details of CALOREE, our solution to this

problem which uses both the data from the current application and previously seen applications for

fast, accurate estimates.

3.4 Modeling Power and Performance

3.4.1 Introduction to Probabilistic Graphical Models

We present an introduction to graphical models in general before we delve into the details of

LEO specifically. Directed graphical models (or Bayesian networks) are a type of graphical model

capturing dependence between random variables. Each node in these models denotes a random

variable and the edges denote a conditional dependence among the connecting nodes. The nodes

which have no edges connecting them are conditionally independent. By convention shaded nodes

denote an observed variable (i.e., one whose value is known), whereas the unshaded ones denote

an unobserved variable. In Figure 3.2a, variables A and B are dependent on C. If C is observed, A

and B would be independent in Figure 3.2b.

The dependence structure in Bayesian networks can be understood using a coin flipping exam-

ple with a biased coin. Suppose A represents the outcome of the first coin flip, B represents that of

second coin flip and C represents the coin’s bias. Suppose we know this bias is P(Heads) = 0.7,

21



Figure 3.3: Hierarchical Bayesian Model.

then both the flips are independent — irrespective of the first flip the second flip gives heads with

probability 0.7. If the bias is unknown, however, then the value of B is conditionally dependent on

A. Thus, knowing that A = Heads increases belief that the bias is towards Heads – that C > 0.5.

Therefore, the probability that the second coin flip gives Heads (i.e., B = Heads) increases.

LEO exploits this conditional dependence in the presence of hidden, or unobserved, random

variables. LEO models the performance and power consumption of every system configuration as a

random variable drawn from a Gaussian probability distribution with unknown mean and standard

deviation. Therefore, previously observed applications will condition LEO’s estimations of the

performance and power for new, unobserved applications.

3.4.2 Hierarchical Bayesian Model

Hierarchical Bayesian Models are slightly more complex Bayesian networks, usually with more

than one layer of hidden nodes representing unobserved variables. LEO utilizes these hidden nodes

to improve its estimates for a new application using prior observations from other applications.

The intuition is that knowing about one application should help in producing better predictors for

other applications. In our examples, learning about one biased coin flip should tell us something

about another. Similarly, learning about another application that scales up to 8 cores should tell us

22



something about Kmeans. LEO utilizes this conditional dependence in the problem of performance

and power prediction for an application using other applications. LEO’s model is explained in the

figure Figure 3.3,

Suppose we have n = |C | configurations in our system. We have a target application whose

energy we wish to minimize, while meeting a performance requirement (as in (3.1)). Additionally,

we have a set of M−1 applications whose performance and power are known (as they have been

measured offline).

We will illustrate how LEO estimates power as a function of system configuration. The iden-

tical process is used to estimate performance. Let the vector yi ∈ Rn represent the power estimate

of application i in all n configurations of the system; i.e., the cth component of yi is the power for

application i in configuration c (or yi[c] = pc). Also, let {yi}Mi=1 be the shorthand for the power

estimates for all applications. Without loss of generality, we assume that the first M−1 columns,

i.e., {yi}M−1
i=1 represent the data for those applications whose power consumption is known (this

data is collected offline). The Mth column, yM represents the power consumption for the new,

unknown application. We have some small number of observations for this application. Specif-

ically, for the Mth application we have observed configurations belonging to the set ΩM where

|ΩM| � n; i.e., we have a very small number of observations for this application. Our objective

is to estimate the power for application M for all configurations that we have not observed. The

model is described in terms of statistical equations below,

yi|zi ∼ N(zi,σ
2I),

zi|µ,Σ∼ N(µ,Σ),

µ,Σ∼ N(µ0,Σ/π)IW (Σ|ν ,Ψ),

(3.2)

where yi ∈ Rn, zi ∈ Rn, µ ∈ Rn, Σ ∈ Rn×n. It describes that the power (denoted by yi) for

each of the ith application, is drawn from multivariate-Gaussian distribution with mean zi and a

diagonal covariance matrix σ2I. Similarly, zi is from multivariate-Gaussian distribution with mean

23



µ and covariance Σ. And, µ and Σ are jointly drawn from normal-inverse-Wishart distribution with

parameters µ0,π,Ψ,ν . The parameters for our model are µ,Σ, whereas, µ0,π,Ψ,ν are the hyper-

parameters, which we set as µ0 = 0,π = 1,Ψ = I,ν = 1.

The first layer in this model as described in Figure 3.3, is the filtration layer and accounts

for the measurement error for each application. Interestingly, even if we have just a single mea-

surement of each configuration for each application, this layer plays a crucial role as it creates a

shrinkage effect. The shrinkage effect penalizes large variations in the application and essentially

help in reducing the risk of the model (See Efron and Morris [1975] for shrinkage effect and Mor-

ris [1983] for shrinkage in hierarchical models). The second layer on the other hand binds the

variable zi for each application and enforces that they are drawn from the same distribution with

unknown mean and covariance. We work with a normal-inverse-Wishart distribution as described

in Gelman et al. [2013] as our hyper prior on µ,Σ, since this distribution is the conjugate prior for

a multivariate Gaussian distribution. Thus, we essentially have a normal means model at the first

level of our hierarchy for each of the different apps and we have a Gaussian prior on the parameter

of this model. Now, if the mean µ , covariance Σ and noise σ were known, yi are conditionally

independent given these parameters. Since they are unknown we have introduced a dependence

amongst all the yis. This is a similar situation to our coin flipping example in Figure 3.2, where the

value of one coin influences our prediction about the other coin. Σ captures the correlation between

different configurations as depicted in Figure 3.4.

We use θ = {µ,Σ,σ} to denote the unknown parameters in the model. It can be shown that

yM is Gaussian given θ (See Yu et al. [2005]). Thus, the problem boils down to estimating θ .

Maximum-likelihood estimators are the set of values of the model parameters that maximizes the

likelihood function (or the probability function of the observed outcomes given the parameter

values). Essentially, the maximum-likelihood estimates of parameters are those values which most

agree with the model. Suppose φ(y) is the set of the observed entries in vector y. Ideally, we would

like to find the maximum likelihood estimate of the parameter θ by maximizing the probability of

24



yM conditioned on φ(yi)
M
i=1 and then use the expectation of yM given φ(yi)

M
i=1 and θ̂ and as our

estimator for yM. Due to the presence of latent variables (layer 1 and layer 2 in Figure 3.3) , we do

not have a closed form for Pr(yM|{φ(yi)}Mi=1,θ) and we have to resort to the iterative algorithms

like Expectation Maximization algorithm to solve this problem.

3.4.3 Expectation Maximization Algorithm

The EM (Expectation Maximization) algorithm is a popular approach in statistics for optimizing

over analytically intractable problems. The EM algorithm switches between two steps: expectation

(E) and maximization (M) until convergence. During the E step, a function for the expectation of

the log of the likelihood is found using the current estimate for the parameters. In the M step, we

compute parameters maximizing the expected log-likelihood found on the E step. These parameter

estimates are then used to determine the distribution of the latent variables in the next E step. We

have left out some details of the algebra here, but a more detailed proof on similar lines can be

found here Yu et al. [2005].

As described earlier, Ωi is the set of observed indices for ith application. Let L denote the

indicator matrix with L(i, j) = 1 if j ∈Ωi and 0 otherwise. That is, L(i, j) = 1 if we have observed

application i in system configuration j. We are using Li for L(:, i) for ith application for shorter

notation. We can write the expectation and covariance for zi given θ as following,

Cov(zi) =

(
diag(Li)

σ2 +Σ
−1
)−1

and

E(zi) = Ĉi

(
diag(Li)yi

σ2 +Σ
−1

µ

)
.

(3.3)

We use Ĉi as shorthand for Cov(zi) and ẑi denotes E(zi). Later, we maximize log-likelihood

25



w.r.t. θ and taking derivative w.r.t. Σ,σ and µ and setting them to 0 gives,

µ =
1

M+π

M

∑
i=1

ẑi,

Σ =
1

M+1

(
M

∑
i=1

Ĉi +(ẑi−µ)(ẑi−µ)′
)
+πµµ

′+ I,

σ
2 =

1
‖L‖2F

M

∑
i=1

tr
(
diag(Li)(Ĉ′i +(ẑi−yi)(ẑi−yi)

′)
)
,

(3.4)

LEO iterates over the E step (equation (3.3)) and M step (equation (3.4)) until convergence to

obtain the estimated parameters θ . Then, conditioned on those values of the parameters, LEO sets

yM as E(zM|θ) given by (3.3). LEO uses the same algorithm to estimate performance as well.

Given performance and power estimates, the energy minimization problem can be solved us-

ing existing convex optimization techniques Hoffmann et al. [2013], Zhang et al. [2002], Li and

Nahrstedt [1999], Imes et al. [2015b]. LEO simply first take the estimates, then finds the set of

configurations that represent Pareto-optimal performance and power tradeoffs, and finally walks

along the convex hull of this optimal tradeoff space until the performance goal is reached. The

configuration representing this this point in the Pareto-optimal space is the desired tradeoff.

3.4.4 Example

We illustrate how LEO can be applied to our running example of Kmeans from Section 4.1. We

have 32 configurations (hence n = 32) corresponding to cores. We also have 24 other applications

(hence M = 25) with all the data for different configurations collected offline and denoted by

{yi}M−1
i=1 ; yM denotes the power data for Kmeans. Referring to Figure 3.3, Kmeans is the final

node, labeled “Target Application,” whereas the rest of the applications would be the remaining

nodes in any order. LEO estimates zM, the node above yM in Figure 3.3, which is an unbiased

estimator for yM. LEO collects data yM for 6 different configurations (5, 10, · · · , 30 cores). Hence,

ΩM = {5,10, · · · ,30} and yM[ j] is known iff j ∈ ΩM. Also, Li or L(:, i) is an all one vector of

length n if i 6= M and L( j, i) = 1 if j ∈ΩM and L( j, i) = 0 otherwise.

26



Figure 3.4: A illustrative example of covariance Σ between different configurations, in equation
(3.2)

Now, we describe the main steps of LEO. The algorithm starts by setting some initialization

for the parameter θ = {µ,Σ,σ} and then evaluates equation (3.3) for each ith and later uses these

values of ẑi and Ĉi to evaluate equation (3.4), which is fed back to expectation (3.3) and so on. This

alternating step between equation (3.3) and (3.4) runs until the algorithm converges. The algorithm

uses ẑM as the estimate of Kmeans power (i.e., pc = ẑM[c],∀c ∈ C in equation (3.1)). Similarly,

LEO estimates the performance rc. After the estimation step the linear program in equation (3.1)

is solved to obtain the best configuration.

3.4.5 Discussion

The key to LEO is that it does not assume any parametric function to describe how the power varies

along the underlying configuration knobs such as cores, memory controllers or speed settings. The

upside of this representation is that LEO captures a much wider variety of applications, whereas the

downside is a higher computational load. LEO finds covariance in the configurations and exploits

these relationships to estimate the data for each of the configurations (See Figure 3.4). We want to

again point out how our modeling of the problem is markedly different from some of the previous

approaches (such as Deng et al. [2012]), which assume that power and performance are convex

functions of the configuration knobs and employ algorithms similar to gradient descent to find the

27



Figure 3.5: Comparison of performance (measured as speedup) estimation by different techniques
for various benchmarks. On an average (over all benchmarks), LEO’s accuracy is 0.97 compared
to 0.87 and 0.68 for Online and Offline respectively. The results are normalized with respect to the
Exhaustive search method.

optimal configuration. While such methods work well for most applications, it may not be suitable

for more complicated applications. In contrast, LEO assumes that there will be many local minima

and maxima in the functions mapping system configuration to power and performance – LEO is

designed to be robust to the presence of local extrema, but this property is achieved at a cost of

higher computational complexity.

We describe some of the properties of LEO. The EM algorithm’s convergence is dependent on

the initial model Wu [1983]. We can initialize the algorithm randomly. Empirically, however, we

observe that the initialization of µ with the estimates from the online or offline approaches (given

in Section 3.5.2) improves LEO’s accuracy. Experimentally we have observed that the algorithm

converges quickly for our benchmark sets, generally requiring 3-4 iterations to reach the desired

accuracy. We discuss the overhead of LEO further in Section 3.5.7.

28



Figure 3.6: Comparison of power (measured in Watts) estimation by different techniques for vari-
ous benchmarks. On an average (over all benchmarks), LEO’s accuracy is 0.98 compared to 0.85
and 0.89 for Online approach and Offline approach respectively. Again, the results are normalized
with respect to the Exhaustive search method.

3.5 Experimental Results

This section evaluates LEO’s performance and power estimates, and its ability to use those esti-

mates to minimize energy across a range of performance requirements. We begin by describing our

experimental setup and the approaches to which we compare LEO. We discuss LEO’s accuracy for

performance and power estimates. We then show that LEO provides near optimal energy savings

using these estimates. We conclude the evaluation with a sensitivity analysis showing how LEO

performs with respect to different sample sizes and a measurement of LEO’s overhead.

3.5.1 Experimental Setup

Our test platform is a dual-socket Linux 3.2.0 system with a SuperMICRO X9DRL-iF mother-

board and two Intel Xeon E5-2690 processors. We use the cpufrequtils package to set the

processor’s clock speed. These processors have eight cores, fifteen DVFS settings (from 1.2 –

2.9 GHz), hyper-threading, and TurboBoost. In addition, each chip has its own memory con-

troller, and we use the numactl library to control access to memory controllers. In total, the

29



(a) (b) (c)

Figure 3.7: Examples of performance estimation using LEO. Performance is measured as applica-
tion iterations (or heartbeats) per second. (See Section 5.3.1).

(a) (b) (c)

Figure 3.8: Examples of power estimation using LEO. Power is measured as total system power.

system supports 1024 user-accessible configurations, each with its own power/performance trade-

offs2. According to Intel’s documentation, the thermal design power for these processors is 135

Watts. The system is connected to a WattsUp meter which provides total system power measure-

ments at 1s intervals. In addition, we use Intel’s RAPL power monitor to measure chip power for

both sockets at finer-grain intervals. We use 25 benchmarks from three different suites including

PARSEC (blackscholes, bodytrack, fluidanimate, swaptions, x264 ) Bienia et al.

[2008], Minebench (ScalParC, apr, semphy, svmrfe, Kmeans, HOP, PLSA, non fuzzy

kmeans

(Kmeansnf)) Narayanan et al. [2006], and Rodinia (cfd, nn, lud,

particlefilter, vips, btree, streamcluster, backprop, bfs) Che et al. [2009].

2. 16 cores, 2 hyperthreads, 2 memory controllers, and 16 speed settings (15 DVFS settings plus TurboBoost)

30



We also use a partial differential equation solver (jacobi), a file intensive benchmark (filebound

and the swish++ search web-server Hoffmann et al. [2011a]. These benchmarks test a range of

important multi-core applications with both compute-intensive and i/o-intensive workloads. All

the applications run with up to 32 threads (the maximum supported in hardware on our test ma-

chine). In addition, all workloads are long running, taking at least 10 seconds to complete. This

duration gives sufficient time to measure system behavior. All applications are instrumented with

the Application Heartbeats library which provides application specific performance feedback to

LEO Imes et al. [2015b]. Thus LEO is ensured of optimizing the performance that matters to the

application. All performance results are then estimated and measured in terms of heartbeats/s. In

the Kmeans example, this metric would represent the samples clustered per second.

To evaluate LEO quantitatively, we measure the accuracy of the predicted performance and

power values ŷ with respect to the true data y is measured as,

accuracy(ŷ,y) = max

(
1− ‖ŷ−y‖22
‖y− ȳ‖22

,0

)
. (3.5)

3.5.2 Points of Comparison

We evaluate LEO in comparison to four baselines:

1. Race-to-idle – This approach allocates all resources to the application and once it is fin-

ished the system goes to idle. This strategy incurs almost no runtime overhead, but may be

suboptimal in terms of energy, since maximum resource allocation is not always the best

solution to the energy minimization equation (3.1) Carroll and Heiser [2013], Hoffmann

[2013], Le Sueur and Heiser [2011].

2. Online – This strategy carries out polynomial multivariate regression on the observed dataset

using configuration values (the number of cores, memory control and speed-settings) as

predictors, and estimates the rest of the data-points based the same model. Then it solves

the linear program given by (3.1). This method uses only the observations and not the prior

31



(a) (b) (c)

Figure 3.9: Pareto frontier for power and performance estimation using different estimation algo-
rithms. We compare estimated Pareto-optimal frontiers to the true frontier found with exhaustive
search, providing insight into how LEO solves equation (3.1). When the estimated curves are be-
low optimal plots, it represents worse performance i.e. missed deadlines, whereas the estimations
above the optimal waste energy.

(a) (b) (c)

Figure 3.10: Energy consumption vs utilization for different estimation algorithms.

data.

3. Offline – This method takes the mean over the rest of the applications to estimate the power

and performance of the given application and uses these predictions to solve for minimal

energy. This strategy only uses prior information and we does not update based on runtime

observations.

4. Exhaustive search – This brute-force approach searches every possible configuration to de-

termine the true performance, power, and optimal energy for all applications.

32



Figure 3.11: Comparison of average energy (normalized to optimal) by different estimation tech-
niques for various benchmarks. On an average (taken over all the benchmarks); LEO consumes
6% over optimal, as compared to the Online, Offline, and Race-to-idle approaches, which respec-
tively consume 24%, 29% and 90% more energy than optimal.

33



3.5.3 Power and Performance using LEO

We compare LEO’s estimates to the online, offline, and exhaustive search methods described in

Section 3.5.2. We deploy each of our 25 applications on our test system and estimate performance

and power. We allow LEO and the online method to sample randomly select 20 configurations

each. Unlike online method, which only uses these 20 samples, LEO utilizes these 20 samples

along with all the data from the other applications for the estimation purpose. For both LEO and

the online approach, we take the average estimates produced over 10 separate trials to account for

random variations. The offline approach does no sampling. The exhaustive approach samples all

1024 configurations.

The performance and power estimation accuracies are shown in Figure 3.5 and Figure 3.6,

respectively. Each chart shows the benchmarks on the x-axis and estimation accuracy (computed

using Equation 5.11) on the y-axis. Unity represents perfect accuracy. As seen in these charts,

LEO produces significantly higher accuracy for both performance and power. On average – across

all benchmarks and all configurations – LEO’s estimations achieve 0.97 accuracy for performance

and 0.98 for power. In contrast, the online approach achieves accuracies of 0.87 and 0.85, while

the offline approach’s accuracies are 0.68 and 0.89. Even for difficult benchmarks (like Kmeans),

LEO produces accurate estimations despite sampling less than 2% of the possible configuration

space.

To further illustrate LEO, we include some individual estimations for three representative ap-

plications: Kmeans, Swish, and x264. Kmeans is the same application used in our example

(Section 4.1), now extended to consider all 1024 configurations of the test system. Swish is an

open source search web server. x264 is a video encoder. All three are representative of our target

applications: they are long running and they may be launched with different performance demands.

Furthermore, all three represent some unusual trends: performance for Kmeans peaks at 8 cores,

for Swish it peaks at 16 cores, and for x264 it is (essentially) constant after 16 cores.

Despite this behavior, LEO produces highly accurate estimates of performance (Figure 3.7)

34



and power (Figure 3.8). Each figure shows the configuration index on the x-axis and the pre-

dicted performance (or power) on the y-axis. Each chart shows both the estimated values and the

measured data points, but LEO is so accurate that it is hard to distinguish the two. The figures

(Figure 3.7 and Figure 3.8 ) are saw-tooth in appearance since the speed settings vary from low to

high along the Configuration index multiple times. The saw-tooth nature of the curves arises from

two sources: (1) the extrema that naturally arise (e.g., response to cores) and (2) we have flattened

a multi-dimensional configuration space into the configuration index. The number of memory con-

trollers is the fastest changing component of configuration, followed by clockspeed, followed by

number of cores. LEO captures the peak performance configuration for all three applications and

it captures local minima and maxima. These accurate estimates of unusual behavior make LEO

well-suited for use in energy minimization problems.

3.5.4 Minimizing Energy

Our original goal, of course, is not just to estimate performance and power, but to minimize energy

for a performance (or utilization) target. As described in Section 3.4.3, LEO uses its estimates

to form the Pareto-optimal frontier of performance and power tradeoffs. Figure 3.9 shows the

true convex hull and those estimated by the LEO, Offline and Online approaches. Due to space

limitations, we show only the hulls for our three representative applications: Kmeans, Swish,

and x264. In these figures performance (measured as speedup) is shown on the x-axis and system

wide power consumption (in Watts) on the y-axis. These figures clearly show that LEO’s more

accurate estimates of power and performance produce more accurate estimates of Pareto-optimal

tradeoffs.

To evaluate energy savings, we deploy each application with varying performance demands.

Technically, we fix the deadline and vary the workload W from Equation 3.1 so that W ∈ [min-

Performance , maxPerformance] for each application. We test 100 different values for W – each

representing a different utilization demand from 1 to 100% – for each application. We then use

35



each approach to estimate power and performance and form the estimated convex hull and select

the minimal energy configuration.

Figure 3.10 shows the results for our three representative benchmarks. Each chart shows the

utilization demand on the x-axis and the measured energy (in Joules) on the y-axis. Each chart

shows the results for the LEO, Online, and Offline estimators as well as the race-to-idle approach

and the true optimal energy. As shown in these figures, LEO produces the lowest energy results

across the full range of different utilization targets. LEO is always close to optimal and outperforms

the other estimators. Note that all approaches do significantly better than race-to-idle. We repeat

the above experiment for all applications, then average the energy consumption for each application

across all utilization levels. These results are shown in Figure 3.11, which displays the benchmark

on the x-axis and the average energy (normalized to optimal) on the y-axis. On an average across

all the applications, LEO does only 6% worse than optimal. In contrast, Online, Offline and race-

to-idle methods are 24% , 29% and 90% worse respectively. These results demonstrate that LEO

not only produces more accurate estimates of performance and power, but that these estimates

produce significant – near optimal – energy savings.

3.5.5 Sensitivity to Measured Samples

One of the key parameters of LEO is the number of samples it must measure to produce an accurate

estimate. All of the above measurements were taken with the system configured to sample 20

configurations. In this section, we investigate the effect of the number of configurations on the

accuracy of performance and power estimation. In Figure 3.12, we show the accuracy (averaged

over all benchmarks) for performance (a) and power (b) estimation as a function of sample size. We

observe that LEO performs well with an even smaller sample size, whereas the Online approach

does poorly for very small sample sizes.

36



(a) (b)

Figure 3.12: Sensitivity analysis of LEO and Online estimation. Our baseline method (online
regression) cannot perform below 15 samples because the design matrix of regression model would
be rank deficient – effectively 0 accuracy. On the other hand, with 0 samples, LEO behaves as the
offline method and its accuracy increases with the sample size until it quickly reaches near optimal
accuracy.

3.5.6 Reacting to Dynamic Changes

This section shows that LEO can quickly react to changes in application workload. In this sec-

tion we run fluidanimate, which renders frames, with an input that has two distinct phases.

Both phases must be completed in the same time, but the second phase requires significantly less

work. In particular, the second phase requires 2/3 the resources of the first phase. Our goal is

to demonstrate that LEO can quickly react to phase changes and maintain near optimal energy

consumption.

Table 3.1: Relative energy consumption by various algorithms with respect to optimal.

Algorithm Phase#1 Phase#2 Overall
LEO 1.045 1.005 1.028

Offline 1.169 1.275 1.216
Online 1.325 1.248 1.291

The results of this experiment are shown in Figure 3.13. Each chart shows time (measured

37



(a) (b)

Figure 3.13: Power and performance for fluidanimate transitioning through phases with dif-
ferent computational demands.

in frames) on the x-axis. Figure 3.13a shows performance normalized to real-time on the x-axis,

while Figure 3.13b shows power in Watts (subtracting out idle power) on the y-axis. The dashed

vertical line shows where the phase change occurs. Each chart shows the behavior for LEO, Offline,

Online, and optimal approaches.

All approaches are able to meet the performance goal in both phases. This fact is not surprising

as all use gradient ascent to increase performance until the demand is met. The real difference

comes when looking at power consumption, however. Here we see that LEO again produces near

optimal power consumption despite the presence of phases. Furthermore, this power consumption

results in near optimal energy consumption as well, as shown in Table 3.1. These results indicate

that LEO produces accurate results even in dynamically changing environments.

3.5.7 Overhead

The runtime takes several measurements, incurring minuscule sampling overhead. After collecting

these samples, it incurs a one-time cost of executing LEO. After executing this algorithm, the

models are sufficient for making predictions and LEO does not need to be executed again for

38



the life of the application under control. This is the reason we believe LEO is best suited for

long running applications which may operate at a range of different utilizations. The one-time

estimation process is sufficient to provide accurate estimates for the full range of utilizations (see

Section 3.5.4).

Therefore, we measure overhead in two ways. First, we measure the average time required to

execute LEO on our system. The average execution time is 0.8 seconds across each benchmarks for

each power and performance. Second, we measure the average total system energy consumption

while executing the runtime, obtaining an energy overhead of 178.5 Joules. These overheads

are not trivial, and they indicate (as stated in the introduction) that LEO is not appropriate for

all deployments. For applications that run in the 10s of seconds to minutes or more, however,

LEO’s overheads are easily amortized by the large energy savings it enables. For comparison, the

exhaustive search approach takes more than 5 days to produce the estimates for semphy. For the

fastest application in our suite, HOP, exhaustive search takes at least 3 hours.

3.6 Summary

This work has presented LEO, a system capable of learning Pareto-optimal power and perfor-

mance tradeoffs for an application running on a configurable system. LEO combines some of the

best features of both online and offline learning approaches. Offline, LEO acquires knowledge

about a range of application behaviors. Online, LEO quickly matches the observed behavior of

a new application to previously seen behavior from other applications to produce highly accurate

estimates of performance and power. We have implemented LEO, made the source code available,

and tested it on a real system with 25 different applications exhibiting a range of behaviors. Across

all applications, LEO achieves greater than 97% accuracy in its performance and power estima-

tions despite only sampling less than 2% of the possible configuration space for an application

it has never seen before. These estimations are then used to allocate resources and save energy.

LEO produces energy savings within 6% of optimal while purely Offline or Online approaches

39



are both over 24% of optimal. LEO’s learning framework represents a promising approach to help

generalize resource allocation in energy limited computing environments and could be used in con-

junction with other control techniques to help develop a self-aware computing system Hoffmann

et al. [2012], Gentzsch et al. [2005], Dini et al. [2004], Salehie and Tahvildari [2009], Kephart

[2005], Laddaga [1999].

40



CHAPTER 4

CALOREE: CONTROLLING APPLICATIONS UNDER SYSTEM

DYNAMICS

4.1 Motivation

Many learning approaches estimate an application’s most energy efficient resource allocation.

These include offline techniques that train models and then apply those models to new applica-

tions Yi et al. [2003], Lee and Brooks [2006], Lee et al. [2008], Zhu and Reddi [2013], Zhang

and Hoffmann [2016], Delimitrou and Kozyrakis [2014]. Online techniques construct models dy-

namically as an application runs Li and Martinez [2006], Petrica et al. [2013], Sridharan et al.

[2013], Ponomarev et al. [2001], Lee and Brooks [2008]. Hybrid techniques combine offline mod-

eling with online model updates Cochran et al. [2011], Winter et al. [2010], Dubach et al. [2010],

Snowdon et al. [2009], Roy et al. [2011], Wu and Lee [2012], Mishra et al. [2015].

Control theory provides techniques for maintaining desired behavior in dynamic systems Heller-

stein et al. [2004]. Adaptive controllers or self-tuning regulators adjust their internal models in

response to dynamic changes Levine [2005]. They are especially useful in webservers with fluc-

tuating request rates Horvath et al. [2007], Lu et al. [2006], Sun et al. [2008] and multimedia

applications with dynamically varying inputs Maggio et al., Li and Nahrstedt [1999], Vardhan

et al. [2009]. Prior work has generalized adaptive control design by exposing key model parame-

ters to users who customize control to their needs Zhang et al. [2002], Imes et al. [2015a]. User

customization provides greater flexibility, but the controller will not converge to the desired per-

formance if the custom models do not accurately capture the relationship between resources and

performance. This practice means users must not only be experts in their application domain, but

must also have sufficient control knowledge to specify robust models.

This section illustrates how learning handles complexity, how control handles dynamics, and

then describes a key difficulty that must be overcome to combine learning and control.

41



0 2 4 6 8 10 12 14 16 18 20

0.5

1.0

1.5

Iteration

Pe
rf

or
m

an
ce

(N
or

m
al

iz
ed

)

PerformanceRequirement

Learning

AdaptiveControl

Figure 4.1: (a) STREAM performance as a function of configuration. (b) Managing STREAM’s
performance: Learning handles the complex configuration space, but control oscillates.

4.1.1 Learning Complexity

We demonstrate how well learning handles complex resource interaction for STREAM on an ARM

big.LITTLE processor with four big, high-performance cores and four LITTLE, energy efficient

cores. The big cores support 19 clock speeds, while the LITTLE cores support 14.

Figure 4.1a shows STREAM’s performance for different resource configurations. This memory-

bound application has complicated behavior: the LITTLE cores’ memory hierarchy cannot deliver

the required performance. The big cores’ more powerful memory system delivers much greater

performance, but the peak occurs with 3 big cores. Furthermore, at low clockspeeds, these 3 big

cores cannot saturate the memory bandwidth, while at high clockspeeds the performance drops as

the processor overheats, triggering thermal management. For STREAM, the peak speed occurs with

3 big cores at 1.2 GHz, and it is not efficient to spend any time on the LITTLE cores. STREAM,

however, does not have distinct phases, so once a resource allocator finds the most energy efficient

configuration, it simply needs to maintain it.

Figure 4.1b shows 20 iterations of both learning Mishra et al. [2015] and adaptive control Imes

et al. [2015a] allocating resources to STREAM. The x-axis shows iteration and the y-axis shows

performance normalized to the requirement. The learning approach estimates STREAM’s perfor-

42



90 95 100 105 110

0.5

1.0

1.5

frame

Pe
rf

or
m

an
ce

(N
or

m
al

iz
ed

)

PerformanceRequirement

Learning

AdaptiveControl

Figure 4.2: (a) bodytrack performance as a function of configuration. (b) Managing
bodytrack’s performance with another application: control detects the change (at the vertical
dashed line) and adjusts, but learning cannot.

mance and power for all configurations and uses the lowest energy configuration that delivers the

required performance. The adaptive controller begins with a generic model of power/performance

tradeoffs. As the controller runs, it measures performance and adjusts both the allocated resources

and its own parameters using online measurements. The adaptive controller dynamically adjusts

to non-linearities with a series of linear approximations; however, it is sensitive to model inac-

curacies, which cause the oscillations that lead to performance violations. This behavior occurs

because the controller’s adaptive mechanisms cannot handle the STREAM’s complexity, a known

limitation of adaptive control systems Zhang et al. [2002], Imes et al. [2015a], Filieri et al. [2014].

Hence, the learner’s ability to model complex behavior is crucial.

4.1.2 Controlling Dynamics

We now consider a dynamic environment. We begin with bodytrack running alone on the

system. Halfway through its execution, we launch a second application—STREAM—on a single

big core, dynamically changing available resources. Figure 4.2a shows bodytrack’s behavior.

It achieves the best performance on 4 big cores at the highest clockspeed; the 4 LITTLE are

more energy-efficient but slower. For bodytrack, the challenge is determining how to split

43



time between the LITTLE and big cores to conserve energy while still meeting the performance

requirements.

Figure 4.2b shows the results of this experiment. The vertical dashed line—at frame 99—

represents when the second application begins. The figure clearly shows adaptive control’s benefits

in this dynamic scenario. When the second application starts, the controller detects bodytrack’s

performance dip–rather than detecting the new application specifically—and it changes resource

allocation (increasing clockspeed and moving bodytrack from 4 to 3 big cores). The learning

system however, does not have any inherent mechanism to measure the change or adapt to the

altered performance. While we could theoretically add feedback to the learner and re-estimate

the configuration space whenever the environment changes, doing so is impractical due to high

overhead for learners capable of handling this complexity Delimitrou and Kozyrakis [2013, 2014],

Mishra et al. [2015].

4.1.3 Challenges of Parameter-free Control

The adaptive controller requires user-specified parameters and Figure 4.3 shows the consequences

of getting those parameters wrong. The controller’s pole is a particularly important parameter.

Control engineers tune the pole with a model to trade response time for noise sensitivity. This

model may be an abstraction but is considered ground truth Hellerstein et al. [2004], meaning all

possible resource configurations the controller might select have been directly measured for some

input. CALOREE, however, tunes the pole based on an estimated model, which may have noise

and/or errors.

To demonstrate the pole’s importance when using a learned model, we again control bodytrack,

this time using the adaptive controller from the previous subsection with a model produced by the

learner from the first subsection. We compare the results with a carefully tuned pole to those using

the default pole provided by the controller developers Imes et al. [2015a].

Figure 4.3 shows the results. The carefully tuned pole converges because the pole accounts

44



90 95 100 105 110

0.5

1.0

1.5

frame

Pe
rf

or
m

an
ce

(N
or

m
al

iz
ed

)

PerformanceRequirement

TunedPole

DefaultPole

Figure 4.3: Comparison of carefully tuned and default poles.

for the learned model’s error. The default pole, however, oscillates around the performance tar-

get, resulting in a number of missed deadlines. Additionally, the frames that exceed the desired

performance waste energy because they spend more time on the big, inefficient cores. The pole

parameterizes the system’s inertia—dictating how fast it should react to environmental changes. If

the estimated model is noisy, the controller should trust it less and move slowly. Rather than require

users with both computing and control knowledge to tune the pole, CALOREE incorporates the

learner’s confidence interval and estimated variance to compute a pole that provides probabilistic

convergence guarantees.

4.2 CALOREE: Learning Control

We describe CALOREE’s parameter-free resource management system, which assumes no prior

knowledge of the application and requires no user-specified parameters. Figure 4.4 shows CALO-

REE’s approach. A new application enters the system with a performance requirement. A gener-

alized adaptive control system allocates resources according to a generic model and records per-

formance and power. The recorded values are sent to a learner, which estimates the application’s

45



Control
System

big cores big speeds

LITTLE  
cores

LITTLE 
speeds

Resources

-
Performance Feedback

Performance
Requirement

App-
specific

Optimizer

Embedded/Mobile Device: Running 
Generalized Control System

Machine learning model as 
Performance Hash Table

+
Tuning parameter (pole) for 

controller

Server: Running 
transfer learning 

algorithms

i
j
k

1
2
3
4

o

p

Figure 4.4: CALOREE overview.

performance and power in all other configurations and extracts those that represent Pareto-optimal

tradeoffs. These configurations are packaged in a special data structure—the performance hash

table (PHT). The learner sends the PHT and the estimated variance to the controller. Using these

values, the controller selects an energy minimal resource configuration in constant time with formal

guarantees of convergence to the desired performance.

Figure 4.5 illustrates the asynchronous interaction between CALOREE’s learner and controller

over time. The controller starts when a new application launches. It has no prior knowledge of

this application, so it begins using a generic model. At start, the controller sends the learner the

application name and device type (message 1, Figure 4.5). The learner determines how many

samples are needed for an accurate estimate and sends this number back to the controller (message

2). The controller takes these samples while using the generic model and sends the learner the

performance and power of each measured configuration (message 3). Computationally expensive

learners may require time to build a model. Thus, the controller does not wait for the learner, but

46



Timeline

1 2 3 4

1

2
3
4

An application starts: the controller begins with a generic model and 
queries the learner for the number of samples to take

The learner responds with the number of samples needed, the controller continues

Generic control model Learned Control Model

Learner sleeps or supports other apps
Model

Estimation
Collecting
Samples

The controller sends its samples back to the learner which asynchronously assembles a model

The learner responds with a model customized for the application 

C
on

tro
l  

  L
ea

rn
in

g

Figure 4.5: Temporal relationship of learning and control.

continues with the generic model. Once the learner has a model and variance estimate, it sends

that data to the controller (message 4), which uses the learned model from then on.

Figure 4.5 shows several key points about the relationship between learning and control. First,

the controller never waits for the learner—it uses a generic model to provide less efficient control

until the learner can produce a customized model. Second, the controller does not continuously

communicate with the learner, this interaction happens once at application launch. Third, if the

learner crashed, the controller would just default to the behavior of a generic adaptive control

system. If the learner crashed after producing a model, control might not even need to know.

Finally, because the learner and controller have a clearly defined interface, they can be run in

separate processes or physically separate devices.

This section first describes a traditional adaptive control system. We then generalize this ap-

proach and separate out parameters to be learned. Next, we discuss the general class of learning

systems that work with CALOREE. Then, we present an encoding for the learned model that can be

accessed by the controller in constant time. Finally, we formally analyze CALOREE’s guarantees.

47



4.2.1 Traditional Control for Computing

Several researchers have proposed controlling computing systems. A controller that can manage

multiple resources to meet multiple goals is a multiple-input, multiple-output (MIMO) controller.

The inputs are measurements, e.g., performance. The outputs are the resource settings to be used

at a particular time, e.g., an allocation of big and LITTLE cores and a clockspeed for each.

These difference equations describe a generic MIMO controller for allocating n resources to

meet m goals at time t:1

x(t +1) =A ·x(t) +B · c(t)

y(t) =C ·x(t) ,

(4.1)

where x ∈ Rq is the controller’s state, an abstract representation of the relationship between re-

sources and goals and q is the controller’s degree, or complexity of its internal state. c(t) ∈ Rn is

a vector representing the current configuration of resources; i.e., the ith vector element represents

the amount of resource i to be allocated at time t. y(t) ∈ Rm represents the current value of the

goal dimensions at time t. The matrices A ∈Rq×q and B ∈Rq×n relate the resource configuration

to the controller state. The matrix C ∈ Rm×q relates the controller state to the expected behavior.

This model does not assume the states or the resources are independent, but it does assume that

their relationship is linear.

For example, to allocate resources to meet performance goals in our ARM big.LITTLE system—

from Section 4.1—there are four resources: the number of big cores, the number of LITTLE cores,

and the speeds for each of the big and LITTLE cores. There is also a single goal: performance.

Thus, in this example, n= 4 and m= 1. The vector c(t) has four elements representing the resource

allocation at time t. q is the number of variables in the controller’s state which can vary between,

we can choose q to be between 1 to n. The matrices A, B, and C capture the linear relationship

between the control state x, the resource usage c, and the measured behavior. In this example, we

1. We assume discrete time, and thus, use difference equations rather than differential equations that would be used
for continuous systems.

48



know there is a non-linear relationship between the resources. We overcome this difficulty by tun-

ing the identified matrices at each time step—approximating the non-linear system through a series

of changing linear formulations. This approximation is a form of adaptive or self-tuning control

Levine [2005]. Such adaptive controllers provide formal guarantees that they will converge to the

desired performance even in the face of non-linearities, but they still assume convexity.

This control formulation has two major drawbacks. First, because it requires matrix computa-

tion, its overhead scales linearly in the number of resources and in the number of goals Hellerstein

et al. [2004], Sharifi et al. [2011]. Second, the adaptive mechanisms are not parameter-free—they

require users to specify starting values of the matrices A, B, and C and the method for updating

these matrices to account for any non-convexity in the relationship between resources and perfor-

mance Imes et al. [2015a], Sharifi et al. [2011], Zhang et al. [2002], Levine [2005]. Therefore,

typically 100s to 1000s of samples are taken at design time to ensure that the starting matrices are

sufficient to ensure convergence Filieri et al. [2015], Ljung [1999], Pothukuchi et al. [2016].

4.2.2 CALOREE Control System

To overcome the above issues, CALOREE abstracts the controller of Eqn. 4.1 and factors out those

parameter to be learned. Specifically, CALOREE takes three steps to transform a standard control

system into one that works without prior knowledge of the application to be controlled:

1. controlling speedup (which is an abstraction on performance) rather than resources,

2. translating speedup into an energy minimal resource schedule in a separate step, and

3. exploiting the problem structure to solve this scheduling problem in constant time.

These steps assume a separate learner has produced a model of resource performance and power.

The result is that CALOREE’s controller runs in constant time without requiring any user-specified

parameters.

49



Controlling Speedup

Instead of the matrix equations of Eqn. 4.1, CALOREE uses a scalar difference model relating

speedup to performance:

per f (t) = b(t) · speedup(t−1)+δ (4.2)

where b(t) is the application’s base speed: defined as the speed when all resources are available.

While b(t) is application specific, it is easy to measure online, by simply allocating all resources.

Such a configuration should not violate any performance constraints (although it is unlikely to be

energy efficient) so it is safe to take this measurement. CALOREE assumes base speed is time-

variant as applications will transition through phases.

With this model, CALOREE’s control law is simply:

error(t) = goal− per f (t) (4.3)

speedup(t) = speedup(t−1)− 1−ρ(t)
b(t)

.error(t) (4.4)

which states that the speedup at time t is a function of the previous speedup, the error at time t, the

base speed b(t), and the controller’s pole, ρ(t). Standard control techniques statically determine

the pole and the base speed, but CALOREE dynamically sets the pole and base speed to account

for error in the learned models—an essential modification for providing formal guarantees of the

combined control and learning systems. For stable control, CALOREE ensures 0 ≤ ρ(t) < 1.

Small values of ρ(t) eliminate error quickly, but make the controller more sensitive to model

inaccuracies. Larger ρ(t) makes the system more robust at the cost of reduced convergence time.

CALOREE sets b(t) using the standard technique of Kalman filter estimation Welch and Bishop.

Section 4.2.5 describes how CALOREE automatically sets the pole; however, we first address

converting an abstract speedup into a resource allocation.

50



Converting Speedup to Resource Schedules

CALOREE must map Eqn. 4.4’s speedup into a resource allocation. On our example ARM

big.LITTLE architecture that means mapping speedup into an allocation of big and LITTLE cores

as well as a speed for both (big and LITTLE cores are in separate clock domains).

The primary challenge is that speedups in real systems are discrete non-linear functions of

resource usage, while Eqn. 4.4 is a continuous linear function. We bridge this divide by assigning

time to resource allocations such that the average speedup over a control interval is that produced

by Eqn. 4.4.

The assignment of time to resource configurations is a schedule; e.g., spending 10 ms on the

LITTLE cores at 0.6 GHz and then 15 ms on the big cores at 1 GHz. Typically many schedules

can deliver a particular speedup and CALOREE must find one with minimal energy. Given a time

interval T , the speedup(t) from Eqn. 4.4, and C different resource configurations, CALOREE

solves:

min
τ∈RC

C−1

∑
c=0

τc · pc (4.5)

s.t.
C−1

∑
c=0

τc · sc = speedup(t)T (4.6)

C−1

∑
c=0

τc = T (4.7)

0≤ τc ≤ T, ∀c ∈ {0, . . . ,C−1} (4.8)

where pc and sc are configuration c’s estimated powerup—analogous to speedup—and speedup;

τc is the time to spend in configuration c. Eqn. 4.5 is the objective: minimizing energy (power

times time). Eqn. 4.6 states that the average speedup must be maintained, while Eqn. 4.7 requires

the time to be fully utilized. Eqn. 4.8 simply avoids negative time.

51



4.2.3 Exploiting Structure for Fast Solutions

By exploiting the problem structure and encoding the learned model in the performance hash table

(PHT), CALOREE solves Eqns. 4.5–4.8 in constant (O(1)) time.

Kim et al. analyze the problem of minimizing energy while meeting a performance constraint

and observe that there must be an optimal solution with the following properties Kim et al. [2015]:

• At most two of τc are non-zero, meaning that at most two configurations will be used in any

time interval.

• If you chart the configurations in the power and performance tradeoff space (e.g., the top half

of Figure 4.6) the two configurations with non-zero τc lie on the lower convex hull of the power

performance tradeoff space.

• The two configurations with non-zero τc are adjacent on the convex hull: one above the con-

straint and one below.

The PHT (shown in Figure 4.6) provides constant time access to points on the lower convex

hull. It consists of two arrays: the first being pointers into the second, which stores resource config-

urations on the lower convex hull sorted by speedup. Recall speedups are computed relative to the

base speed, which uses all resources. The largest estimated speedup is therefore 1, so CALOREE

needs only consider speedups between 0 and 1. The first array of pointers has a resolution indicat-

ing how many decimal points of precision it captures and it is indexed by speedup. The example

in Figure 4.6 has a resolution of 0.1. Each pointer in the first array points to the configuration in

the second array that has the largest speedup less than or equal to the index.

CALOREE computes speedup(t) and uses the PHT to convert speedup into two configurations:

hi and lo. To find the hi configuration, CALOREE clamps the desired speedup to the largest index

lower than speedup(t) and then walks forward until it finds the first configuration with a speedup

higher than speedup(t). To find the lo configuration, it clamps the desired speedup to the smallest

52



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 P
ow

er

Normalized Speedup

Lower Convex Hull Non-optimal configurations

c = 0
sc = 0

pc = .01

c = 1
sc = .2

pc = .08

c = 2
sc = .8
pc = .6

c = 3
sc = 1
pc = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Speedup Index

Configuration 
Array

Pe
rf

or
m

an
ce

 H
as

h 
Ta

bl
e

Figure 4.6: Data structure to efficiently convert required speedup into a resource configuration.

53



index higher than speedup(t) and then walks backwards until it finds the configuration with the

largest speedup less than speedup(t).

For example, consider the PHT in Figure 4.6 and an optimizer meeting speedup(t) = .65. To

find hi, the optimizer indexes at .6 and walks up to find c = 2 with sc = .8, setting hi = 2. To find

lo, the optimizer indexes the table at .7 and walks backward to find c = 1 with sc = .2, setting

lo = 1.

CALOREE sets τhi and τlo by solving:

T = τhi + τlo (4.9)

speedup(t) =
shi · τhi + slo · τlo

T
(4.10)

where speedup(t) is given by the controller and sc are speedups estimated by the learner. By

solving Eqns. 4.9 and 4.10, CALOREE has turned the controller’s speedup into a schedule of

resource allocations using learned models stored in the PHT.

4.2.4 CALOREE Learning Algorithms

The previous subsection describes a general control system, which can be customized with a num-

ber of different learning methods. The requirements on the learner are that it must produce 1)

estimates of the speedup and powerup values for each resource configuration and 2) an estimate

of its own inaccuracy. This section describes the general class of learning mechanisms that meet

these requirements.

When selecting a learning framework we must find a tradeoff between the specific and the gen-

eral; i.e., between frameworks that build application-specific models and frameworks that combine

observations across applications. For example, the key to energy efficiency on heterogeneous mo-

bile systems is knowing when to make use of the smaller, low-power cores Kim et al. [2015], Car-

roll and Heiser [2013], Le Sueur and Heiser [2011]. An application-specific model will capture that

precisely, but may require many observations before producing the correct model. A more general

54



model will capture the trend, e.g., when most applications should transition, but this general model

might miss the key inflection point for some applications. We refer to application-specific models

as online because they build models for the current application and do not incorporate knowledge

of other applications. We refer to general models as offline as they use prior observations of other

applications to predict the behavior of a new application. A third class of transfer learning models

combines information from the previously seen applications and current application to make the

predictions on the application in hand Pan and Yang [2010] . These models allow us to obtain

higher prediction accuracies since we are able to augment our data with extra information from

other applications.

Offline models

These models utilize data from previously seen applications. If the model is for applications with

very similar behavior the prediction accuracy might be high but the model will fail if the appli-

cation’s behaviors diverge. For example, these techniques will predict the performance of ap-

plications based on prior applications, meaning they will over-allocate speed to memory-bound

applications and under-allocate to compute-bound ones.

Online models

In general, all machine learning techniques take observations of some phenomena and produce

a model to estimate future outcomes. In our specific case, we want to take observations about

application’s performance and power given a resource allocation and predict future applications’

behavior. The most straightforward approach is to create a linear regression model based on the

configuration laid out as the input features Tibshirani [1996], Yuan and Lin [2006], Lee et al.

[2008]. Learning in this model requires samples of the performance and power for different re-

source configurations. Since the systems are usually non-linear, polynomial regression models

often give better results, but increases the number of samples required to fit the model Lee and

55



Brooks [2008]. Regression models also provide a confidence interval for their estimates which is

important for adaptively tuning the pole.

Transfer learning

Transfer learning refers to the process of applying knowledge gained from one scenario to a new,

similar one Pan and Yang [2010]. To provide intuition we offer a simple example. Suppose we have

observed many prior applications, all of which are either completely compute-bound or completely

memory-bound, and we have an equal number of both. The only resource we can allocate is

clockspeed, which will increase the performance of compute-bound applications, but not memory-

bound ones. When we encounter new application, we must estimate its response to clockspeed.

The online model will not use prior knowledge, but will observe many different clock speeds for

the new application, leading to high overhead. The offline model will predict the mean response of

prior applications, meaning it will over-allocate speed to memory-bound applications and under-

allocate to compute-bound ones. The transfer learning approach takes a small number of samples

and combines those with prior knowledge: if the new observations show that clockspeed has no

effect on performance these models will use only the prior memory bound applications, otherwise,

it will use the compute-bound applications.

Netflix Algorithm: The Netflix problem is a famous challenge posted by Netflix to find estimate

users’ movie preferences. The challenge was one by realizing that if 2 users both like some movies

they might have similar taste in other movies. This approach allows allows models to borrow large

amounts of data from other users to answer some questions about a new user. Delimitriou and

Kozyrakis use this algorithm to predict application response to heterogeneous resources in data

centers Delimitrou and Kozyrakis [2013, 2014].

Bayesian Models: A hierarchical Bayesian model (HBM) provides a statistically sound frame-

work for learning across applications and devices Mishra et al. [2015]. In the HBM, each ap-

plication has its own model, allowing specificity, but these models are conditionally dependent

56



Algorithm 1 CALOREE control.
Input: Initialize the controller with a general model of speedup and powerup. Send power and

performance samples to learner and receive a PHT.
while True do

Measure streaming application performance
Compute required speedup (Equation (4.2))
Lookup shi and slo with PHT
Compute τhi and τlo (Equations 4.9 & 4.10)
Configure to system to hi & sleep τhi.
Configure to lo & sleep τlo.

end while

on some underlying probability distribution with a hidden mean and co-variance. In practice, an

HBM estimates a model for a new application using a small number of observations and combining

those observations with the large number of previous observations of other applications. Rather

than over-generalizing, the HBM uses only similar applications to learn new models. The HBM’s

accuracy increases as more applications are observed because increasingly diverse behaviors are

represented in the pool of prior knowledge. Of course, the computational complexity of learning

also increases with increasing applications.

4.2.5 Formal Analysis

Control System Complexity

CALOREE’s control system (see Algorithm 1) runs on the local device along with the application

under control, so its overhead must be minimal. In fact, each controller invocation is O(1) . The

only parts that are not obviously constant time are the PHT lookups. Provided the PHT resolution

is sufficiently high to avoid collisions, then each PHT lookup requires constant time.

Control Theoretic Formal Guarantees

The controller’s pole ρ(t) is critical to providing control theoretic guarantees in the presence of

learned models. CALOREE requires any learner estimate not only speedup and powerup, but
57



also the variance σ . CALOREE uses this information to derive a lower bound for the pole which

guarantees probabilistic convergence to the desired performance. Specifically, we prove that with

probability 99.7% CALOREE converges to the desired performance if the pole is

b1−bmax(ŝ)/(min(ŝ)−3σ)c0c0 ≤ ρ(t)< 1,

where bxc0 = max(x,0) and ŝ is the estimated speedup. The appendix contains the proof. Users

who need higher confidence can set the scalar multiplier on σ higher; e.g., using 6 provides a

99.99966% probability of convergence.

Thus we provide a lower-bound on the value of ρ(t) required for a user to be confident that

CALOREE will converge to the desired performance. This pole value only considers performance,

and not energy efficiency. In practice, we find that it better to use a higher pole based on the

uncertainty between the controller’s observed energy efficiency and that predicted by the learned

model. We follow prior work in quantifying uncertainty as ρ(t) Tokic [2010]:

β (t) = exp
(
−
(∣∣∣∣ s̄(t)

p̄(t) −
ŝ(t)
p̂(t)

∣∣∣∣)/5
)

ρ(t) =
1−β (t)
1+β (t)

(4.11)

where s̄ and p̄ are the measured values of speedup and power up and ŝ and p̂ are the estimated

values from the learner. This measure of uncertainty captures both power and performance. We

find that it is generally higher than the pole value given by our lower bound, so in practice CALO-

REE sets the pole dynamically to be the higher of the two values and CALOREE makes spot

updates to the estimated speedup and power based on its observations.

Probabilistic Convergence Guarantees

Theorem 1. Let s and ŝ denote the true and estimated speedups of various configurations in set

C as s ∈ R|C|. Let σ denote the estimation error for speedups such that, ŝi ∼ N(si,σ
2) ∀ i. We

can show that with probability greater than 99.7%, the pole ρ(t) can be chosen to lie in the range,

[b1−bmax(ŝ)/(min(ŝ)−3σ)c0c0,1), where bxc0 = max(x,0).

58



Proof. Let ∆ denote the multiplicative error over speedups, such that ̂speedup(t)∆ = speedup(t).

To guarantee convergence the value of pole, ρ(t) can vary in the range b1− 2
∆
)c0,1)Filieri et al.

[2014]. The lowest value of ρ(t) offer the fastest convergence. We have described in Equations

4.9 & 4.10 that any speedup can be written as a linear combination of two configuration speedups

as,

speedup(t) = ŝhi · τhi + ŝlo · (T − τhi) (4.12)

̂speedup(t) = shi · τhi + slo · (T − τhi) (4.13)

We can upper bound and lower bound each of these terms,

speedup(t)≤ T ŝhi and ̂speedup(t)≥ T slo (4.14)

The estimates of speedups are close to the actual speedups since ŝ ∼ N(s,σ2), therefore with

probability greater than 99.7% and the speedups can be given by, slo≥ ŝlo−3σ . Hence, ̂speedup(t)≥

T (ŝlo−3σ). Since, over all configurations, ∆≤ bmax(ŝ)/(min(ŝ)−3σ)c0, we can choose the pole

from the range, ([b1−bmax(ŝ)/(min(ŝ)−3σ)c0c0,1).

4.3 Experimental Setup

4.3.1 Platform and Benchmarks

We run streaming applications on four ODROID-XU3 devices running Ubuntu 14.04, as shown in

Figure 4.7. The ODROIDs have Samsung Exynos 5 Octa processors using the ARM big.LITTLE

architecture. Each has 19 speed settings for the 4 big cores and 13 for 4 LITTLE cores. Each

board has an on-board power meter updated at 1/4 msintervals, this meter captures core, GPU,

memory, and flash drive power. Each resource configuration (combination of big/LITTLE cores

and clock-speeds) has a different performance and power, which is application-dependent.

59



Figure 4.7: ODROID-XU3 boards used in the evaluation.

We use 20 benchmarks from different suites including PARSEC Bienia et al. [2008], Minebench

Narayanan et al. [2006], Rodinia Che et al. [2009], and STREAM McCalpin [1995]. Figure 4.8

shows the variety of workloads indicated by the lack-of-fit or the absence of correlation between

frequency and performance. Applications with high lack-of-fit do not speed up with increasing

frequency—typical of memory bound applications. Applications with low lack-of-fit do see in-

creasing performance with increasing clock-speed Miyoshi et al. [2002]. Applications with in-

termediate lack-of-fit tend to improve with increasing clock speed up to a point and then see no

further improvement. Each application has an outer loop which processes one unit in a data stream

(e.g., a point for kmeans or a frame for x264). The application signals the completion of pro-

cessing a single stream element using a standard API Hoffmann et al. [2010]. Performance targets

are specified as application-specific latencies for these stream elements.

4.3.2 Evaluation Metrics

The latency targets represent performance requirements. To test a variety of requirements, we run

our applications with targets that represent 50-90% of the maximum speed and evaluate CALO-

REE under each constraint. We quantify the performance reliability by measuring the number

60



ba
ck
pr
op bfs

bla
ck
sch

ole
s

bo
dy
tra

ck

fac
esi
m

fer
ret

he
art
wa
ll

ho
tsp

ot

jac
ob
i

km
ea
ns

km
ea
ns
nf

lav
am

d

leu
ko
cy
te lud nw sh

a
sra

d

str
ea
m th

rea
ds

x2
64
−du

ck
s

x2
64
−na

tiv
e

0.1

0.3

0.5
la

ck
-o

f-
fit

(1
-a

dj
us

te
dR

2)

Figure 4.8: Lack-of-fit for performance vs clock-speed. Lower lack-of-fit indicates a more
compute-bound application, higher values indicate a memory-bound one.

of deadlines that were missed for each application and performance target. If the application

processes n elements total and m of those elements took longer than the target latency we compute

deadline misses as:

deadlinemisses = 100% · m
n
. (4.15)

We evaluate energy savings by constructing an oracle. We run every application in every

resource configuration and record performance and power for every stream element. By post-

processing this data we determine the optimal resource configuration for each stream element and

performance target. To compare across applications, we normalize energy:

normalized energy = 100%.

(
emeasured
eoptimal

−1

)
(4.16)

where emeasured is measured energy and eoptimal is the optimal energy produced by our oracle. We

subtract 1, so that this metric shows the percentage of energy over optimal.

4.3.3 Points of Comparison

We compare CALOREE to a number of existing learning and control approaches:

1. Race-to-idle: This well known heuristic allocates all resources to the application to complete

each stream element as fast as possible, then idles until the next element is available Kim

et al. [2015], Miyoshi et al. [2002], ?. This heuristic requires no knowledge of the application

and never misses deadlines in a single-application scenario.

61



2. PID-Control: This is a standard single-input (performance), multiple-output (big/LITTLE

core counts and speeds) proportional-integral-controller representative of several that have

been proposed for computer resource management Hellerstein et al. [2004], Sharifi et al.

[2011]. This controller is tuned to provide the best average case behavior across all applica-

tions and targets.

3. Online: observes the new application in small number of configurations then performs poly-

nomial multivariate regression to estimate unobserved configurations’ behavior Mishra et al.

[2015], Li and Martinez [2006], Ponomarev et al. [2001].

4. Offline: does not observe any values for the current application—instead using previously

observed applications to estimate power and performance as a linear regression. This base-

line represents the class learners that build models with a training set and apply them without

new observations Zhang and Hoffmann [2016], Lee and Brooks [2006], Lee et al. [2008].

5. Netflix: is a matrix completion algorithm for the Netflix challenge. Variations of this ap-

proach allocate heterogeneous resources in data centers Delimitrou and Kozyrakis [2013,

2014].

6. HBM: is a hierarchical Bayesian learner previously used to allocate resources to meet per-

formance goals with minimal energy in server systems Mishra et al. [2015].

7. Adaptive-Control: is a state-of-the-art, adaptive controller that meets application perfor-

mance with minimal energy Imes et al. [2015a]. This approach requires a user-specified

starting model, we use the model produced by the Offline learner. A recent study compar-

ing ML and control techniques for resource allocation showed that there was no single best

approach, but adaptive control had the best average behavior Maggio et al. [2012].

CALOREE is a framework for combining different learners with the CALOREE control sys-

tem. We compare the above baselines to four different versions of CALOREE:

62



1. CALOREE-NoPole: uses the HBM learner, but sets the pole set to 0. This baseline shows

the importance of incorporating the confidence interval and model variance into control. All

other versions of CALOREE set the pole according to Section 4.2.5.

2. CALOREE-online: uses the online learner.

3. CALOREE-nuclear: uses the Nuclear learner.

4. CALOREE-HBM: uses the HBM learner.

In all cases that require prior knowledge, we ensure that knowledge of the application under

test is never included in that set of prior knowledge. Specifically, we use leave-one-out cross

validation: to test application x, we form a set of all other applications, train the models, and then

test on x.

4.4 Experimental Evaluation

4.4.1 Performance and Energy for Single App

0
20
40
60
80

D
ea

dl
in

e
M

is
se

s
(%

)

(l
ow

er
is

be
tte

r)

O
ptim

al

Rac
e−

to
− id

le

PID
−Con

tr
ol

O
nlin

e

O
ffl

in
e

N
et

flix

H
BM

Adap
tiv

e−
Con

tr
ol

CALO
REE

−N
oP

ol
e

CALO
REE

−O
nlin

e

CALO
REE

−N
et

flix

CALO
REE

−H
BM

0

20

40

60

E
ne

rg
y

O
ve

rO
pt

im
al

(%
)

(l
ow

er
is

be
tte

r)

Figure 4.9: Summary data for single-app scenario.

We set a range of performance targets from 50-90% of the maximum achievable performance

and measure the deadline misses and energy over optimal for all points of comparison. Figure 4.9
63



represents the summary results as an average error across all targets for the single application

scenario. This figure shows two charts with the percentage of deadline misses in the top chart and

the energy over optimal in the bottom. The dots show the average for each technique, while the

error bars show the minimum and maximum values.

Not surprisingly, race-to-idle meets all deadlines, but its conservative resource allocation has

the highest average energy consumption. Among the prior learning approaches Nuclear has the

lowest average deadline misses (11%), but with high energy (40% more than optimal), while the

HBM has higher deadline misses (17%) but with significantly lower energy consumption (16%).

Adaptive control achieves similar deadline misses (14%) with lower average energy than any of

the prior learning approaches (12%). CALOREE with no pole misses 45% of all deadlines, which

is clearly unacceptable.

When we allow CALOREE to adaptively tune its pole, however, we see greatly improved

results. The best combination is CALOREE with the HBM, which misses only 5.5% of deadlines

on average, while consuming just 4.4% more energy than optimal. These numbers represent large

improvements in both performance reliability and energy efficiency compared to prior approaches.

The other learners paired with CALOREE achieve similar results to the prior adaptive control

approach.

The summary data shows us that the best prior approaches are race-to-idle, HBM, and adaptive

control. Figure 4.10 shows the detailed results for the 60, 75, and 90% targets comparing the best

of these prior approaches to CALOREE with no pole and CALOREE coupled with the HBM—

other data has been omitted for space. The benchmarks are shown on the x-axis; the y-axis shows

the number of deadline misses and the normalized energy, respectively.

4.4.2 Performance and Energy for Multiple Apps

We again launch each benchmark with a performance target (using the same targets as the prior

study). Halfway through execution, we start another application randomly drawn from our bench-

64



5.0
10.0
15.0

Race− to− idle Netflix HBM Adaptive−Control CALOREE−HBM

10.0
20.0
30.0

D
ea

dl
in

e
M

is
se

s
(%

)(
lo

w
er

is
be

tte
r)

10.0
20.0
30.0

60%

75%

90%

30.0
60.0
90.0

30.0
60.0
90.0

E
ne

rg
y

A
bo

ve
O

pt
im

al
(l

ow
er

is
be

tte
r)

ba
ck
pr
op bfs

bla
ck
sch

ole
s

bo
dy
tra

ck

fac
esi
m
fer
ret

he
art
wa
ll

ho
tsp

ot

jac
ob
i

km
ea
ns

km
ea
ns
nf

lav
am

d

leu
ko
cy
te lud nw sh

a
sra

d

str
ea
m

str
ea
m th

rea
ds

x2
64
−du

ck
s

x2
64
−na

tiv
e

Av
era

ge

30.0
60.0
90.0

60%

75%

90%

Figure 4.10: Comparison of application performance error and energy for single application sce-
nario.

20
40
60
80

100

D
ea

dl
in

e
M

is
se

s
(%

)

(l
ow

er
is

be
tte

r)

O
ptim

al

Rac
e−

to
− id

le

PID
−Con

tr
ol

O
nlin

e

O
ffl

in
e

N
et

flix

H
BM

Adap
tiv

e−
Con

tr
ol

CALO
REE

−N
oP

ol
e

CALO
REE

−O
nlin

e

CALO
REE

−N
et

flix

CALO
REE

−H
BM

0

20

40

E
ne

rg
y

O
ve

rO
pt

im
al

(%
)

(l
ow

er
is

be
tte

r)

Figure 4.11: Summary data for multi-app scenario.

65



30.0
60.0
90.0

Race− to− idle Netflix HBM Adaptive−Control CALOREE−HBM

30.0
60.0
90.0

D
ea

dl
in

e
M

is
se

s
(%

)(
lo

w
er

is
be

tte
r)

30.0
60.0
90.0

60%

75%

90%

30.0
60.0
90.0

30.0
60.0
90.0

E
ne

rg
y

A
bo

ve
O

pt
im

al
(l

ow
er

is
be

tte
r)

ba
ck
pr
op bfs

bla
ck
sch

ole
s

bo
dy
tra

ck

fac
esi
m
fer
ret

he
art
wa
ll

ho
tsp

ot

jac
ob
i

km
ea
ns

km
ea
ns
nf

lav
am

d

leu
ko
cy
te lud nw sh

a
sra

d

str
ea
m

str
ea
m th

rea
ds

x2
64
−du

ck
s

x2
64
−na

tiv
e

Av
era

ge

30.0
60.0
90.0

60%

75%

90%

Figure 4.12: Comparison of application performance error and energy for multiple application
scenario.

mark set, which we bind to one big core, which interferes with the application CALOREE is con-

trolling. Delivering performance to the original application in this dynamic scenario tests CALO-

REE’s ability to react to environmental changes.

Figure 4.11 summarizes the results as the average number of deadline misses and energy over

optimal for all approaches. We note that some targets are unachievable for some applications. Due

to these unachievable targets, both optimal and race-to-idle show some deadline misses. Race-to-

idle misses more deadlines than optimal because it cannot make use of LITTLE cores to do some

work, it simply continues using all big cores despite the degraded performance due to the second

application. In fact, most approaches do badly in this scenario—even adaptive control misses

50% of the deadlines. CALOREE with the HBM produces the lowest deadline misses with an

average of 20%, which is only 5% more than optimal. It also produces the second lowest energy,

66



using slightly more than race-to-idle because it uses LITTLE cores to make up for some work

that cannot be done on a big core due to the second application. Figure 4.12 shows the detailed

results. The 90% target is generally not reachable in this scenario as it would require the controlled

application to have exclusive use of all big cores.

4.4.3 CALOREE on multi-core systems

In addition to ARM big.LITTLE systems we also repeated the experiments described in Sec-

tion 4.4.1 and Section 4.4.2 on dual-socket Linux 3.2.0 system with a SuperMICRO X9DRL-iF

motherboard and two Intel Xeon E5-2690 processors. We used same benchmarks as described in

Section 3.5.1. In Figure 4.13 and Figure 4.14 we describe the summary of our findings. We find

that other than the race-to-idle, CALOREE has the best performance as only being 4.9% worse

than the optimal. It has the best energy savings as consuming only 6.9% extra energy than the

optimal, whereas race-to-idle uses 19.3% more energy. In the multi-app scenario, CALOREE has

significatly better performance than all the other baselines with only 1.53% worse performance

than the optimal. It also has the highest energy savings with only 7% worse than the optimal. We

feel that CALOREE approach is a very versatile approach and it can used on homogenous and

hetergenous systems alike.

4.4.4 Multiapp Details for bodytrack

To demonstrate CALOREE in this dynamic environment we look at the specific example of bodytrack

with a 70% target, shown in Figure 4.15 with time on the x-axis and performance/power on the

y-axis. Performance is normalized to the target. There is a curve for each of HBM, Adaptive-

Control, and CALOREE-HBM. The vertical dashed line shows the point where the second appli-

cation starts.

Before the second application starts, both HBM and CALOREE track the target and keep-

ing energy low. In contrast, Adaptive-Control produces oscillating performance (and thus power)

67



0
20
40
60
80

100
D

ea
dl

in
e

M
is

se
s

(%
)

(l
ow

er
is

be
tte

r)

O
ptim

al

Rac
e−

to
− id

le

PID
−Con

tr
ol

O
nlin

e

O
ffl

in
e

N
et

flix

H
BM

Adap
tiv

e−
Con

tr
ol

CALO
REE

−N
oP

ol
e

CALO
REE

−O
nlin

e

CALO
REE

−N
et

flix

CALO
REE

−H
BM

0
20
40
60
80

E
ne

rg
y

O
ve

rO
pt

im
al

(%
)

(l
ow

er
is

be
tte

r)

Figure 4.13: Summary data for single-app scenario on multicore processors.

0

20

40

D
ea

dl
in

e
M

is
se

s
(%

)

(l
ow

er
is

be
tte

r)

O
ptim

al

Rac
e−

to
− id

le

PID
−Con

tr
ol

O
nlin

e

O
ffl

in
e

N
et

flix

H
BM

Adap
tiv

e−
Con

tr
ol

CALO
REE

−N
oP

ol
e

CALO
REE

−O
nlin

e

CALO
REE

−N
et

flix

CALO
REE

−H
BM

0

20

40

E
ne

rg
y

O
ve

rO
pt

im
al

(%
)

(l
ow

er
is

be
tte

r)

Figure 4.14: Summary data for multi-app scenario on multicore processors.

because it has a bad model of bodytrack’s LITTLE core performance. After the second appli-

cation starts, Adaptive-Control and CALOREE recognize the performance has changed and adjust

resource usage. CALOREE does a slightly better job tracking the change, producing fewer os-

cillations. HBM cannot adjust to the change as it computes the optimal configuration once at the

beginning of the application. CALOREE with the HBM produces better results than the HBM

alone because it reacts to the change; it produces better results than Adaptive-Control because it

has captured the complex application-specific behavior on this system.

68



0.5

1.0

1.5
Pe

rf
or

m
an

ce
(N

or
m

al
iz

ed
) POET HBM CALOREE−HBM

0 20 40 60 80 100 120 140 160 180 200 220 240 260

0.0

2.0

4.0

time [frame]

Po
w

er
(W

at
ts

)

Figure 4.15: Time series of Bodytrack with phase change caused by multiple applications run-
ning.

4.4.5 Adapting to Phase Changes

0.5

1.0

1.5

Pe
rf

or
m

an
ce

(N
or

m
al

iz
ed

)

Adaptive−Control CALOREE−HBM

0 100 200 300 400 500 600 700 800 900 1,000

1.0
2.0

time [frame]

Po
w

er
(W

at
ts

)

Figure 4.16: Controlling x264 through scene changes.

We compare CALOREE and Adaptive-Control reacting to input variations. Figure 4.16 shows

the x264 video encoder application with 2 different phases caused by a scene change in the input

that occurs at the 500th frame. The first scene is difficult and the second one is significantly easier.

In the first scene, CALOREE is closer to the desired performance (1 in the figure) and operates at a

lower power state compared to Adaptive-Control. Adaptive-Control is operating at a configuration

not on the Pareto frontier of power and performance. When the input changes, CALOREE is still

meets the performance target with far less fluctuations compared to Adaptive-Control.

69



LAVAMD

LITTLE Cores    big Cores

0.5
1.0
1.5
2.0

Pe
rf

or
m

an
ce

(N
or

m
al

iz
ed

)

CALOREE−NO−POLE CALOREE−HBM

0 100 200 300 400 500

2.0

4.0

6.0

time [frame]

Po
w

er
(W

at
ts

)
Figure 4.17: (a) LAVAMD’s performance with different resources. (b) The pole’s effects on
LAVAMD’s behaviors.

4.4.6 The Pole’s Importance

LAVAMD has one of the most complicated responses to resource usage on our system with mul-

tiple local optima, as shown in Figure 4.17(a). Section 4.2.5 presents an analytical argument that

tuning the controller to model variance and confidence interval prevents oscillation and provide

probabilistic control theoretic guarantees despite using noisy, learned models to control such com-

plicated behavior. We now demonstrate this empirically by showing LAVAMD’s single-app be-

havior controlled by both CALOREE-NoPole and CALOREE-HBM to meet the 80% target.

Figure 4.17(b) shows the results, with time on the x-axis and normalized performance and

power on the respective y-axes. CALOREE-NoPole oscillates around the desired performance and

causes wide fluctuations in power consumption. In contrast, after receiving the model from its

learner, CALOREE provides reliable performance right at the target value (normalized to 1 in this

case). CALOREE also saves tremendous energy because it does not oscillate but uses a mixture of

big and LITTLE cores to keep energy near minimal.

4.4.7 Sensitivity to the Measured Samples

We vary the number of samples taken and show how it affects model accuracy for the Online,

Netflix, and HBM learners. Accuracy is how close the model is to ground truth (found through

70



0.3
0.6
0.9

A
cc

ur
ac

y
(P

er
fo

rm
an

ce
)

ONLINE HBM NETFLIX

0 20 40 60 80 100

0.3
0.6
0.91.0

% Samples for training

A
cc

ur
ac

y
(P

ow
er

)

Figure 4.18: Estimation accuracy versus sample size.

exhaustive exploration), with 1 meaning the model perfectly reproduced the real performance or

power. Accuracy is significant, because the smaller the number of samples, the faster the controller

can switch from a general model to the learner’s application-specific model.

Figure 4.18 compares the Online, HBM, and Netflix learners for both performance (top) and

power (bottom). The figure shows sample size on the x-axis and accuracy on the y-axis. The HBM

initially performs as well as Offline and as sample size increases, the accuracy uniformly improves,

exceeding 90% after 20 samples. The Online approach needs at least 7 samples before it can even

generate a model. As Online receives more samples, its accuracy improves but never exceeds

HBM’s for the same number of samples. Netflix is very noisy for sample sizes, but once the number

of samples reaches about 50, it is competitive with HBM. These results not only demonstrate the

sensitivity to sample size, they show why CALOREE-HBM achieves better results than the other

learning mechanisms.

4.4.8 Overhead

CALOREE’s main source of overhead is sampling where the applications need to run through

a few configurations before CALOREE can reliably estimate the entire power and performance

frontier. We argue that the sampling cost can be distributed across devices by asking each of

them to contribute samples for estimation. Once the sampling phase is over, the HBM is quite

71



fast and can generate an estimate as fast as 500 ms which is significantly smaller than the time

required to run any of our applications. Additionally, CALOREE’s asynchronous communication

means that the controller never waits for the learner. Using the four ODROIDs in our experimental

system, each board only needs to contribute 4 samples to achieve 90% accuracy. In the worst case

(facesim), this sampling overhead is less than 2%. For all other benchmarks it is lower, and for

most it is negligible.

The controller requires only a few floating point operations to execute, plus the table lookups

in the PHT. To evaluate its overhead, we time 1000 iterations. We find that it is under 2 microsec-

onds, which is significantly faster than we can change any resource allocation on our system. We

conclude that the controller has negligible impact on performance and energy consumption of the

controlled device.

4.5 Summary

While much recent work has built systems to support learning and big data, in this work we use

learning and big data to build better systems. Specifically by proposing CALOREE, a combination

of machine learning and control for managing resources to meet performance requirements with

minimal energy. CALOREE’s unique contribution is showing how machine learning and control

theory can be combined at runtime to provide more reliable performance and lower energy than

either in isolation. Furthermore, this combination is not just practical, it provides formal guarantees

that the system will converge to the desired performance.

72



CHAPTER 5

ESP: APPLICATION INTERFERENCE ESTIMATION

5.1 Motivation

This section discusses current state-of-the-art regularization methods and how they could be used

to predict application interference. A complete coverage of these techniques is beyond the scope

of this work—our goal is to present enough background for readers to understand ESP’s unique

approach to interference prediction.

We use a running example to build intuition. This example is simplified, but our hope is that it

provides sufficient intuition for readers to understand the full results.

Example Suppose we have 4 applications given as, {bfs, cfd, jacobi, kmeans }. For

each application, we measure 4 features of its execution when run by itself: instructions per clock

(IPC), L2 Access Rate(L2), L3 Access Rate(L3) and its memory bandwidth (MEM). The goal

is to predict the slowdown that each of these applications will experience when run together in any

combination knowing only these 4 features for each application run individually.

5.1.1 Regularization Overview

We are interested in predicting applications’ slowdown when co-scheduled with other applications

as a function of individual applications’ features. The following is a general formulation of this

problem:

z∼ f (X), (5.1)

where z is a vector each element is one application’s slowdown when run with the other applica-

tions. X is a matrix containing the measured features of applications when run individually. f (.)

is theprediction function that maps the measured features into predicted slowdown. The ∼ sign

indicates that z is a random variable drawn from a distribution given by f (.).

73



To go from Equation (5.1) to a useful model two issues must be addressed: (1) which features

we choose to include in X and (2) what function f (.) best represents this problem. In fact, these

issues are intertwined; depending on the features we include we can choose different functions.

It is important to choose a function that captures the data without overfitting so that the model’s

generalization error is small. The model also must be computationally fast so that it is practical.

Example Suppose we want to predict the interference of bfs and cfd when co-scheduled. The

vector z represents slowdown, with the first element bfs’s slowdown and the second is cfd’s. X

in Equation (5.1) is constructed using IPC, L2, L3 and MEM of the bfs and cfd when they run in

isolation. The first four columns of X are the features for bfs and the last four columns are cfd’s

features. The goal is to find the f (.) that produces the best prediction of slowdown.

5.1.2 Linear Regression

Regression models are the most commonly used statistical models for predictions. A linear model

predicts outcomes as a linear combination of input features:

z = Xβ + ε, (5.2)

z ∈ Rn is the dependent variable to be predicted. X ∈ Rn×p is the measured independent features.

β ∈ Rp is the coefficient vector that combines the features to produce the prediction. ε ∈ Rn is a

vector representing inherent noise.

Building a linear model is the process of determining β by running experiments and measuring

both the features and the corresponding outcomes. These measurements are samples of z and X,

written as (s(z),s(X)). After sampling, s(z) and s(X) are known and we can solve for β . Then we

can use β and new features (X) to predict z for instances that have not been measured.

74



5.1.3 Regularized Linear Regression

When determining β , if the number of samples in z (or length of s(z)) is less than the number of

features p the problem is ill-posed; i.e., X is not invertible and there are infinitely many solutions.

This particular case where p > n is called the high-dimensional setting. Machine learning re-

searchers have developed several regularization methods which add structure to high-dimensional

problems to make them solvable.

Example To apply linear regression, f (.) is chosen to be f (.) = Xβ and β is the parameter that

we would like to learn from the data. For example, we could observe 3 pairs from the set of 6 pairs

(for 4 applications in our example) and predict the performance for the other 3 pairs. z denotes

the performance vector for our applications, thus for 3 pairs, z ∈ R6. The matrix X in Equation

(5.1) is X ∈ R6×8 and β ∈ R8. Now, the system of equations z = Xβ has infinitely many solutions

so we must regularize—i.e., add more structure to—the problem.

There are several methods to add structure to a regression problem. In general, none are uni-

formly better than the others and their performance is data-dependent. Hence, standard practice

is to use the model with the highest out-of-sample predictive power; i.e., to separate samples into

training and test data, build multiple models with the training data, and use the model that most

accurately predicts the test data.

Ridge regularization

One way to add structure to the problem is to include additional constraints. Ridge regression

penalizes large coefficients in β Hoerl and Kennard [1988] by requiring that ‖β‖22 ≤ t, where t is

a threshold:

min
β

‖z−Xβ‖22 s.t. ‖β‖22 ≤ t (5.3)

Example When we add the ridge regularizer to our example, the modified problem is ‖z−Xβ‖22
and ∑

8
i=1 β

2[i] < t. This problem has a unique solution for a given t. This regularization shrinks

75



large β values but does not make them 0. Hence, even if a feature i is not important it receives a

positive coefficient βi. The downside of this approach, then, is that it may incorporate irrelevant

features into the model. In our example, it is unlikely that L2 Access Rate is a valuable feature for

predicting application interference, because L2 caches are private in most server class processors

and therefore not a source of contention.

Lasso regularization

feature selection is another regularization method equivalent to setting some elements of β to 0,

so those features cannot influence z. Formally, feature selection can be achieved by adding L0

constraint—‖β‖0 ≤ t—to Equation (5.2), but doing so makes the problem non-convex and NP-

hard. L1 regularization—known as lasso—is the best convex relaxation for L0 regularization:

min
β

‖z−Xβ‖22 s.t. ‖β‖1 ≤ t (5.4)

Using lasso, the number of selected features will be smaller than the number of samples. A po-

tential drawback, however, is that it cannot capture models where there are more relevant features

than samples.

Example The modified example looks like, ‖z−Xβ‖22 and ∑
8
i=1 |β [i]| < t. Lasso regularization

will set n− p features to 0. In our example, that means three features will be zeroed out. This

could be a problem because it is likely that IPC, L3 accesses, and Memory Bandwidth for both

applications (i.e., a total of 6 features for the two applications) will be necessary to predict inter-

ference as all three of these features correspond to shared hardware structures. Specifically, lasso

regularization will probably zero-out the L2 Accesses for both applications, but by construction, it

must also zero-out at least one of the relevant features, likely producing lower accuracy estimates.

76



Elastic-net regularization

Elastic-net addresses the drawbacks of the two previous techniques Zou and Hastie [2005]:

min
β

‖z−Xβ‖22 s.t. α‖β‖22 +(1−α)‖β‖1 ≤ t (5.5)

where α = λ1/(λ1 +λ2) and λ1 and λ2 are the regularization parameters. In practice, setting

α = 0.5 is common and λ1 is set during model training using cross-validation. Thus under these

settings elastic-net is,

EN(z,X) = argmin
‖β‖22+‖β‖1≤t

‖z−Xβ‖22 (5.6)

Elastic-net groups variables so that strongly correlated variables tend to be selected or rejected

together.

Example Adding elastic-net to our example, the modified problem looks like, ‖z−Xβ‖22 and

∑
8
i=1 α|β [i]|+(1−α)‖β [i]‖2 < t. The regularization in this case would shrink large values for

β and some coefficients would shrink to 0. It would zero-out unimportant feature like L2 for both

applications, yet capture all the important features (IPC, L3, MEM) for both applications even

when the number of samples is smaller than the number of features.

5.1.4 Higher-order Models

In some cases, linear models do not accurately predict the problem. One higher-order approach

is to add interaction terms to the model, meaning that the dependent variable is possibly a multi-

plicative combination of some features.

A model with interaction terms can be found by adding additional terms to X and β . Thus,

a high dimensional problem becomes even higher dimensional, increasing model complexity and

overhead. For a matrix X with dimensions n× p, n� p elastic-net is O(p3) Zou and Hastie [2005],

hence for a quadratic model the computational complexity blows up to O(p6). Even though this

model is richer and captures complex interactions among features, it is prohibitively expensive.

ESP’s motivation is to achieve the prediction accuracy of interaction terms while maintaining the
77



practicality of linear models.

Example We believe the interaction between our features captures the interference more ac-

curately than a linear model. However, we do not know which of these feature interactions are

important in advance—e.g., is it IPC and L3, L3 and MEM, the L3 features for both applications,

or something else? Clearly, even in our simple example, the design space has become much more

complex. Specifically, we capture the new interaction terms by extending the feature matrix X to

X̃, which has 8 linear terms plus
(8

2
)

higher order terms. The new design matrix X̃ in Equation

(5.1) is X̃ ∈R6×36 and β ∈R36. We see—even for our simple example—the model complexity has

greatly increased.

5.1.5 A New Regularization Method

To summarize, regression models map features into predictions. When the feature space is large,

regularization adds structure to make the problem well-formed. Higher-order models may provide

more accurate predictions, but increase the cost of both training and applying the model.

Inspired by these observations, we present ESP, which splits regression modeling into two

parts: (1) feature selection and (2) model building with interactive terms. First, ESP builds a linear

model with elastic-net, which greatly reduces feature size without capturing interaction terms.

Second, ESP builds a higher-order model with interaction terms using just those features selecting

in the first step. By reducing the feature size in the first step, the complexity of the higher-order

model remains tractable and we get the benefits of both approaches: highly accurate predictions

with manageable complexity.

Given a set of m applications k applications to be co-scheduled, there are n =
(m

k
)

possible sets

of k applications. We use p to denote the number of features. Let f (k)(.) be the prediction func-

tion; i.e., f (k)(.) predicts the slowdown of each of the k co-scheduled applications using features

measured when each application runs individually:

z(k) = f (k)(X(k))+ ε, (5.7)

78



Algorithm 2 CALOREE

Input: Training samples:
(

s(z(k)), x(k) = s(X(k))
)

; Feature matrix: X(k),

1: Variable selection using elastic-net on linear model: S : {i ∈S if β
(k)[i] 6= 0}, where β

(k) =

EN(s(z(k)),x(k)).
2: New feature matrix with higher order terms: X̃ = [XS , Int(XS ))].
3: Estimating performance: ẑ(k) = X̃(k)β (k), where β

(k) = EN(s(z(k)),s(X̃(k))

4: return Slowdown: ẑ(k).

where z(k) ∈ Rnk is the slowdown vector, X(k) ∈ Rnk×2p is feature matrix and ε ∈ Rnk is the

Gaussian error vector. For any index j = index(i,S) of vector z, z j is the slowdown of application-i

when co-scheduled with applications from set S. X( j,:) = [features of application-i, ∑s∈S(features

of application-s)]. In practice, the set of possible features includes everything that can be measured

with the Intel performance counter monitor tool Willhalm [2012] on Linux x86 systems (see Table

5.1). Taking these measurements for each processor core we get p = 409 unique features per

individual application.

Table 5.1: Category of low level features using Intel Performance Counter Monitor.

Code Low level feature description
IPC Instructions per CPU cycle
AFREQ Relation to nominal CPU frequency while in active state
L2MISS L2 cache misses (including other core’s L2 cache *hits*)
L2HIT L2 cache hit ratio (0.00-1.00)
L2CLK Ratio of CPU cycles lost due to missing L2 cache but still hitting L3 cache (0.00-1.00)
L3HIT L2 cache hit ratio (0.00-1.00)
L3CLK Ratio of CPU cycles lost due to L3 cache misses (0.00-1.00)
READ Bytes read from memory controller (in GBytes)
WRITE Bytes written to memory controller (in GBytes)
COR-RES Core residency
PKG-RES Cackage residency
TEMP Temperature reading in 1 degree Celsius relative to the TjMax temperature (thermal headroom)
EXEC Instructions per nominal CPU cycle
FREQ Relation to nominal CPU frequency=’unhalted clock ticks’/’invariant timer ticks’ (includes Intel Turbo Boost)
L3MISS L3 cache misses
ENERGY Energy consumed

Algorithm 2 summarizes ESP, which predicts slowdown when k applications are co-scheduled.

The algorithm takes a few samples of random combinations of applications running together, de-

noted by
(

s(z(k)), x(k) = s(X(k))
)

, a design matrix containing the low-level-features for all
(n

k
)

79



combinations (denoted by X(k)) and outputs a slowdown vector for all combinations of appli-

cations. The first step does a feature selection on the linear model using Elastic-net as β
(k) =

EN(y(k),x(k)). The non-zero coefficients of β
(k) indicate the selected features, denoted by S .

Then, we construct a higher-order feature matrix X̃ for those selected features only. We run elas-

tic net again for the new feature space to obtain the final model which makes the performance

prediction, denoted by ẑ(k).

Algorithm 2 is run entirely offline. It produces the slowdown estimates for all applications

(even those not sampled) in up to k co-scheduling groups. These slowdown estimates can then be

used to predict performance for new combinations of applications in online schedulers. We show

examples in the next section. We also show how the estimates can be trivially updated as new

measurements become available online.

5.2 Scheduling with ESP

We examine two use cases for ESP: (1) batch scheduling applications on a single processor, (2)

and scheduling dynamically arriving applications on multiple processors.

5.2.1 Single-node Scheduling

We assume a set S of applications with |S|= m. Each of the applications have work w1,w2, ...wm.

They can be scheduled to run alone or with other applications. Our goal is to compute the schedule

that completes all applications’ work in the minimal total time. The optimal schedule can be

described as a solution to a linear program if the performance of every application was known

ahead of time. Since we do not know the exact performance, our algorithm uses ESP to predict the

performance and then generate near-optimal schedules.

We assume that at most k-tuples of applications can run together at a time, meaning we must

predict the performance for 2
(m

2
)
+ 3
(m

3
)
+ . . .+ k

(m
k
)

application combinations. The intuition

behind the restriction on k is that the system will become saturated at some point and it is no
80



longer beneficial to continue to add applications to a saturated node.

We first develop a linear program for optimal scheduling assuming known performance. We

will relax that assumption momentarily. We also assume that pre-emption is allowed. Then, an

optimal schedule is given by:

y = argmin
y≥0

‖y‖1

subject to Ay = w
(5.8)

This equation is quite simple, but the complexity is in the structure of the y vector and A matrix.

Each element of y is the time for a specific set of applications to be co-scheduled, while the columns

of A represent the each application’s performance when co-scheduled in that set. For example, if

m= 3, the superset of all possible sets of applications is {{1},{2},{3},{1,2},{1,3},{1,3},{1,2,3}}.

If we order these sets, then y j in Equation (5.8) is the time spent when all the applications in set

j run together and Ai j is the speed of application i when co-scheduled with applications from set

j. This linear program has a sparse solution with at most 2m non-zero solutions, hence the context

switching cost is not very high and is bounded by the total number of applications.

Equation (5.8) produces a minimal time schedule but is not practical. It requires that all appli-

cation interference is known a priori. Further, it assumes deterministic application performance,

but in real systems, performance is stochastic and subject to inherent noise. We therefore extend

Equation (5.8) by assuming that the observed performance Â is drawn from a Gaussian distribu-

tion:

Âi j ∼N (Ai j,Σi j). (5.9)

So, instead of using Ai j, we sample Âi j to predict Ai j and Σi j. Suppose Ã is our prediction for A,

then instead of solving Equation (5.8) we solve:

y = argmin
y≥0

‖y‖1

subject to Ãy = w
(5.10)

This equation is a proxy for Equation (5.9), but it cannot guarantee that the required work is

81



Algorithm 3 Iterative Scheduling Algorithm

Input: Tolerance: TOL = 10−6

Performance prediction matrix from ESP: Ã
Total work: w
Exploration-exploitation parameter: η (η ≥ 1)

1: Initialize scheduling matrix y(0) = 0, work remaining: wrem = w, total scheduling time: s = 0.
2: while ‖wrem‖2 ≥ TOL do
3: Work to be processed, wsent = wrem/η .
4: Solve linear program based on the prediction,

y = argminy∈C ‖y‖1,
where C = {y : Ãy = wsent ,y≥ 0}.

5: Schedule/run applications according to time slices given by y. Update scheduling time as, s = s+
‖Ay‖1.

6: Update predicted performance Ã based on true performance observed Â and update remaining work,
wrem = (wsent − Ây)+.

7: end while
8: return Total scheduling time: s.

finished because it uses predictions rather than true performance. To deal with this uncertainty we

design an iterative algorithm which repeatedly solves the approximate linear program in Equation

(5.10) until all work is finished. This approach accounts for inherent noise due to error in both

performance measurement and prediction.

Algorithm 3 takes four parameters: an error tolerance (defaulted to 10−6), CALOREE’s pre-

dicted performance matrix, a vector representing the total work for each application, and a scalar

η controlling the trade-off between exploration-exploitation. If we believe that ESP’s performance

prediction is very good, we can set η = 1 to run fewer iterations, saving computation. If we have

less confidence, then we could send a smaller amount of work to the linear program thereby re-

ducing the error at each iteration and learning more about the particular application mix scheduled

that iteration.

This algorithm loops until all work is complete. For each loop iteration, the algorithm takes a

step to complete some work, with the step size inversely proportional to η . It then solves Equation

(5.10) using the predicted performance and schedules the applications according to this solution.

After running the schedule for the specified time, the algorithm updates the performance predic-

82



tion using its latest observations and updates the work vector with the work accomplished in this

step. Given perfect knowledge of the application interference and no system noise, the algorithm

requires only a single step and would be optimal.

5.2.2 Multi-node Scheduling

We now consider scheduling dynamically arriving applications on multiple processors. Applica-

tions arrive in a stream and a centralized scheduler assigns an application to a processor (which

may already have applications running). We assign jobs in a first-come-first-serve order; a new job

is immediately assigned a processor with the goal of minimizing job completion time.

The multi-node scheduler (see Algorithm 4) takes as input: (1) an error tolerance (again de-

faulted to 10−6), (2) ESP’s performance prediction Ã, (3) a job sequence (we do not look ahead,

so in practice the sequence does not need to be known in advance), (4) the number of nodes q, and

the exploration-exploitation trade-off η . Each job is denoted as Ji = (ai,vi), where ai is the ap-

plication index and vi is that application’s work. The algorithm loops until all jobs are completed.

Each iteration takes the next job and determines the expected work and time if assigned to each

processor (lines 4–7). It chooses the processor that has the fastest predicted completion time (line

8) and schedules that job on the processor using Algorithm 3 (line 9).

5.3 Evaluation

In this section we evaluate CALOREE. We first describe our experimental setup, then evaluate

the CALOREE-based schedulers, and finally present statistical analysis on CALOREE prediction

accuracy and overhead.

83



Algorithm 4 Multi-node Iterative Scheduling Algorithm

Input: Tolerance: TOL = 10−6

Performance prediction matrix from ESP: Ã
Jobs arriving in stream: J1,J2, . . . ,JT

Number of processors: q.
Exploration-exploitation parameter: η (η ≥ 1)

1: Initialize work matrix: W = 0m×q

2: for all i = 1:T do
3: Obtain job Ji = (ai,vi). where ai is the application index and vi denotes the work for that application.
4: for all j = 1:q do
5: Expected work, wtmp = W(:, j); updated with new job’s work wtmp[i] = w[ai, j]+ vi

6: Expected schedule time, s[ j] = miny∈C ‖y‖1,
where C = {y : Ãy = wtmp,y≥ 0}.

7: end for
8: Greedily choose processor P : P = argmini∈[q] si with least expected scheduling time.
9: Run Algorithm 3 for processor P with wtmp amount of Total work, Ã as the performance prediction

matrix and η = 5.
10: end for
11: return Total scheduling time for all processors: s.

5.3.1 Experimental Setup

Experimental System and Benchmarks

Our test platform is composed of four dual-socket Ubuntu 14.04 system with SuperMICRO X9DRL-

iF motherboards and two Intel Xeon E5-2690 processors. These processors have eight cores,

hyper-threading (eight additional virtual cores), and TurboBoost. Each node has 64 GB of RAM.

We use 15 benchmarks from different suites including PARSEC (blackscholes, fluidanimate,

swaptions, x264) Bienia et al. [2008], Minebench (Kmeans, HOP, svmrfe) Narayanan et al.

[2006], Rodinia (cfd, particlefilter, vips, btree, backprop, bfs) Che et al. [2009]

and SEEC (Dijkstra, jacobi) Hoffmann et al. [2011b]. These benchmarks test a range of

important applications with both compute-intensive and I/O-intensive workloads. All the applica-

tions run with up to 32 threads (the maximum supported in hardware on our test machine). We

construct multiprocessor workloads by randomly selecting benchmarks from this list. When we

need more than 15 benchmarks, we allow duplicates.

84



We measure performance of all applications as wall-clock execution time. Interference is the

slowdown one application experiences when co-scheduled with one or more other applications.

We evaluate the schedulers in terms of time to complete scheduled jobs. We evaluate the accuracy

of interference predictors in terms of the difference between the predicted and actual slowdown.

Points of Comparison

We compare CALOREE with:

• Activity Vectors – Activity vectors maximize resource usage variance Merkel et al. [2010];

i.e., they co-schedule applications with widely differing resource needs. Extensions to ac-

tivity vectors have made similar ideas suitable for dynamic consolidation in virtualized data

centers Tembey et al. [2014] and for scheduling dynamically arriving applications Dey et al.

[2013]. We compare against the original activity vector approach for the single-node case

and against the extension to dynamically arriving applications in the multi-node case. This

approach results in compute-intensive and memory intensive applications being scheduled

together. Unlike CALOREE none of these approaches produce quantified slowdown predic-

tions, but instead make decisions to co-schedule or not. We find that biasing this approach

to be more sensitive to different resources produces different results. We consider variants

biased toward:

– Memory (MEM): favors co-scheduling applications with different bandwidth needs.

– Instructions per cycle (IPC): favors co-scheduling applications with differing compute

needs.

– L3 Request (L3R): favors co-scheduling applications with differing L3 cache needs.

• Random (RND): co-schedules applications randomly.

• Oracle: represents the best schedule given perfect knowledge of application interference;

85



Ru
n 
Ti
m
e

Figure 5.1: Single processor scheduling performance. On an average over different k, CALOREE is 25%
better than MEM, 29% better than IPC, 27% better than L3R, 26% better than RND, and only 5% worse
than ORACLE.

i.e., it is equivalent to knowing the true performance A in Equation (5.9). Not implementable

in practice, we construct the oracle through a brute force search for all application mixes.

5.3.2 Single Node Scheduling Results

To test single-node batch scheduling, we launch all 15 benchmarks listed in Section 5.3.1. The

schedulers order application execution to minimize total job completion time. We vary k, the

maximum number of applications that can be co-scheduled from two to six. We find that it is never

beneficial to schedule more than six applications simultaneously and no scheduler (other than

random) ever attempted to do so even when more were allowed. We run 15 separate experiments

for each k, where each experiment differs by the split between training and testing data for CALO-

REE.

Figure 5.1 shows the results. The x-axis is k, the y-axis is the time to complete the work, and

there is a bar showing the mean scheduling time for each of our points of comparison with an error

86



Run Time

Run Time

Run Time

Figure 5.2: Comparison of schedules obtained from different algorithms with up-to 6 co-scheduled applica-
tions (k = 6) (more compact is better). Each block represents an application running with other applications.
The number in the top of the block represents the application index. The number at the bottom represents
the slowdown the application experiences. The schedule built using CALOREE algorithm squeezes the
applications together better than the MEM baseline.

bar showing one standard deviation. During the offline phase, we first sample a few configurations

followed by calculating the estimated performance those samples; overhead of which is discussed

in the next section(Section Section 5.3.7). Once we do the estimation of the performance using

CALOREE individually for each k = 2 : 6 (k denotes the maximum number of applications we are

willing to co-schedule together), we run Algorithm 4 to schedule those applications. We notice

that, as per our intuition, as we allow more applications to run together, the scheduling time for the

ORACLE decreases. But, the scheduling time does not decrease significantly after 4-tuples. On

the other hand for CALOREE the scheduling time decrease until 4-tuples and slightly increases

after that. We attribute this to the fact that as we estimate more tuples the overall estimation error

is piling up and since the benefit of running more applications together dwindles after 4-tuples, the

87



Ru
n 
Ti
m
e

Ru
n 
Ti
m
e

Ru
n 
Ti
m
e

Figure 5.3: Comparison of multi-node scheduling times for stream of 40 applications (lower is better). On
an average over different processes and tuples, CALOREE is 47% better than MEM, 61% better than IPC,
47% better than L3R and 54% better than RND.

Ru
n 
Ti
m
e

Figure 5.4: Multi-node scheduling performance with varying number of incoming jobs, allowing up to 4
co-scheduled applications per node (lower is better). The left figure shows scheduling time (in seconds)
– on average CALOREE is 60% better than MEM, 61% better than IPC, 58% better than L3R and 58%
better than RND. The right figure shows the load imbalance (the difference between the highest and lowest
scheduling time across nodes). As we increase the number of jobs the load imbalance increases faster for
the baseline algorithms and seems relatively constant for CALOREE and the ORACLE.

extra noise in the system makes approximate scheduling using CALOREE slightly worse. We see

similar behavior for scheduling even in the baseline algorithms, where we see improvement only

up-to a certain point. Overall, CALOREE performs much better than the baseline algorithms and

88



only slightly worse than the ORACLE. On average over different k, CALOREE is 25% faster than

MEM, 29% faster than IPC, 27% faster than L3R and 26% faster than RND. These results include

prediction and scheduling overhead, yet CALOREE is only 5% worse than the ORACLE, which

has no overhead and knows the future. We conclude that CALOREE produces highly accurate

predictions and yet is efficient enough for practical use.

To provide intuition on the different schedulers, Figure 5.2 illustrates the schedules produced

by: ORACLE (top), CALOREE (middle), and MEM (bottom) when they are allowed to co-

schedule up to six applications. For each chart, the horizontal axis represents time in seconds.

Each colored block represents an application running with other applications. The top number in

the block represents the application index (see the legend for mapping from index to name), and the

bottom number represents the actual slowdown the application experienced at that time (this actual

slowdown is determined after the fact). A better schedule is more compact and completes further

to the left. Clearly, CALOREE’s schedule is more compact and closer to the ORACLE than MEM.

ORACLE runs the maximum number of applications together less than half of the time. MEM,

in contrast, runs the maximum allowed number of applications most of the time. Overall in this

particular instance, the scheduling time for the ORACLE is 788 seconds, 832 for CALOREE, and

1089 for MEM.

5.3.3 Multi-node Scheduling Results

In this section we discuss multi-node scheduling performance. We use two, three, and four copies

of our base test platform (described above). We assume that applications arrive randomly from our

set of 15 benchmarks (so some benchmarks may have multiple instances live in the system). The

challenge is to assign an application to a processor as it arrives such that the total impact on the

system is minimized; i.e., put the application on the node that minimizes interference.

The oracle computes the best possible schedule, the heuristics use activity vectors to select

the best node and the CALOREE-based approach uses Algorithm 4. Figure 5.3 summarizes the

89



results for 2, 3 and 4 processors and for k = 2,3 or 4. As we increase the number of proces-

sors, the scheduling time improves for all approaches. CALOREE performs almost as well as the

ORACLE, performing 5% to 13% worse on an average. In fact, CALOREE is always within 1

standard deviation of ORACLE. CALOREE performs significantly better than the activity vector

algorithms. On average over different processes and tuples, CALOREE is 47% better than MEM,

61% better than IPC, 47% better than L3R, and 54% better than RND. Additionally, the standard

deviation in performance for CALOREE is much lower compared to the baseline algorithm, lead-

ing to much better performance predictability. This predictability is further evidence of our claim

that CALOREE allows the schedulers to avoid bad predictions.

5.3.4 Multi-node Sensitivity to Job Size

We also study the scheduling performance as a function of the total number of applications sched-

uled. To be clear, jobs are still scheduled as they arrive (the multi-node scheduler does not reorder

applications), we simply have more of them. Specifically, we send up to 100 jobs to a system with

4 nodes and we are allowed to co-schedule up to 4 applications together. For each experiment, we

perform 15 trials with different random job arrivals. All results report the mean with error bars

indicating one standard deviation.

Figure 5.4 shows how scheduling performance changes as a function of the total number of

applications scheduled. The figure consists of two charts: the one on the left showing scheduling

time as a function of applications scheduled and the one on the right showing load imbalance in

terms of the largest difference in execution time between one processor and another. The number

of applications scheduled is shown on the x-axis and the time on the y-axis. As the number of

applications increases, CALOREE’s relative performance improves compared to the activity vector

approaches. The key to this result is CALOREE’s accurate quantification of interference. The

ability to directly reason about slowdown allows the CALOREE-based approach to rank scheduling

decisions and always choose the one with the least impact on the performance of both the running

90



Enet-Lin ESP

0.6

0.65

0.7

0.75

0.8

0.85

A
c
c
u
ra

c
y

2- Apps

Enet-Lin ESP

0.84

0.86

0.88

0.9

0.92

0.94

A
c
c
u
ra

c
y

3- Apps

Enet-Lin ESP

0.85

0.9

0.95

A
c
c
u
ra

c
y

4- Apps

Enet-Lin ESP

0.84

0.86

0.88

0.9

0.92

0.94

A
c
c
u
ra

c
y

5- Apps

Enet-Lin ESP

0.88

0.9

0.92

0.94

A
c
c
u
ra

c
y

6- Apps

Enet-Lin ESP

0.89

0.9

0.91

0.92

0.93

0.94

A
c
c
u
ra

c
y

7- Apps

Figure 5.5: Prediction accuracy comparison between Enet-lin and CALOREE.

Table 5.2: Overhead

k 2 3 4 5 6 7

CALOREE
Model training (in seconds) 0.42 0.59 0.68 0.69 0.48 0.51
Prediction time (in seconds) 0.00056 0.003 0.0076 0.0198 0.04 0.06
Training sample size (in %) 70% 40 % 10 % 4% 1 % 1%

Scheduling Algorithm 3 Linear program (in seconds/job) 0.008 0.014 0.023 0.06 0.117 0.22

applications and the application that just arrived.

CALOREE’s foresight becomes more crucial as the number of jobs increase because bad de-

cisions can create severe load imbalance on the parallel machine, as shown on the right side of

Figure 5.4. As we increase the number of jobs the processor load imbalance increases vastly for

the activity vector approaches and seems relatively constant for CALOREE as well as ORACLE.

On an average CALOREE is 60% better than MEM, 61% better than IPC, 58% better than L3R

and 58% better than RND. Again, the standard deviation (shown by the error bars) for CALO-

REE is much lower than the baselines—leading to much more predictable performance for latency

sensitive applications.

5.3.5 CALOREE Prediction Accuracy

5.3.6 CALOREE Accuracy versus the Collaborative filter Algorithm

We compare CALOREE’s accuracy to that of collaborative filtering; e.g., the Collaborative filter

algorithm, which is used by other machine-learning based interference predictors ?Delimitrou and

Kozyrakis [2014]. Specifically, we use collaborative filtering to predict which pairs of applications

91



Figure 5.6: Sample complexity plot for Collaborative filter algorithm used by Paragon

will work well together. The intuition is that if two applications we have never run together work

well with some third application, they may work well together themselves.

Figure 5.6 compares the accuracy of the Collaborative filter algorithm and CALOREE for pre-

dicting the interference of pairs of applications. The y-axis shows accuracy and the x-axis shows

the percentage of samples. This experiment shows that CALOREE always outperforms collab-

orative filtering for our benchmarks. These results demonstrate the importance of incorporating

low-level features into the prediction. We compare CALOREE with the elastic-net regularization

method on the linear model (Enet-lin) described in Section 5.1.3. To evaluate quantitatively, we

measure the accuracy of the predicted performance ẑ with respect to the true data z, by computing

the coefficient of determination (R2 value):

accuracy(ẑ,z) =

(
1− ‖ŵ−w‖22
‖w− w̄‖22

)
+

, (5.11)

where w = min(z,1) and ŵ = min(ẑ,1). This metric captures how well the predicted results corre-

late with the measured results. Unity represents perfect correlation.

Figure 5.5 shows a box-plot for out-of-sample predictive accuracy of CALOREE and Enet-lin

when we train both the models with 70% data and test the prediction on the remaining data. For

k = 2, CALOREE performs only slightly better than the Enet-lin with on average 76% accuracy

92



whereas the baseline is 73% accurate. For k > 2, the prediction accuracy for the CALOREE varies

from 93% to 96% with very small variance. On the other hand, Enet-lin is only between 85% to

88% accurate.

2423222117141311721

df

k = 2

−2

−1

0

1

2

FREQ−1AFREQ−1

L2MISS−1

L3CLK−1

READ−1

WRITE−1

AFREQ−2

Lambda

2423222019141211642

df

k = 3

−2

−1

0

1

2

AFREQ−1

L2MISS−1

L3HIT−1

L3CLK−1

READ−1

WRITE−1

AFREQ−2

Lambda

24232221191813111061

df

k = 4

−2

−1

0

1

2

FREQ−1

L2MISS−1

L3HIT−1

L3CLK−1

READ−1

WRITE−1

AFREQ−2

Lambda

242322211615109871

df

k = 5

−2

−1

0

1

2

IPC−1

AFREQ−1

L2MISS−1

L3CLK−1

READ−1

WRITE−1

AFREQ−2

Lambda

2423212018171613971

df

k = 6

−2

−1.5

−1

−0.5

0

0.5

1

IPC−1

AFREQ−1

L2MISS−1

L3CLK−1

READ−1

WRITE−1

AFREQ−2

Lambda

242221201817129742

df

k = 7

−2

−1.5

−1

−0.5

0

0.5

1

IPC−1

FREQ−1

AFREQ−1

L2MISS−1

L3CLK−1

READ−1

WRITE−1

Lambda

Figure 5.7: A solution path diagram using elastic-net for a linear model (no interaction terms) with
just an important subset of variables so that it is easier to visualize. Each dark solid line in the
plot represents a variable’s coefficient. The corresponding variable is mentioned on the line. The
dashed blue line indicates largest λ such that MSE is within one standard error of the minimum, a
scalar and the dashed green line corresponds λ value with minimum MSE. Since, the variables in
the design matrix are highly correlated, variable signs may not be correctly represented.

Discussion for the solution path for regression models

We wanted to build some more intuition about the variable selection and how the model evolves

over different values for k. In Figure 5.7, we show a variable in and out plot and what is known as a

solution path in statistics. The x-axis is the regularization parameter λ and y-axis is the coefficient

93



size. For the co-efficient size to relatively make sense we have normalized the columns of the

design matrix to have Euclidean-norm equal to 1. As we increase λ the regularization becomes

less strict and more and more variables can enter the model. In this figure we have a solution path

diagram using elastic-net for a linear model (no interaction terms) with just an important subset

of variables so that it is easier to visualize. Each dark solid line in the plot represents a variable’s

coefficient and how it changes as we increase lambda. The corresponding variable is mentioned

on the solid plot line itself. The dashed blue line indicates largest λ such that MSE is within

one standard error of the minimum, a scalar and the dashed green line corresponds λ value with

minimum MSE. Since, the variables in the design matrix are highly correlated, a positive (or a

negative) variable in this diagram does not mean that it certainly positively (or negatively) affects

the performance. But, if the variable has large absolute value, we can still claim that, conditioned

on other variables selected in the model it has large impact. What is interesting in this figure is how

as k increases the model evolves. k = 2,3 and 4 have similar solution paths and k = 5,6 and 7 has

similar path but the two paths are a bit different from each other, indicating some phase transition

happening at k = 4. This indicates that there might be an opportunity to predict performance for

larger k’s by aggregating data for smaller k. This can be very important for datacenters where they

only observe very large number of applications co-scheduled together.

5.3.7 Overhead

CALOREE has an offline sampling phase followed by an estimation phase. Once we have col-

lected the samples from the batch of co-scheduled applications, we run CALOREE to obtain the

predictions for the rest of the combinations of the applications. We have summarized the overhead

results in the Table 5.2. We require less than 0.7 seconds to build the performance model for a

batch of k-tuples running together. Once the model is built, the prediction time for CALOREE is

very small and would range from 0.5 milliseconds to 60 milliseconds. For such small training data,

the prediction accuracy for k = 2 is around 80% and for k > 2 it is around 86%.

94



The scheduling overhead, again has two components: first obtaining the application’s batch

run profile which is done using CALOREE, and then solving the linear program to obtain the

schedule. The first part (in the top of Table 5.2) is done offline. The vast bulk of online work is

done by Equation (5.10), which solves a very sparse optimization problem. The total overhead per

scheduled job for Algorithm 3 – the online portion of the approach – ranges from 0.008 seconds

for k = 2 to 0.22 seconds for k = 7. Almost all of this work could be parallelized on a multicore

(or accelerated with SIMD instructions) but that is beyond the scope of this work. We note that it

is quite practical to consider co-scheduling up to 4 jobs. The overhead of scheduling 7 jobs may

become prohibitive, but it is never useful on our test system. This is not an insignificant amount of

time but this approach is suitable for long running applications and the benchmarks that we have

used in this work are all long running benchmarks with at least 10 seconds of individual runtime.

5.4 Summary

This work explores machine learning methods for predicting application interference in comput-

ing systems. Specifically, we explore several state-of-the-art regularization techniques for high-

dimensional problems—when many more features are available than samples—and we conclude

that existing linear techniques are not accurate enough, while existing higher-order techniques are

accurate but slow. Inspired by these observations we present ESP, a combination of linear feature

selection with higher-order model building that achieves the practicality of linear models with the

accuracy of higher-order models. We have demonstrated that ESP’s quantitative predictions pro-

duce significantly better schedules than existing heuristics for both single and multi-node systems,

with up to 1.8× improvement in application completion time and significantly lower variance.

Additionally, ESP achieves much higher prediction accuracies than prior approaches—over 93%

when considering three or more applications. We have made the source code available so that oth-

ers may improve on or compare with ESP. This work makes the following contributions: 1) ESP,

a regularization method for predicting application interference, 2) Demonstration of ESP in both

95



single and multi-node schedulers, 3) Comparison to existing heuristic techniques on real systems,

4) Comparison of ESP’s predictive accuracy to other regularization methods, 5) Open-source code

release1. ESP helps scheduling at multiple levels: it determines which applications should run to-

gether on a single node, it determines which node a new application should be scheduled on, and it

avoids disastrous decisions that heuristic schedulers cannot. Support for data analytics has become

an important research topic in computing systems, and this work explores how data analytics can

be used to improve computing systems.

We therefore combine linear and non-linear approaches to produce accurate and practical pre-

dictions. ESP’s key insight is to split regularization modeling into two parts: feature selection

and model building. ESP uses linear techniques to perform feature selection, but uses quadratic

techniques for model building. The result is a highly accurate predictor that is still practical and

can be integrated into real application schedulers.

ESP assumes there is a known (possibly very large) set of applications that may be run on the

system and some offline measurements have been taken of these individual applications. Specifi-

cally, ESP measures low-level hardware features like cache misses and instructions retired during

a training phase. At runtime, applications from this set may be launched in any arbitrary combi-

nation. The goal is to efficiently predict the interference (i.e., slowdown) of co-scheduled applica-

tions.

1. The code is available at https://github.com/ESPAlg/ESP

96



CHAPTER 6

FUTURE WORK AND CONCLUSION

6.1 Conclusion

This work has presented LEO, a system capable of learning Pareto-optimal power and perfor-

mance tradeoffs for an application running on a configurable system. LEO combines some of the

best features of both online and offline learning approaches. Offline, LEO acquires knowledge

about a range of application behaviors. Online, LEO quickly matches the observed behavior of

a new application to previously seen behavior from other applications to produce highly accurate

estimates of performance and power. We have implemented LEO, made the source code available,

and tested it on a real system with 25 different applications exhibiting a range of behaviors. Across

all applications, LEO achieves greater than 97% accuracy in its performance and power estima-

tions despite only sampling less than 2% of the possible configuration space for an application

it has never seen before. These estimations are then used to allocate resources and save energy.

LEO produces energy savings within 6% of optimal while purely Offline or Online approaches

are both over 24% of optimal. LEO’s learning framework represents a promising approach to help

generalize resource allocation in energy limited computing environments and could be used in con-

junction with other control techniques to help develop a self-aware computing system Hoffmann

et al. [2012], Gentzsch et al. [2005], Dini et al. [2004], Salehie and Tahvildari [2009], Kephart

[2005], Laddaga [1999].

While much recent work has built systems to support learning and big data, in this work we use

learning and big data to build better systems. Specifically by proposing CALOREE, a combination

of machine learning and control for managing resources to meet performance requirements with

minimal energy. CALOREE’s unique contribution is showing how machine learning and control

theory can be combined at runtime to provide more reliable performance and lower energy than

either in isolation. Furthermore, this combination is not just practical, it provides formal guarantees

97



that the system will converge to the desired performance.

This work explores machine learning methods for predicting application interference in com-

puting systems. Specifically, we explore several state-of-the-art regularization techniques for high-

dimensional problems—when many more features are available than samples—and we conclude

that existing linear techniques are not accurate enough, while existing higher-order techniques are

accurate but slow. Inspired by these observations we present ESP, a combination of linear feature

selection with higher-order model building that achieves the practicality of linear models with the

accuracy of higher-order models. We have demonstrated that ESP’s quantitative predictions pro-

duce significantly better schedules than existing heuristics for both single and multi-node systems,

with up to 1.8× improvement in application completion time and significantly lower variance.

Additionally, ESP achieves much higher prediction accuracies than prior approaches—over 93%

when considering three or more applications. We have made the source code available so that

others may improve on or compare with ESP.

6.2 Future Work

We have proposed methods to control single application under dynamic resource requirement and

a method to estimate application interference. An interesting direction for future work is how to

control resource allocation for multiple applications on a multi-node system. It is a very difficult

problem because of computational blowup with multiple applications across multiple resources

and multiple nodes. It would involve using algorithms like ESP for performance estimation of a

set of applications and then using those estimates for a much larger linear program. We should

also look into direct estimation of the power and performance pareto frontier which has fewer

points to estimate than the entire frontier using active learning algorithms Hsu [2010]. Another

interesting direction is improving estimation of application interference and scaling up application

interference. In order to improve the estimates we probably require more informative low-level

features.

98



BIBLIOGRAPHY

L.A Barroso and U. Holzle. The case for energy-proportional computing. Computer, 40(12):

33–37, Dec 2007. ISSN 0018-9162. doi: 10.1109/MC.2007.443.

David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-Dietrich Weber, and Thomas F.

Wenisch. Power management of online data-intensive services. ISCA, 2011.

Tyler Dwyer, Alexandra Fedorova, Sergey Blagodurov, Mark Roth, Fabien Gaud, and Jian Pei. A

practical method for estimating performance degradation on multicore processors, and its appli-

cation to hpc workloads. In Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, page 83. IEEE Computer Society Press, 2012.

Melanie Kambadur, Tipp Moseley, Rick Hank, and Martha A Kim. Measuring interference be-

tween live datacenter applications. In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, page 51. IEEE Computer Society

Press, 2012.

Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. Bubble-flux: Precise online qos

management for increased utilization in warehouse scale computers. In Proceedings of the 40th

Annual International Symposium on Computer Architecture, ISCA ’13, pages 607–618, New

York, NY, USA, 2013. ACM. ISBN 978-1-4503-2079-5. doi: 10.1145/2485922.2485974. URL

http://doi.acm.org/10.1145/2485922.2485974.

Andreas Merkel, Jan Stoess, and Frank Bellosa. Resource-conscious scheduling for energy effi-

ciency on multicore processors. In Proceedings of the 5th European conference on Computer

systems, pages 153–166. ACM, 2010.

Joshua J. Yi, David J. Lilja, and Douglas M. Hawkins. A statistically rigorous approach for im-

proving simulation methodology. In HPCA, 2003.

99



David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and Gernot Heiser. Koala: A platform

for os-level power management. In EuroSys, 2009.

Benjamin C. Lee and David M. Brooks. Accurate and efficient regression modeling for microar-

chitectural performance and power prediction. In ASPLOS, 2006.

B.C. Lee, J. Collins, Hong Wang, and D. Brooks. Cpr: Composable performance regression for

scalable multiprocessor models. In MICRO, 2008.

Jian Chen, Lizy Kurian John, and Dimitris Kaseridis. Modeling program resource demand using

inherent program characteristics. SIGMETRICS Perform. Eval. Rev., 39(1):1–12, June 2011.

ISSN 0163-5999.

J. Li and J.F. Martinez. Dynamic power-performance adaptation of parallel computation on chip

multiprocessors. In HPCA, 2006.

Paula Petrica, Adam M. Izraelevitz, David H. Albonesi, and Christine A. Shoemaker. Flicker: A

dynamically adaptive architecture for power limited multicore systems. In ISCA, 2013.

Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. Holistic run-time parallelism management

for time and energy efficiency. In ICS, 2013.

Dmitry Ponomarev, Gurhan Kucuk, and Kanad Ghose. Reducing power requirements of instruc-

tion scheduling through dynamic allocation of multiple datapath resources. In MICRO, 2001.

Jason Ansel, Maciej Pacula, Yee Lok Wong, Cy Chan, Marek Olszewski, Una-May O’Reilly, and

Saman Amarasinghe. Siblingrivalry: online autotuning through local competitions. In CASES,

2012.

Benjamin C. Lee and David Brooks. Efficiency trends and limits from comprehensive microarchi-

tectural adaptivity. In ASPLOS, 2008.

100



Martina Maggio, Henry Hoffmann, Alessandro V. Papadopoulos, Jacopo Panerati, Marco D.

Santambrogio, Anant Agarwal, and Alberto Leva. Comparison of decision-making strategies

for self-optimization in autonomic computing systems. ACM Trans. Auton. Adapt. Syst., 7

(4):36:1–36:32, December 2012. ISSN 1556-4665. doi: 10.1145/2382570.2382572. URL

http://doi.acm.org/10.1145/2382570.2382572.

Yuhao Zhu and Vijay Janapa Reddi. High-performance and energy-efficient mobile web browsing

on big/little systems. In HPCA, 2013.

Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla, and Michael F. P. O’Boyle. A predictive

model for dynamic microarchitectural adaptivity control. In MICRO, 2010.

Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. Coordinated management of multiple inter-

acting resources in chip multiprocessors: A machine learning approach. In MICRO, 2008.

Nikita Mishra, Huazhe Zhang, John D. Lafferty, and Henry Hoffmann. A probabilistic graphical

model-based approach for minimizing energy under performance constraints. In ASPLOS, 2015.

Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware scheduling for heterogeneous

datacenters. In ASPLOS, 2013.

Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury. Feedback Control of

Computing Systems. John Wiley & Sons, 2004. ISBN 047126637X.

Jian Chen and Lizy Kurian John. Predictive coordination of multiple on-chip resources for chip

multiprocessors. In ICS, 2011.

Connor Imes, David H. K. Kim, Martina Maggio, and Henry Hoffmann. Poet: A portable approach

to minimizing energy under soft real-time constraints. In RTAS, 2015a.

R. Zhang, C. Lu, T.F. Abdelzaher, and J.A. Stankovic. Controlware: A middleware architecture

for feedback control of software performance. In ICDCS, 2002.

101



Baochun Li and K. Nahrstedt. A control-based middleware framework for quality-of-service adap-

tations. IEEE Journal on Selected Areas in Communications, 17(9), 1999.

Vibhore Vardhan, Wanghong Yuan, Albert F. Harris III, Sarita V. Adve, Robin Kravets, Klara

Nahrstedt, Daniel Grobe Sachs, and Douglas L. Jones. Grace-2: integrating fine-grained appli-

cation adaptation with global adaptation for saving energy. IJES, 4(2), 2009.

Henry Hoffmann. Jouleguard: energy guarantees for approximate applications. In SOSP, 2015.

Lennart Ljung. System Identification: Theory for the User. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 1999. ISBN 0-13-656695-2.

Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated multi-objective control for

self-adaptive software design. In FSE, 2015.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Trans. on Knowl. and Data

Eng., 22(10):1345–1359, October 2010. ISSN 1041-4347. doi: 10.1109/TKDE.2009.191. URL

http://dx.doi.org/10.1109/TKDE.2009.191.

R. M. Bell, Y. Koren, and C. Volinsky. The bellkor 2008 solution to the netflix prize. Technical

report, ATandT Labs, 2008.

W.S. Levine. The control handbook. CRC Press, 2005.

A Hoerl and R Kennard. Ridge regression, in encyclopedia of statistical sciences, vol. 8, 1988.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society. Series B (Methodological), pages 267–288, 1996.

Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of

the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005.

102



Tanima Dey, Wei Wang, Jack W. Davidson, and Mary Lou Soffa. Resense: Mapping dynamic

workloads of colocated multithreaded applications using resource sensitivity. ACM Trans. Ar-

chit. Code Optim., 10(4), December 2013.

Priyanka Tembey, Ada Gavrilovska, and Karsten Schwan. Merlin: Application- and platform-

aware resource allocation in consolidated server systems. In SOCC, 2014.

Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edelman, and Saman Amarasinghe.

Language and compiler support for auto-tuning variable-accuracy algorithms. In CGO, 2011.

Qiang Wu, Philo Juang, Margaret Martonosi, and Douglas W. Clark. Formal online methods for

voltage/frequency control in multiple clock domain microprocessors. In ASPLOS, 2004.

Martina Maggio, Henry Hoffmann, Marco D. Santambrogio an d Anant Agarwal, and Alberto

Leva. Power optimization in embedded systems via feedback control of resource allocation.

IEEE Transactions on Control Systems Technology (to appear).

Henry Hoffmann, Martina Maggio, Marco D. Santambrogio, Alberto Leva, and Anant Agarwal. A

generalized software framework for accurate and efficient managment of performance goals. In

EMSOFT, 2013.

Connor Imes, David H. K. Kim, Martina Maggio, and Henry Hoffmann. Poet: A portable approach

to minimizing energy under soft real-time constraints. In RTAS, 2015b.

R. Rajkumar, C. Lee, J. Lehoczky, and Dan Siewiorek. A resource allocation model for qos

management. In RTSS, 1997.

Michal Sojka, Pavel Pı́sa, Dario Faggioli, Tommaso Cucinotta, Fabio Checconi, Zdenek Hanzálek,

and Giuseppe Lipari. Modular software architecture for flexible reservation mechanisms on

heterogeneous resources. Journal of Systems Architecture, 57(4), 2011.

103



R. Raghavendra, P. Ranganathan, V Talwar, Z. Wang, and X. Zhu. No ”power” struggles: coordi-

nated multi-level power management for the data center. In ASPLOS, 2008.

J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applications. In SOSP, 1999.

Jason Flinn and M. Satyanarayanan. Managing battery lifetime with energy-aware adaptation.

ACM Trans. Comp. Syst., 22(2), May 2004.

Minyoung Kim, Mark-Oliver Stehr, Carolyn Talcott, Nikil Dutt, and Nalini Venkatasubramanian.

xtune: A formal methodology for cross-layer tuning of mobile embedded systems. ACM Trans.

Embed. Comput. Syst., 11(4), January 2013.

T. Horvath, T. Abdelzaher, K. Skadron, and Xue Liu. Dynamic voltage scaling in multitier web

servers with end-to-end delay control. Computers, IEEE Transactions on, 56(4), 2007.

C. Lu, Y. Lu, T.F. Abdelzaher, J.A. Stankovic, and S.H. Son. Feedback control architecture and

design methodology for service delay guarantees in web servers. IEEE TPDS, 17(9):1014–1027,

September 2006.

Q. Sun, G. Dai, and W. Pan. LPV model and its application in web server performance control. In

ICCSSE, 2008.

Xiao Zhang, Rongrong Zhong, Sandhya Dwarkadas, and Kai Shen. A flexible framework for

throttling-enabled multicore management (temm). In ICPP, 2012.

Ryan Cochran, Can Hankendi, Ayse K. Coskun, and Sherief Reda. Pack & cap: adaptive dvfs and

thread packing under power caps. In MICRO, 2011.

Jonathan A. Winter, David H. Albonesi, and Christine A. Shoemaker. Scalable thread scheduling

and global power management for heterogeneous many-core architectures. In PACT, 2010.

104



Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip Levis, David Mazières, and Nickolai Zel-

dovich. Energy management in mobile devices with the cinder operating system. In EuroSys,

2011.

Weidan Wu and Benjamin C Lee. Inferred models for dynamic and sparse hardware-software

spaces. In Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM International Symposium

on, pages 413–424. IEEE, 2012.

Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated design of self-adaptive soft-

ware with control-theoretical formal guarantees. In ICSE, 2014.

Adam J. Oliner, Anand P. Iyer, Ion Stoica, Eemil Lagerspetz, and Sasu Tarkoma. Carat: Col-

laborative energy diagnosis for mobile devices. In Proceedings of the 11th ACM Confer-

ence on Embedded Networked Sensor Systems, SenSys ’13, pages 10:1–10:14, New York,

NY, USA, 2013. ACM. ISBN 978-1-4503-2027-6. doi: 10.1145/2517351.2517354. URL

http://doi.acm.org/10.1145/2517351.2517354.

Ashvin Goel, David Steere, Calton Pu, and Jonathan Walpole. Swift: A feedback control and

dynamic reconfiguration toolkit. In 2nd USENIX Windows NT Symposium, 1998.

Raghavendra Pothukuchi, Amin Ansari, Petros Voulgaris, and Josep Torrellas. Using multiple

input, multiple output formal control to maximize resource efficiency in architectures. In ISCA,

2016.

Su-Hui Chiang, Andrea Arpaci-Dusseau, and Mary K Vernon. The impact of more accurate re-

quested runtimes on production job scheduling performance. In Job Scheduling Strategies for

Parallel Processing, pages 103–127. Springer, 2002.

Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan, Tipp Moseley,

Gu-Yeon Wei, and David Brooks. Profiling a warehouse-scale computer. In Computer Architec-

105



ture (ISCA), 2015 ACM/IEEE 42nd Annual International Symposium on, pages 158–169. IEEE,

2015.

Yongin Kwon, Sangmin Lee, Hayoon Yi, Donghyun Kwon, Seungjun Yang, Byung-Gon Chun,

Ling Huang, Petros Maniatis, Mayur Naik, and Yunheung Paek. Mantis: Automatic perfor-

mance prediction for smartphone applications. In Proceedings of the 2013 USENIX conference

on Annual Technical Conference, pages 297–308. USENIX Association, 2013.

Chi Xu, Xi Chen, Robert Dick, and Zhuoqing Morley Mao. Cache contention and application

performance prediction for multi-core systems. In Performance Analysis of Systems & Software

(ISPASS), 2010 IEEE International Symposium on, pages 76–86. IEEE, 2010.

Xi Chen, Chi Xu, Robert P Dick, and Zhuoqing Morley Mao. Performance and power modeling

in a multi-programmed multi-core environment. In Proceedings of the 47th Design Automation

Conference, pages 813–818. ACM, 2010.

Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and Onur Mutlu. The applica-

tion slowdown model: Quantifying and controlling the impact of inter-application interference

at shared caches and main memory. In MICRO, 2015.

Seung-Hwan Lim, Jae-Seok Huh, Youngjae Kim, Galen M. Shipman, and Chita R. Das. D-factor:

A quantitative model of application slow-down in multi-resource shared systems. SIGMETRICS

Perform. Eval. Rev., 40(1), June 2012.

Nedeljko Vasić, Dejan Novaković, Svetozar Miučin, Dejan Kostić, and Ricardo Bianchini. Dejavu:

Accelerating resource allocation in virtualized environments. SIGARCH Comput. Archit. News,

40(1), March 2012.

Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-efficient and qos-aware cluster

management. In ASPLOS, 2014.

106



Navaneeth Rameshan, Leandro Navarro, Enric Monte, and Vladimir Vlassov. Stay-away, protect-

ing sensitive applications from performance interference. In Middleware, 2014.

Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa. Bubble-up: In-

creasing utilization in modern warehouse scale computers via sensible co-locations. In MICRO,

2011.

Jianqing Fan and Jinchi Lv. Sure independence screening for ultrahigh dimensional feature space.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5):849–911,

2008.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

Jacob Bien, Jonathan Taylor, and Robert Tibshirani. A lasso for hierarchical interactions. Annals

of statistics, 41(3):1111, 2013.

R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choudhary. Minebench: A

benchmark suite for data mining workloads. In IISWC, 2006.

Henry Hoffmann. Racing vs. pacing to idle: A comparison of heuristics for energy-aware resource

allocation. In HotPower, 2013.

S.P. Bradley, A.C. Hax, and T.L. Magnanti. Applied mathematical programming. Addison-Wesley

Pub. Co., 1977.

Bradley Efron and Carl Morris. Data analysis using stein’s estimator and its generalizations. Jour-

nal of the American Statistical Association, 70(350):311–319, 1975.

Carl N Morris. Parametric empirical bayes inference: theory and applications. Journal of the

American Statistical Association, 78(381):47–55, 1983.

107



Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin.

Bayesian data analysis. CRC press, 2013.

Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning gaussian processes from multiple tasks.

In Proceedings of the 22nd international conference on Machine learning, pages 1012–1019.

ACM, 2005.

Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas F Wenisch, and Ricardo Bian-

chini. Coscale: Coordinating cpu and memory system dvfs in server systems. In Microarchi-

tecture (MICRO), 2012 45th Annual IEEE/ACM International Symposium on, pages 143–154.

IEEE, 2012.

CF Jeff Wu. On the convergence properties of the em algorithm. The Annals of statistics, pages

95–103, 1983.

C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite: Characterization and

architectural implications. In PACT, 2008.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee, and

Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing. In IISWC, 2009.

Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal, and Martin

Rinard. Dynamic knobs for responsive power-aware computing. In ASPLOS, 2011a.

Aaron Carroll and Gernot Heiser. Mobile multicores: Use them or waste them. In Proceedings of

the Workshop on Power-Aware Computing and Systems, HotPower ’13, pages 12:1–12:5, New

York, NY, USA, 2013. ACM. ISBN 978-1-4503-2458-8. doi: 10.1145/2525526.2525850. URL

http://doi.acm.org/10.1145/2525526.2525850.

Etienne Le Sueur and Gernot Heiser. Slow down or sleep, that is the question. In Proceedings of

the 2011 USENIX Annual Technical Conference, Portland, OR, USA, June 2011.

108



Henry Hoffmann, Jim Holt, George Kurian, Eric Lau, Martina Maggio, Jason E. Miller, Sabrina M.

Neuman, Mahmut Sinangil, Yildiz Sinangil, Anant Agarwal, Anantha P. Chandrakasan, and

Srinivas Devadas. Self-aware computing in the angstrom processor. In DAC, 2012.

W. Gentzsch, K. Iwano, D. Johnston-Watt, M.A. Minhas, and M. Yousif. Self-adaptable au-

tonomic computing systems: An industry view. In Proceedings of the 16th International

Workshop on Database and Expert Systems Applications, pages 201–205, Aug 2005. doi:

10.1109/DEXA.2005.173.

Petre Dini, Wolfgang Gentzsch, Mark Potts, Alexander Clemm, Mazin Yousif, and Andreas Polze.

Internet, GRID, self-adaptability and beyond: Are we ready? Aug 2004.

Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research chal-

lenges. ACM Trans. Auton. Adapt. Syst., 4(2):1–42, 2009. ISSN 1556-4665. doi:

http://doi.acm.org/10.1145/1516533.1516538.

J.O. Kephart. Research challenges of autonomic computing. In ICSE, 2005.

Robert Laddaga. Guest editor’s introduction: Creating robust software through self-adaptation.

IEEE Intelligent Systems, 14, 1999.

Huazhe Zhang and Henry Hoffmann. Maximizing performance under a power cap: A comparison

of hardware, software, and hybrid techniques. In ASPLOS, 2016.

Akbar Sharifi, Shekhar Srikantaiah, Asit K. Mishra, Mahmut Kandemir, and Chita R. Das. Mete:

meeting end-to-end qos in multicores through system-wide resource management. In SIGMET-

RICS, 2011.

Greg Welch and Gary Bishop. An introduction to the kalman filter. Technical Report TR 95-041,

UNC Chapel Hill, Department of Computer Science.

109



David H. K. Kim, Connor Imes, and Henry Hoffmann. Racing and pacing to idle: Theoretical and

empirical analysis of energy optimization heuristics. In CPSNA, 2015.

Michel Tokic. Adaptive ε-greedy exploration in reinforcement learning based on value differences.

In KI. 2010.

John D. McCalpin. Memory bandwidth and machine balance in current high performance com-

puters. IEEE TCCA Newsletter, pages 19–25, December 1995.

Akihiko Miyoshi, Charles Lefurgy, Eric Van Hensbergen, Ram Rajamony, and Raj Rajkumar.

Critical power slope: Understanding the runtime effects of frequency scaling. In ICS, 2002.

Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller, and Anant Agarwal.

Application heartbeats: a generic interface for specifying program performance and goals in

autonomous computing environments. In ICAC, 2010.

Thomas Willhalm. Intel performance counter monitor-a better way to measure cpu utilization. last

modified August, 16, 2012.

Henry Hoffmann, Martina Maggio, Marco D Santambrogio, Alberto Leva, and Anant Agarwal.

Seec: a general and extensible framework for self-aware computing. 2011b.

Daniel Joseph Hsu. Algorithms for active learning. 2010.

110


