Random Walks on Polytopes and an Affine Interior Point Method for Linear Programming

Ravi Kannan Hariharan Narayanan

Abstract

Let P be a polytope in \mathbb{R}^n defined by m linear inequalities. We give a new Markov Chain algorithm to draw a nearly uniform sample from P; the running time is strongly polynomial (this is the first algorithm with this property) given a “central” starting point x_0. If s is the supremum over all chords pq passing through x_0 of $\frac{|p-x_0|}{|q-x_0|}$ and ϵ is an upper bound on the total variation distance from the uniform we want, it is sufficient to take $O(mn(m \log(sm) + \log \frac{1}{\epsilon}))$ steps of the random walk. We use this result to design an affine interior point algorithm that does a single random walk to solve linear programs approximately. More precisely, suppose $Q = \{z | Bz \leq 1\}$ contains a point z such that $c^T z \geq d$ and $r := \sup_{z \in Q} \|Bz\| + 1$, where B is an $m \times n$ matrix. Then, after $\tau = O(mn(n \ln (\frac{mn}{\epsilon^2}) + \ln \frac{1}{\delta}))$ steps, the random walk is at a point x_τ such that $c^T x_\tau \geq d(1-\epsilon)$ with probability greater than $1-\delta$. The fact that this algorithm has a run-time that is provably polynomial is notable since the deterministic affine algorithm analyzed by Dikin has no known polynomial guarantees.

1 Introduction

In this paper, we use ideas from interior point algorithms to define a random walk on a polytope. We call this walk Dikin walk. The Markov Chain defining Dikin walk is invariant under affine transformations of the polytope. Consequently, the complex interleaving of rounding and sampling present in previous sampling algorithms for convex sets (see [4, 8, 17]) is unnecessary.

Some features of the Dikin walk are the following.

1. The measures defined by the transition probabilities of Dikin walk are affine invariants, so there is no dependence on R/r (where R is the radius of the smallest ball containing the polytope P and r is the radius of the largest ball contained in P).

2. If P is an n-dimensional polytope defined by m linear constraints, the mixing time of the Dikin walk is $O(nm)$ from a warm start (i.e. if the starting distribution has a density bounded above by a constant).

3. If the walk is started at the “analytic center” (which can be found efficiently by interior point methods [21, 22]), it achieves a variation distance of ϵ in $O(mn(m \log m + \log \frac{1}{\epsilon}))$ steps. This is strongly polynomial in the description of the polytope.

Previous sampling algorithms applied to arbitrary convex sets specified as follows. The input consists of an n-dimensional convex set P circumscribed around and inscribed in balls of radius r and R respectively. The algorithm has access to an oracle that when supplied with a point in \mathbb{R}^n answers “yes” if the point is in P and “no” otherwise.

The first polynomial time algorithm for sampling convex sets appeared in [4]. It did a random walk on a sufficiently dense grid. The dependence of its mixing time on the dimension was $O^*(n^{23})$. It resulted in the first randomized polynomial time algorithm to approximate the volume of a convex set.
Another random walk that has been analyzed for sampling convex sets is known as the ball walk, which does the following. Suppose the current point is \(x_i \), \(y \) is chosen uniformly at random from a ball of radius \(\delta \) centered at \(x_i \). If \(y \in P \), \(x_{i+1} \) is set to \(y \); otherwise \(x_{i+1} = x_i \). After many successive improvements over several papers, it was shown in [8] that a ball walk mixes in \(O(n \frac{R^2}{\delta}) \) steps from a warm start if \(\delta < \frac{r}{\sqrt{n}} \). A ball walk has not been proved to mix rapidly from any single point. It was shown using the notion of average conductance in [7], that if one discounts wasted moves landing outside the body, the ball walk does not incur a “start penalty”. A third random walk analyzed recently is known as Hit-and-Run [13, 15]. This walk mixes in \(O(n^3 \frac{R^2}{\tau}\ln \frac{R}{\delta}) \) steps from a point at a distance \(d \) from the boundary [15], where \(\epsilon \) is the desired variation distance to stationarity. Dikin walk is similar to ball walk except that Dikin ellipsoids (defined later) are used instead of balls. Dikin walk is the first walk to mix in strongly polynomial time from a central point such as the center of mass (for which \(s \), as defined below, is \(O(n) \)) and the analytic center (for which \(s = O(m) \)). Our main result related to the Dikin walk is the following.

Theorem 1. Let \(n \) be greater than some universal constant. Let \(P \) be an \(n \)-dimensional polytope defined by \(m \) linear constraints and \(x_0 \in P \) be a point such that \(s \) is the supremum over all chords \(\overline{pq} \) passing through \(x_0 \) of \(\frac{|p-x_0|}{|q-x_0|} \) and \(\epsilon > 0 \) be the desired variation distance to the uniform distribution. Let \(\tau > 7 \times 10^5 \times mn (n \ln (20 s\sqrt{m}) + \ln (\frac{32}{\epsilon})) \) and \(x_0, x_1, \ldots \) be a Dikin walk. Then, for any measurable set \(S \subseteq P \), the distribution of \(x_\tau \) satisfies \(\left| \mathbb{P}[x_\tau \in S] - \frac{\text{vol}(S)}{\text{vol}(P)} \right| < \epsilon \).

1.1 Applications

1.1.1 Sampling Contingency Tables

While polytopes form a restricted subclass of the set of all convex bodies, algorithms sampling polytopes have several applications. Several questions of sampling combinatorial structures such as contingency tables [5, 18] and more generally lattice points in polytopes [9] can, in certain parameter ranges, be reduced to sampling the interior of a polytope and then rounding to a nearby lattice point. For the Hit-and-Run random walk, the mixing time from a warm start is \(O(n^2 (R/r)^2) \), while for Dikin walk this is \(O(mn) \). Hit-and-Run takes more steps to provably mix on any class of polytopes where \(m = o(n (\frac{R}{r})^2) \). For polytopes with polynomially many faces, \(R/r \) cannot be \(O(n^{2-\epsilon}) \) (but can be arbitrarily larger), therefore \(m = o(n (\frac{R}{r})^2) \) is true in some important cases such as in sampling contingency tables (where \(m = O(n) \)). (Note that we are only comparing the number of steps of the random walk needed to achieve approximate stationarity, and not the number of arithmetic operations, since the models are different).

1.2 Linear Programming

We use this result to design an affine interior point algorithm that does a single random walk to solve linear programs approximately. In this respect, our algorithm differs from existing randomized algorithms for linear programming such as that of Lovász and Vempala [16], which solves more general convex programs. While optimizing over a polytope specified as in the previous subsection, if \(m = O(n^{2-\epsilon}) \), the number of random steps taken by our algorithm is less than that of [16]. Given a polytope \(Q \) containing the origin and a linear objective \(c \), our aim is to find with probability \(> 1 - \delta \), a point \(y \in Q \) such that \(c^T y \geq 1 - \epsilon \) if there exists a point \(z \in Q \) such that \(c^T z \geq 1 \). We first truncate \(Q \) using a hyperplane \(c^T y = 1 - \hat{\epsilon} \), for \(\hat{\epsilon} << \epsilon \) and obtain \(Q_\ell = Q \cap \{ y | c^T y \leq 1 - \hat{\epsilon} \} \). We then projectively transform \(Q_\ell \) to “stretch” it into a new polytope \(\gamma(Q_\ell) \) where \(\gamma : y \mapsto \frac{1 - c^T y}{1 - c^T y} \).

Finally, we do a simplified Dikin walk (without the Metropolis filter) on \(\gamma(Q_\ell) \) which approaches close to the optimum in polynomial time. This algorithm is purely affine after one preliminary projective transformation, in the sense that Dikin ellipsoids are used that are affine invariants but
not projective invariants. This is an important distinction in the theory of interior point methods and the fact that our algorithm is polynomial time is notable since the corresponding deterministic affine algorithm analyzed by Dikin [3, 23] has no known polynomial guarantees on its run-time. Its projective counterpart, the algorithm of Karmarkar however does [10]. While there is no “local” potential function that is improved upon in each step, our analysis may be interpreted as using the $L_{2,\mu}$ norm (μ being the appropriate stationary measure) of the probability density of the k^{th} point as a potential, and showing that this reduces at each step by a multiplicative factor of $(1 - \frac{\Phi^2}{2})$ where Φ is the conductance of the walk on the transformed polytope. We use the $L_{2,\mu}$ norm rather than variation distance because this allows us to give guarantees of exiting the region where the objective function is low before the relevant Markov Chain has reached approximate stationarity. The main result related to algorithm (Dikin) is the following.

Theorem 2. Let n be larger than some universal constant. Given a system of inequalities $By \leq 1$, a linear objective c such that the polytope

$$Q := \{y : By \leq 1 \text{ and } |c^Ty| \leq 1\}$$

is bounded, and $\epsilon, \delta > 0$, the following is true. If $\exists z$ such that $Bz \leq 1$ and $c^Tz \geq 1$, then y, the output of Dikin, satisfies

$$By \leq 1$$
$$c^Ty \geq 1 - \epsilon$$

with probability greater than $1 - \delta$.

2 Randomly Sampling Polytopes

2.1 Preliminaries

Let P be a polytope in n-dimensional Euclidean space given as the intersection of m halfspaces $a_i^Tx \leq b_i, 1 \leq i \leq m$. Defining A to be the $m \times n$ matrix whose i^{th} row is a_i^T, the polytope can be specified by $Ax \leq b$. Let $x_0 \in int(K)$ belong to the interior of K. Let

$$H(x) = \sum_{1 \leq i \leq m} \frac{a_ia_i^T}{(b_i - a_i^Tx)^2}$$
and $\|z - x\|^2 := (z - x)^T H(x)(z - x)$. The Dikin ellipsoid of radius r for $x \in P$ is the ellipsoid containing all points z such that $\|z - x\|_x \leq r$.

For two vectors v_1, v_2, let $\langle v_1, v_2 \rangle_x = v_1^T H(x)v_2$. For $x \in P$, we denote by D_x, the Dikin ellipsoid of radius $\frac{3}{10}$ centered at x. Dikin ellipsoids have been studied in the context of optimization [3] and have recently been used in online learning [1, 6] as well. The second property mentioned in the subsection below implies that the Dikin walk does not leave P.

The “Dikin walk” is a “Metropolis” type walk which picks a move and then decides whether to “accept” the move and go there or “reject” and stay. The transition probabilities of the Dikin walk are listed below. When at x, one step of the walk is:

1. Flip an unbiased coin. If Heads, stay at x.
2. If Tails pick a random point y from D_x.
3. If $x \notin D_y$, then reject y (stay at x); if $x \in D_y$, then accept y with probability $\frac{\text{vol}(D_x)}{\text{vol}(D_y)} = \frac{\det H(y)}{\det H(x)}$.

So, the transition probabilities are given by

$$P[x \rightarrow y] = \begin{cases} \min \left(\frac{1}{2\text{vol}(D_x)}, \frac{1}{2\text{vol}(D_y)} \right), & \text{if } y \in D_x \text{ and } x \in D_y; \\ 0, & \text{otherwise} \end{cases}$$

and $P[x \rightarrow x] = 1 - \int_y P[x \rightarrow y]$.

2.1.1 Properties of Dikin ellipsoids

Observation 1.

(1) Dikin ellipsoids are affine invariants in that if T is an affine transformation and $x \in P$, the Dikin ellipsoid centered at the point Tx for the polytope $T(P)$ is $T(D_x)$. This is easy to verify from their definition.

(2) For any interior point x, the Dikin ellipsoid centered at x, having radius 1, is contained in P. This has been shown in Theorem 2.1.1 of [19]. Also, the Dikin ellipsoid at x having radius $\sqrt{2m}$ contains $\text{Sym}_x(P) := P \cap \{y \mid 2x - y \in P\}$. This can be derived from Theorem 3 applied to $\text{Sym}_x(P)$.

2.2 Isoperimetric inequality

Given interior points x, y in a polytope P, suppose p, q are the ends of the chord in P containing x, y and p, x, y, q lie in that order. Then we denote $\frac{|x-y||p-q|}{|p-x||q-y|}$ by $\sigma(x, y)$. $\ln(1 + \sigma(x, y))$ is a metric known as the Hilbert metric, and given four collinear points a, b, c, d, $(a : b : c : d) = \frac{(a - c)(b - d)}{(a - d)(b - c)}$ is known as the cross ratio.

Theorem 3. Let x, y be interior points of P. Then,

$$\sigma(x, y) \geq \frac{\|x - y\|_x}{\sqrt{m}}.$$
Proof. It is easy to see that we can restrict attention to the line ℓ containing x, y. We may also assume that $x = 0$ after translation. So now $b_i \geq 0$. Let c_i be the component of a_i along ℓ; we may view c_i, y as real numbers with ℓ as the real line now. $P \cap \ell = \{y : c_iy \leq b_i\}$. Dividing constraint i by $|c_i|$, we may assume that $|c_i| = 1$. After renumbering constraints so that $b_1 = \min\{b_i|c_i = -1\}$ and $b_2 = \min\{b_i|c_i = 1\}$, we have $P \cap \ell = [-b_1, b_2]$. Also \[
\|x - y\|^2 = y^2 \sum \frac{1}{b_i^2}.
\] Without loss of generality, assume that $y \geq 0$. [The proof is symmetric for $y \leq 0$.] Then, $\sigma(x, y) = \frac{y(b_1 + b_2)}{b_1(b_2 - y)}$, which is $\geq y \max_i (1/|b_i|)$. This is in turn $\geq \frac{\|x - y\|_x}{\sqrt{m}}$.

The theorem below was proved by Lovász in [13].

Theorem 4 (Lovász). Let S_1 and S_2 be measurable subsets of P. Then, \[
\text{vol}(P \setminus S_1 \setminus S_2) \text{vol}(P) \geq \sigma(S_1, S_2) \text{vol}(S_1) \text{vol}(S_2).
\]

2.3 Geometric and probabilistic distance

Let the Lebesgue measure be denoted λ. The total variation distance between two distributions π_1 and π_2 is $d(\pi_1, \pi_2) := \sup_S |\pi_1(S) - \pi_2(S)|$ where S ranges over all measurable sets. Let the marginal distributions of transition probabilities starting from a point u be denoted P_u. Let us fix $r := 3/40$ for the remainder of this paper. We denote by $\text{erf}(x)$ the well known error function \[
\frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \text{ and set } \text{erfc}(x) := 1 - \text{erf}(x). \]

The main lemma of this section is stated below.

Lemma 1. Let x, y be points such that $\sigma(x, y) \leq \frac{3}{400\sqrt{mn}}$. Then, the total variation distance between P_x and P_y is less than $1 - \frac{13}{200} + o(1)$.

Proof. Let us fix the convention that $\frac{dP_x}{dP_y}(x) := 0$ and $\frac{dP_x}{dP_y}(y) := +\infty$. If $x \to w$ is one step of the Dikin walk, \[
d(P_x, P_y) = 1 - \mathbb{E}_w \left[\min \left(1, \frac{dP_y}{dP_x}(w) \right) \right].
\]

It follows from Lemma 5 that \[
\mathbb{E}_w \left[\min \left(1, \frac{dP_y}{dP_x}(w) \right) \right] \geq \min \left(1, \frac{\text{vol}(D_x)}{\text{vol}(D_y)} \right) \mathbb{P} \left[(y \in D_w) \land (w \in D_y \setminus \{x\}) \right].
\]

It follows from Lemma 7 that \[
\min \left(1, \frac{\text{vol}(D_x)}{\text{vol}(D_y)} \right) \mathbb{P} \left[(y \in D_w) \land (w \in D_y \setminus \{x\}) \right] \geq e^{-\frac{r}{2}} \mathbb{P} \left[(y \in D_w) \land (w \in D_y \setminus \{x\}) \right].
\]

Let E_x denote the event that $0 < \max (\|x - w\|_w, \|x - w\|_x) \leq r^2 (1 - \frac{1}{n})$, E_y denote the event that $\max (\|y - w\|_w, \|y - w\|_y) \leq r$ and E_{vol} denote the event that $\text{vol}(D_w) \geq e^{4r} \text{vol}(D_x)$. The complement of an event E shall be denoted \overline{E}.

From first principles, the probability of E_y when $x \to w$ is a transition of Dikin walk can be bounded from below by \[
\left(\frac{e^{-4r}}{2} \right) \mathbb{P} \left[E_y \land E_x \land \overline{E_{vol}} \right] \text{ where } w \text{ is chosen uniformly at random from } D_x. \]

It thus suffices to find a lower bound for $\mathbb{P} \left[E_y \land E_x \land \overline{E_{vol}} \right]$ where w is chosen uniformly at random from D_x, which we proceed to do. \[
\mathbb{P} \left[E_y \land E_x \land \overline{E_{vol}} \right] \geq \mathbb{P} \left[E_y \land E_x \right] - \mathbb{P} \left[E_{vol} \right].
\]
Lemma 6 implies that \(P[E_{vol}] \leq \frac{\text{erfc}(2)}{2} + o(1) \). As a consequence of Lemma 8,

\[
P[E_x] \geq \frac{1 - 3\sqrt{2}r - o(1)}{2} P[x - w_2^2 \leq r^2 \left(1 - \frac{1}{n} \right)] \tag{5}
\]

\[
P[E_x] \geq \frac{1 - 3\sqrt{2}r}{2\sqrt{e}} - o(1). \tag{6}
\]

Lemma 9 and Lemma 10 together tell us that

\[
P[E_y | E_x] \geq 1 - \left(\frac{4r^2 + \text{erfc}(2) + o(1)}{1 - 3\sqrt{2}r} \right) - \left(\frac{4r^2 + \text{erfc}(3/2) + o(1)}{1 - 3\sqrt{2}r} \right) \tag{7}
\]

\[
P[E_y | E_x] = 1 - \left(\frac{8r^2 + \text{erfc}(2) + \text{erfc}(\frac{3}{2}) + o(1)}{1 - 3\sqrt{2}r} \right). \tag{8}
\]

Putting (6) and (8) together gives us that

\[
P[E_y \land E_x] = P[E_y | E_x] P[E_x] \geq 1 - \left(\frac{3\sqrt{2}r + 8r^2 + \text{erfc}(2)(1 + \sqrt{e}) + \text{erfc}(\frac{3}{2})}{2\sqrt{e}} \right) - o(1). \tag{9}
\]

Putting together (3), (4) and (10), we see that if \(x \to w \) is a transition of the Dikin walk,

\[
E_w \left[\min \left(1, \frac{dP_y}{dP_x}(w) \right) \right] \geq \frac{e^{\frac{-219r}{4\sqrt{e}}}}{4\sqrt{e}} \left(1 - (3\sqrt{2}r + 8r^2 + \text{erfc}(2)(1 + \sqrt{e}) + \text{erfc}(\frac{3}{2})) \right) - o(1). \tag{11}
\]

For our choice of \(r = 3/40 \), this evaluates to more than \(\frac{13}{200} - o(1) \). \(\square \)

Lemma that the above proof refers to are in the appendix. The following is a generalization of the Cauchy-Schwarz inequality that takes values in a cone of semidefinite matrices where inequality is replaced by dominance in the semidefinite cone. It was used to prove Lemma 14 and may be of independent interest.

Lemma 2 (Semidefinite Cauchy-Schwartz). Let \(\alpha_1, \ldots, \alpha_m \) be reals and \(A_1, \ldots, A_m \) be \(r \times n \) matrices. Let \(B \preceq C \) signify that \(B \) is dominated by \(C \) in the semidefinite cone. Then

\[
\left(\sum_{i=1}^{m} \alpha_i A_i \right) \left(\sum_{i=1}^{m} \alpha_i A_i \right)^T \preceq \left(\sum_{i=1}^{m} \alpha_i^2 \right) \left(\sum_{i=1}^{m} A_i A_i^T \right). \tag{12}
\]

Proof. For each \(i \) and \(j \),

\[
0 \preceq (\alpha_j A_i - \alpha_i A_j) (\alpha_j A_i - \alpha_i A_j)^T \tag{13}
\]

Therefore,

\[
0 \preceq \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} (\alpha_j A_i - \alpha_i A_j) (\alpha_j A_i - \alpha_i A_j)^T = \left(\sum_{i=1}^{m} \alpha_i^2 \right) \left(\sum_{i=1}^{m} A_i A_i^T \right) - \left(\sum_{i=1}^{m} \alpha_i A_i \right) \left(\sum_{i=1}^{m} \alpha_i A_i \right)^T \tag{14}
\]

\(\square \)
2.4 Conductance and mixing time

The proof of the following theorem is along the lines of Theorem 11 in [13].

Theorem 5. Let n be greater than some universal constant. Let S_1 and $S_2 := P \setminus S_1$ be measurable subsets of P. Then,

$$\int_{S_1} P_x(S_2) \, d\lambda(x) \geq \frac{6}{10^3 \sqrt{\text{min} \left(\text{vol}(S_1), \text{vol}(S_2) \right)}}.$$

Proof. Let ρ be the density of the uniform distribution on P. We shall use ρ in some places where it is seemingly unnecessary because, then, most of this proof transfers verbatim to a proof of Theorem 10 as well. For any $x \neq y \in P$,

$$\rho(y) \frac{dP_y}{d\lambda}(x) = \rho(x) \frac{dP_x}{d\lambda}(y),$$

therefore ρ is the stationary density of the Markov chain. Let $\delta = \frac{3}{400 \sqrt{\text{min} \left(\text{vol}(S_1), \text{vol}(S_2) \right)}}$ and $\epsilon = \frac{13}{200}$. Let $S'_1 = S_1 \cap \{x| \rho(x)P_x(S_2) \leq \frac{\epsilon}{2 \text{vol}(P)} \}$ and $S'_2 = S_2 \cap \{y| \rho(y)P_y(S_1) \leq \frac{\epsilon}{2 \text{vol}(P)} \}$. By the reversibility of the chain, which is easily checked,

$$\int_{S_1} \rho(x)P_x(S_2) \, d\lambda(x) = \int_{S_2} \rho(y)P_y(S_1) \, d\lambda(y).$$

If $x \in S'_1$ and $y \in S'_2$ then

$$\int_P \min \left(\rho(x) \frac{dP_x}{d\lambda}(w), \rho(y) \frac{dP_y}{d\lambda}(w) \right) \, d\lambda(w) < \frac{\epsilon}{\text{vol}(P)}.$$

For sufficiently large n, Lemma 1 implies that $\sigma(S'_1, S'_2) \geq \delta$. Therefore Theorem 4 implies that

$$\pi(P \setminus S'_1 \setminus S'_2) \geq \delta \pi(S'_1) \pi(S'_2).$$

First suppose $\pi(S'_1) \geq (1 - \delta)\pi(S_1)$ and $\pi(S'_2) \geq (1 - \delta)\pi(S_2)$. Then,

$$\int_{S_1} P_x(S_2) \, d\rho(x) \geq \frac{\epsilon \pi(P \setminus S'_1 \setminus S'_2)}{2} \geq \frac{\epsilon \delta \pi(S'_1) \pi(S'_2)}{2} \geq \left(1 - \delta\right)^2 \frac{\epsilon \delta}{8} \min(\pi(S_1), \pi(S_2))$$

and we are done. Otherwise, without loss of generality, suppose $\pi(S'_1) \leq (1 - \delta)\pi(S_1)$. Then

$$\int_{S_1} P_x(S_2) \, d\rho(x) \geq \frac{\epsilon \delta}{2} \pi(S_1)$$

and we are done.

The following theorem was proved in [14].

Theorem 6 (Lovász-Simonovits). Let μ_0 be the initial distribution for a lazy reversible ergodic Markov chain whose conductance is Φ and stationary measure is μ, and μ_k be the distribution of the k^{th} step. Let $M := \sup_S \frac{\mu_k(S)}{\mu(S)}$ where the supremum is over all measurable subsets S of P. Then, for all such S,

$$|\mu_k(S) - \mu(S)| \leq \sqrt{M} \left(1 - \frac{\Phi^2}{2}\right)^k.$$

7
Figure 2: The effect of the projective transformation γ.

We now in a position to prove the main theorem regarding Dikin walk, Theorem 1.

Proof of Theorem 1. Let t be the time when the first proper move is made. $\Pr[t \geq t'| t \geq t' - 1] \leq 1 - \frac{13}{200} + o(1)$ by Lemma 1 applied when $x = x_0$ and y approaches x_0. Therefore when n is sufficiently large,

$$\Pr \left[t < \frac{\ln(\frac{1}{2})}{\ln(1 - \frac{6}{100})} \right] \geq 1 - \frac{\epsilon}{2}.$$

Let μ_k be the distribution of x_k and μ be the stationary distribution, which is uniform. Let ρ_k and ρ likewise be the density of μ_k and $\rho = \frac{1}{\text{vol}(P)}$ the density of the uniform distribution. We shall now find an upper bound for $\frac{\rho_k + 1}{\rho}$. For any $x \in P$, $\rho_k(x) \geq \frac{100}{\text{vol}(D_x)}$ by Lemma 1, applied when $x = x_0$ and y approaches x_0. By (2) in Observation 2.1.1 $\frac{\text{vol}(D_x)}{\text{vol}(P)} \geq \left(\frac{r}{\sqrt{2ms}}\right)^n$, which implies that

$$\sup_{S \subseteq P} \frac{\mu_k(S)}{\mu(S)} = \sup_{x \in P} \frac{\rho_k(x)}{\rho} \leq \left(\frac{\sqrt{2ms}}{r}\right)^n \left(\frac{100}{6}\right).$$

(17)

(18)

The theorem follows by plugging in Equation 18 and the lower bound on the conductance of Dikin walk given by Theorem 5 into Theorem 6.

3 Affine algorithm for linear programming

We shall consider problems of the following form. Given a system of inequalities $By \leq 1$, a linear objective c such that the polytope $Q := \{y : By \leq 1 \text{ and } |c^Ty| \leq 1\}$ is bounded, and $\epsilon, \delta > 0$ the algorithm is required to do the following.

- If $\exists y$ such that $By \leq 1$ and $c^Ty \geq 1$, output y such that $By \leq 1$ and $c^Ty \geq 1 - \epsilon$ with probability greater than $1 - \delta$.
Any linear program can be converted to such a form, either by the sliding objective method or by combining the primal and dual problems and using the duality gap added to an appropriate slack variable as the new objective (see [11] and references therein). Before the iterative stage of the algorithm which is purely affine, we need to transform the problem using a projective transformation. Let \(s \geq \sup_{y \in Q} \|By\| + 1 \), and

\[
\tau := \left[4 \times 10^8 \times mn \left(n \ln (\frac{4ms^2}{\epsilon^2}) + 2 \ln \left(\frac{2}{\delta} \right) \right) \right].
\]

(19)

Let \(\gamma \) be the projective transformation \(\gamma : y \mapsto \frac{y}{1+cT y} \), and \(\gamma^{-1} \) the inverse map, \(\gamma^{-1} : x \mapsto \frac{x}{1+cT^{-1} x} \). For any \(\epsilon' > 0 \), let \(Q_{\epsilon'} := Q \cap \{ y | c^T y \leq 1 - \epsilon' \} \) and \(U_{\epsilon'} \) be the hyperplane \(\{ y | c^T y = 1 - \epsilon' \} \). Let \(\hat{\epsilon} = \frac{\delta}{4n} \) and \(P_{\hat{\epsilon}} := \gamma(Q_{\hat{\epsilon}}) \). Let \(P := P_{\hat{\epsilon}} = \gamma(Q_{\hat{\epsilon}}) \). For \(x \in P \), let \(D_{\hat{\epsilon}} \) denote the Dikin ellipsoid (with respect to \(P \)) of radius \(r := \frac{3}{40} \), centered at \(x \).

3.1 Algorithm Dikin

1. Choose \(x_0 \) uniformly at random from \(r^{-1}D_o \), where \(o \) is the origin.

2. While \(i < \tau \) and \(c^T \gamma^{-1}(x_i) < 1 - \epsilon \), choose \(x_{i+1} \) using the rule below.

 (a) Flip an unbiased coin. If Heads, set \(x_{i+1} \) to \(x_i \).

 (b) If Tails pick a random point \(y \) from \(D_{x_i} \).

 (c) If \(x_i \notin D_{y} \), then reject \(y \) and set \(x_{i+1} \) to \(x_i \); if \(x_i \in D_{y} \), then set \(x_{i+1} \) to \(y \).

3. If \(c^T \gamma^{-1}(x_\tau) \geq 1 - \epsilon \) output \(\gamma^{-1}(x_\tau) \), otherwise declare that there is no \(y \) such that \(By \leq 1 \) and \(c^T y \geq 1 \).

4 Analysis

For any bounded \(f : P \to \mathbb{R} \), we define \(\|f\|_2 := \sqrt{\int_P f(x)^2 \rho(x) d\lambda(x)} \) where \(\rho(x) := \frac{\text{vol}(D_x)}{\int_P \text{vol}(D_x) d\lambda(x)} \).

The following lemma shows that cross ratio is a projective invariant.

Lemma 3. Let \(\gamma : \mathbb{R}^n \to \mathbb{R}^n \) be a projective transformation. Then, for any 4 collinear points \(a, b, c \) and \(d \), \((a : b : c : d) = (\gamma(a) : \gamma(b) : \gamma(c) : \gamma(d)) \).

Proof. Let \(\{e_1, \ldots, e_n\} \) be a basis for \(\mathbb{R}^n \). Without loss of generality, suppose that \(a, b, c, d \in \mathbb{R}e_1 \). \(\gamma \) can be factorized as \(\gamma = \gamma_2 \circ \gamma_1 \) where \(\gamma_1 : \mathbb{R}^n \to \mathbb{R}^n \) is a projective transformation and maps \(\mathbb{R}e_1 \) to \(\mathbb{R}e_1 \) and \(\gamma_2 : \mathbb{R}^n \to \mathbb{R}^n \) is an affine transformation. Affine transformations clearly preserve the cross ratio, so the problem reduces to showing that \((a : b : c : d) = (\gamma_1(a) : \gamma_1(b) : \gamma_1(c) : \gamma_1(d)) \), which is a 1-dimensional question. In 1-dimension, the group of projective transformations is generated by translations \((x \mapsto x + \beta) \), scalar multiplication \((x \mapsto ax) \) and inversion \((x \mapsto x^{-1}) \), where \(\alpha, \beta \in \mathbb{R} \setminus \{0\} \). In each of these cases the equality is easily checked. \(\square \)

The following was proved in a more general context by Nesterov and Todd in Theorem 4.1, [20].

Theorem 7 (Nesterov-Todd). Let \(\overline{pq} \) be a chord of \(P \) and \(x, y \) be interior points on it so that \(p, x, y, q \) are in order. Then \(z \in D_y \) implies that \(p + \frac{|p-x|}{|p-y|} (z - p) \in D_x \).
The following theorem is from [14].

Theorem 8 (Lovász-Simonovits). Let M be a lazy reversible ergodic Markov chain on $P \subseteq \mathbb{R}^n$ with conductance Φ, whose stationary distribution is μ. For every bounded f, let $\|f\|_{2,\mu}$ denote $\sqrt{\int_P f(x)^2 d\mu(x)}$. For any fixed f, let Mf be the function that takes x to $\int_P f(y)dP_x(y)$. Then if $\int_P f(x)d\mu(x) = 0$,

$$\|M^k f\|_{2,\mu} \leq \left(1 - \frac{\Phi^2}{2}\right)^k \|f\|_{2,\mu}.$$

We shall now prove the main theorem regarding Algorithm Dikin, Theorem 2.

Proof of Theorem 2. Let \overline{pq} be a chord of the polytope P_ϵ containing the origin o such that $c^T(\gamma^{-1}(p)) \geq c^T(\gamma^{-1}(q))$. Let $p' = \gamma^{-1}(p)$, $q' = \gamma^{-1}(q)$ and r' be the intersection of the chord \overline{pq} with the hyperplane $U := \{y | c^T y = 1\}$. Then, $\frac{|p-q|}{|p'-q'|} \leq 2$. Let $s = \frac{|p-o|}{|q-o|}$ is equal to $|\langle \infty : o : q : P \rangle|$. Therefore, for any chord \overline{pq} of P_ϵ through o, $\frac{|p|}{|q|} \leq \frac{s}{2}.$

Let $D = \int_P \text{vol}(D_y) d\lambda(y)$. Let

$$\rho_o(x) = \begin{cases} \frac{1}{\text{vol}(D_o)}, & x \in D_o; \\ 0, & \text{otherwise}, \end{cases}$$

be the density of x_o and likewise ρ_r be the density of the distribution of x_r. Let $f_0(x) = \frac{\rho_o(x)}{\rho(x)}$ and $f_r(x) = \frac{\rho_r(x)}{\rho(x)}$.

$$\|f_0\|_2 = \int_{D_o} \left(\frac{\rho_o(x)}{\rho(x)}\right)^2 \rho(x) d\lambda(x) \leq \frac{D}{\text{vol}(D_o) \inf_{x \in D_o} \text{vol}(D_x)}.$$

By Observation 2.1.1 and the fact that the Dikin ellipsoid of radius r with respect to P_ϵ is contained in the Dikin ellipsoid of the same radius with respect to P, $\sqrt{2mD_o} \geq \text{Sym}_o(P_\epsilon) \supseteq (\frac{s}{2}) P_\epsilon$. We see from Theorem 7 that $\inf_{x \in D_o} \text{vol}(D_x) \geq \text{vol}(1 - r)D_o$.

Therefore,

$$\|f_0\|_2 \leq \frac{D}{\text{vol}(D_o) \inf_{x \in D_o} \text{vol}(D_x)} \leq \left(\frac{2m(s)^2}{1-r}\right)^n \left(\frac{D}{\int_P \text{vol}(D_y) d\lambda(y)}\right) \leq \left(\frac{2m(s)^2}{1-r}\right)^n \left(\frac{1}{\pi(P_\epsilon)}\right),$$

where π is the stationary distribution. For a line $\ell \perp U$, let ℓ_{π} and ρ_ℓ be interpreted as the induced measure and density respectively. Let ℓ intersect the facet of P that belongs to U_ϵ at u. Then by
Theorem 7, for any \(x, y \in \ell \cap P\) such that \(|x - u| > |y - u|\), \(\frac{\rho(x)}{|u-x|^n} \leq \frac{\rho(y)}{|u-y|^n}\). By integrating over such 1-dimensional fibres \(\ell\) perpendicular to \(U\), we see that

\[
\pi(P_\ell) = \frac{\int_{\ell \cap U} \pi(\ell \cap P_\ell) d\mu}{\int_{\ell \cap U} \pi(\ell) d\mu} \leq \frac{\sup_{\ell \perp U} \pi(\ell \cap P_\ell)}{\pi(\ell)} \leq \left(\frac{(1 - 1/\delta)^{n+1} - (1/\epsilon - 1/\delta)^{n+1}}{(1/\epsilon - 1/\delta)^{n+1}} \right) \lesssim \exp(\delta) - 1 \quad \text{as } n \to \infty. \tag{28}\]

The relationship between conductance \(\Phi\) and decay of the \(L_2\) norm from Theorem 8 tells us that

\[
\|f_\tau - \mathbb{E}_\rho f_\tau\|^2 \leq \|f_0 - \mathbb{E}_\rho f_0\|^2 e^{-\tau \Phi^2} \tag{29}\]

\[
= \left(\|f_0\|^2 - \|\mathbb{E}_\rho f_0\|_{L_2}^2 \right) e^{-\tau \Phi^2} \tag{30}\]

\[
\leq \left(\frac{2m(\delta)^2}{1 - r} \right) \left(\frac{e^{-\tau \Phi^2}}{\pi(P_\ell)} \right) \quad \text{(from (24))}, \tag{31}\]

which is less than \(\frac{\delta^2}{4\pi(P_\ell)}\), when we substitute \(\Phi\) from Theorem 10 and the value of \(\tau\) from (19).

\[
\frac{\delta^2}{4\pi(P_\ell)} \geq \int_{P_\ell} (f_\tau(x) - \mathbb{E}_\rho f_\tau)^2 \rho(x) d\lambda(x) \geq \frac{\left(\int_{P_\ell} (f_\tau(x) - \mathbb{E}_\rho f_\tau) \rho(x) d\lambda(x) \right)^2}{\int_{P_\ell} \rho(x) d\lambda(x)} = \frac{(\mathbb{P}[x_\tau \in P_\ell] - \pi(P_\ell))^2}{\pi(P_\ell)}. \tag{32}\]

which together with (28) implies that \(\mathbb{P}[x_\tau \in P_\ell] \lesssim \delta\) and completes the proof.

The following generalization of Theorem 4 was proved in [17].

Theorem 9 (Lovász-Vempala). Let \(S_1\) and \(S_2\) be measurable subsets of \(P\) and \(\mu\) a measure supported on \(P\) that possesses a density whose logarithm is concave. Then,

\[
\mu(P \setminus S_1 \setminus S_2) \mu(P) \geq \sigma(S_1, S_2) \mu(S_1) \mu(S_2). \tag{33}\]

The proof of the following lemma is along the lines of Lemma 1 and has been moved to the appendix.

Lemma 4. Let \(x, y\) be points such that \(\sigma(x, y) \leq \frac{3}{400\sqrt{m}}\). Then, the overlap

\[
\int_{\mathbb{R}^n} \min \left(\text{vol}(D_x) P_x, \text{vol}(D_y) P_y \right) d\lambda(x)
\]

between \(\text{vol}(D_x) P_x\) and \(\text{vol}(D_y) P_y\) in algorithm Dikin is greater than \(\left(\frac{9}{100} - o(1) \right) \text{vol}(D_x)\).

The proof of the following theorem closely follows that of Theorem 3.

Theorem 10. If \(P\) is a bounded polytope, the conductance of the Markov chain in Algorithm Dikin is bounded below by \(\frac{8}{10^{\sqrt{m}}}\).
\[\rho(x) := \frac{\text{vol}(D_x)}{\int_P \text{vol}(D_x) d\lambda(x)} \]

is the stationary density. Let \(\delta = \frac{3}{400\sqrt{m}} \) and \(\epsilon = \frac{9}{100} \). Theorem 9 is applicable in our situation because by Lemma 15, the stationary density \(\rho \) is log-concave. The proof of Theorem 3 now applies verbatim apart from using Lemma 4 instead of Lemma 1, and Theorem 9 instead of Theorem 4.

This gives us

\[\int_{S_1} P_x(S_2) d\rho(x) \geq \left(\frac{(1-\delta)^2\epsilon\delta}{8} \right) \min(\pi(S_1), \pi(S_2)). \]

(33)

Thus we are done. \(\square \)

A Appendix

Since Dikin ellipsoids are affine-invariant, we shall assume without loss of generality that \(x \) is the origin and the Dikin ellipsoid at \(x \) is the Euclidean unit ball of radius \(r \). This also means that in system of coordinates, the local norm \(\| \cdot \|_x = \| \cdot \|_{o} \) is the Euclidean norm \(\| \cdot \| \) and the local inner product \(\langle \cdot, \cdot \rangle_x = \langle \cdot, \cdot \rangle_o \) is the usual inner product \(\langle \cdot, \cdot \rangle \). On occasion we have used \(a \cdot b \) to signify \(\langle a, b \rangle \).

Proof of Lemma 4. If \(x \rightarrow w \) is one step of Dikin,

\[\int_{\mathbb{R}^n} \min(\text{vol}(D_x) P_x, \text{vol}(D_y) P_y) d\lambda(x) = \mathbb{E}_w \left[\min\left(\text{vol}(D_x), \text{vol}(D_y) \frac{dP_y}{dP_x}(w) \right) \right]. \]

\[\mathbb{E}_w \left[\min\left(\text{vol}(D_x), \text{vol}(D_y) \frac{dP_y}{dP_x}(w) \right) \right] = \text{vol}(D_x) \mathbb{P} \left[\{ y \in D_w \} \wedge (w \in D_y \setminus \{ x \}) \right]. \]

(34)

Let \(E_x \) denote the event that \(0 < \max(\|x - w\|_w^2, \|x - w\|_x^2) \leq r^2 \left(1 - \frac{1}{n} \right) \) and \(E_y \) denote the event that \(\max(\|y - w\|_w, \|y - w\|_y) \leq r \). The probability of \(E_y \) when \(x \rightarrow w \) is a transition of Dikin is greater or equal to \(\frac{\mathbb{P}[E_y \wedge E_x]}{2} \) when \(w \) is chosen uniformly at random from \(D_x \). Thus, using Lemmas 8, 9 and 10,

\[\int_{\mathbb{R}^n} \min(\text{vol}(D_x) P_x, \text{vol}(D_y) P_y) d\lambda(x) \geq \text{vol}(D_x) \frac{\mathbb{P}[E_y|E_x] \mathbb{P}[E_x]}{2} \]

\[\geq \frac{\text{vol}(D_x)(1 - 3\sqrt{2r} - 8r^2 - \text{erfc}(2) - \text{erfc}(\frac{3}{2}) - o(1))}{4\sqrt{\epsilon}}. \]

When \(r = 3/40 \), this evaluates to more than \(\text{vol}(D_x)(\frac{9}{100} - o(1)) \). \(\square \)

Lemma 5. Let \(w \in \text{supp}(P_x) \setminus \{x, y\} \) and \(y \in D_w \) and \(w \in D_y \). Then,

\[\frac{dP_y}{dP_x}(w) \geq \min \left(1, \frac{\text{vol}(D_x)}{\text{vol}(D_y)} \right). \]

(35)
Proof. Under the hypothesis of the lemma,

\[
\frac{dP_y}{dP_x}(w) = \min \left(\frac{\frac{1}{\text{vol}(D_y)}, \frac{1}{\text{vol}(D_w)}}{\text{vol}(D_x)}, \frac{1}{\text{vol}(D_w)} \right) = \min \left(\frac{\text{vol}(D_w)}{\text{vol}(D_y)}, 1 \right) \left(\frac{\text{vol}(D_w)}{\text{vol}(D_x)}, 1 \right). \tag{36}
\]

The above expression can be further simplified by considering two cases.

1. Suppose \(\min \left(\frac{\text{vol}(D_w)}{\text{vol}(D_y)}, 1 \right) = 1 \), then

\[
\frac{\text{vol}(D_w)}{\text{vol}(D_y)} \geq 1.
\]

2. Suppose \(\min \left(\frac{\text{vol}(D_w)}{\text{vol}(D_y)}, 1 \right) = \frac{\text{vol}(D_w)}{\text{vol}(D_y)} \), then

\[
\frac{\text{vol}(D_w)}{\text{vol}(D_y)} \geq \frac{\text{vol}(D_x)}{\text{vol}(D_y)}.
\]

Therefore,

\[
\frac{dP_y}{dP_x}(w) \geq \min \left(1, \frac{\text{vol}(D_x)}{\text{vol}(D_y)} \right). \tag{38}
\]

Lemma 6. Let \(w \) be chosen uniformly at random from \(D_x \). The probability that \(\text{vol}(D_x) \leq e^{2rc} \text{vol}(D_w) \) is greater or equal to \(1 - \frac{\text{erfc}(c)}{2} - o(1) \), i.e.

\[
P \left[\frac{\text{vol}(D_w)}{\text{vol}(D_x)} \leq e^{2rc} \right] \geq 1 - \frac{\text{erfc}(c)}{2} - o(1). \tag{39}
\]

Proof. By Lemma 15, \(\ln \left(\frac{1}{\text{vol}(D_x)} \right) \) is a convex function. Therefore,

\[
\ln \text{vol}(D_w) - \ln \text{vol}(D_x) \leq \nabla \ln \left(\frac{1}{\text{vol}(D_x)} \right) \cdot (w - x). \tag{40}
\]

By Lemma 14, \(\| \nabla \ln \left(\frac{1}{\text{vol}(D_x)} \right) \| \leq 2\sqrt{n} \). Therefore,

\[
\nabla \ln \left(\frac{1}{\text{vol}(D_x)} \right) \cdot (w - x) \leq 2r \left(\frac{\sqrt{n} \| \nabla \ln \left(\frac{1}{\text{vol}(D_x)} \right) \|}{\| w - x \|} \right) \cdot (w - x). \tag{41}
\]

As stated in Theorem 11, when the dimension \(n \to \infty \),

\[
\frac{\sqrt{n} \| \nabla \ln \left(\frac{1}{\text{vol}(D_x)} \right) \|}{\| w - x \|} \to 1.
\]
converges in distribution to a standard Gaussian random variable whose mean is 0 and variance is 1. Therefore,

\[
\mathbb{P}\left[\sqrt{n} \nabla \ln \left(\frac{1}{\text{vol}(D_z)} \right) \cdot (w - x) \leq c \right] \geq \frac{1 + \text{erf}(c)}{2} - o(1). \tag{42}
\]

This implies that

\[
\mathbb{P}\left[\frac{\text{vol}(D_w)}{\text{vol}(D_x)} \leq e^c \right] \geq \mathbb{P}\left[\nabla \ln \left(\frac{1}{\text{vol}(D_z)} \right) \cdot (w - x) \leq c \right] \tag{43}
\]

\[
\geq \left(\frac{1 + \text{erf} \left(\frac{c}{2r} \right) \right) - o(1). \tag{44}
\]

Lemma 7.

\[
\ln \left(\frac{\text{vol}(D_y)}{\text{vol}(D_x)} \right) \leq n\sigma(x, y). \]

Proof. Suppose \(\overline{pq} \) is a chord and \(p, x, y, q \) appear in that order. By Theorem 7,

\[
\ln \left(\frac{\text{vol}(D_y)}{\text{vol}(D_x)} \right) \leq \ln \left(\frac{|p - y|^n}{|p - x|^n} \right) \leq n\sigma(x, y). \]

\(\square \)

Lemma 8. Let \(w \) be chosen uniformly at random from \(D_x \). Then,

\[
\mathbb{P}\left[\|x - w\|^2_w \leq r^2 \left(1 - \frac{1}{n} \right) \|x - w\|^2_x \leq r^2 \left(1 - \frac{1}{n} \right) \right] \geq \frac{1 - 3\sqrt{2}r}{2} - o(1). \tag{45}
\]

Proof. This follows from Lemma 11. We set \(c \) to \(3\sqrt{2}r \), and derive that

\[
\mathbb{P}\left[\|x - w\|^2_w + \|x - w\|^2_{2x-w} \geq 2r^2 \left(1 - \frac{1}{n} \right) \|x - w\|^2_x \leq r^2 \left(1 - \frac{1}{n} \right) \right] \leq 3\sqrt{2}r + o(1). \tag{46}
\]

If \(\|x - w\|^2_w + \|x - w\|^2_{2x-w} \leq 2r^2 \left(1 - \frac{1}{n} \right) \), then either \(\|x - w\|^2_{w} \) or \(\|x - w\|^2_{2x-w} \) must be less or equal to \(r^2 \left(1 - \frac{1}{n} \right) \).

Lemma 9. Let \(\sigma(x, y) \leq \frac{3}{400\sqrt{mn}} \). Then, if \(w \) is chosen uniformly at random from \(D_x \),

\[
\mathbb{P}\left[\|y - w\|_y \geq r \max \left(\|x - w\|^2_w, \|x - w\|^2_x \right) \leq r^2 \left(1 - \frac{1}{n} \right) \right] \leq \frac{4r^2 + \text{erfc}(2) + o(1)}{1 - 3\sqrt{2}r}. \]

Proof. It follows from Lemma 13, after substituting 1 for \(\eta \) and 2 for \(\eta_1 \) that

\[
\mathbb{P}\left[\|y - w\|_y \geq r \|x - w\|^2_x \leq r^2 \left(1 - \frac{1}{n} \right) \right] \leq 2r^2 + \frac{\text{erfc}(2)}{2} + o(1). \]

This lemma follows using the upper bound from Lemma 8 for

\[
\mathbb{P}\left[\|x - w\|^2_w \leq r^2 \left(1 - \frac{1}{n} \right) \|x - w\|^2_x \leq r^2 \left(1 - \frac{1}{n} \right) \right].
\]

An application of Theorem 3 completes the proof. \(\square \)
Lemma 10. Suppose $\sigma(x,y) \leq \frac{3}{400\sqrt{mn}}$. Let w be chosen uniformly at random from D_x. Then,

$$P \left[\|y - w\|_w \geq r \left| \max(\|x - w\|_w^2, \|x - w\|_x^2) \leq r^2 \left(1 - \frac{1}{n} \right) \right. \right] \leq \frac{4r^2 + \text{erfc}(3/2) + o(1)}{1 - 3\sqrt{2}r} \quad (47)$$

Proof. Substituting $c = 1$ in Lemma 12, we see that

$$P \left[\|y - w\|_w^2 - \|x - w\|_w^2 \geq \frac{r}{n} \left| \|x - w\|_x^2 \leq r^2 \left(1 - \frac{1}{n} \right) \right. \right] \leq 2r^2 + \frac{\text{erfc}(3/2)}{2} + o(1).$$

This implies that

$$P \left[\|y - w\|_w^2 - \|x - w\|_w^2 \geq \frac{r}{n} \left| \|x - w\|_x^2 \leq r^2 \left(1 - \frac{1}{n} \right) \right. \right] \leq 2r^2 + \frac{\text{erfc}(3/2)}{2} + o(1).$$

This lemma follows using the lower bound from Lemma 8 for

$$P \left[\|x - w\|_w^2 \leq r^2 \left(1 - \frac{1}{n} \right) \left| \|x - w\|_x^2 \leq r^2 \left(1 - \frac{1}{n} \right) \right. \right].$$

\[
\square
\]

The following theorem has the geometric interpretation that the probability distribution obtained by orthogonally projecting a random vector v_n from an n-dimensional ball of radius \sqrt{n} onto a line converges in distribution to the standard mean zero, variance 1, normal distribution $N(0,1)$. It is often mentioned in the context of measure concentration phenomenon, see for example [12].

Theorem 11 (Measure Concentration). Let a be a vector and h be a vector chosen uniformly at random from the n-dimensional unit Euclidean ball. Then, as $n \to \infty$, $\frac{a^T h}{\|a\|\|h\|}$ converges in distribution to a zero-mean Gaussian whose variance is 1, i.e. $N(0,1)$.

Lemma 11. Let v be chosen uniformly at random from D_x and c be a positive constant. Then,

$$P \left[\|x - v\|_v^2 + \|x - v\|_{2x-v}^2 \geq 2r^2 \left(1 - \frac{c - \frac{18r^2}{c}}{n} \right) \right] \leq c + o(1). \quad (48)$$

Proof. Let the i^{th} constraint be $a_i^T x \leq 1$ for all $i \in \{1, \ldots, m\}$. Let $x - v$ be denoted h. In the present frame, for any vector v, $\|v\|_x = \|v\|$.

$$\|x - v\|_v^2 + \|x - v\|_{2x-v}^2 = \sum_i \frac{(a_i^T h)^2}{(1 - a_i^T h)^2} + \sum_i \frac{a_i^T h)^2}{(1 - a_i^T h)^2} \quad (49)$$

In the present coordinate frame $\sum_i a_i a_i^T = I$. Consequently for each i,

$$E[(a_i^T h)^2] = \frac{|a_i|^2 E[\|h\|^2]}{n} \leq \frac{r^2}{n}. \quad (50)$$

15
\[
\sum_i \frac{(a_i^T h)^2}{2(1 - a_i^T h)^2} + \sum_i \frac{(a_i^T h)^2}{2(1 - a_i^T h)^2} = \sum_i (a_i^T h)^2 \left(\frac{1 + (a_i^T h)^2}{(1 - (a_i^T h)^2)^2} \right)
\]
\[
= \sum_i (a_i^T h)^2 + 3(a_i^T h)^4 - (a_i^T h)^6 \frac{1}{(1 - (a_i^T h)^2)^2}
\]
\[
= \|h\|^2 + \sum_i 3(a_i^T h)^4 - (a_i^T h)^6 \frac{1}{(1 - (a_i^T h)^2)^2}.
\]

In the present coordinate frame \(\sum_i a_i a_i^T = I\). Consequently for each \(i\),

\[
E \left[\frac{(a_i^T h)^2}{\|a_i\|^2 \|h\|^2} \right] = \frac{1}{n}.
\]

By Theorem 11, the probability that \(|a_i^T h| \geq n^{-\frac{1}{4}}\) is \(O(e^{-\sqrt{n}/2})\). \(|a_i^T h| \leq \|a_i^T\| r\), which is less than \(\frac{1}{2}\). This allows us to write

\[
E \left[\frac{3(a_i^T h)^4 - (a_i^T h)^6}{(1 - (a_i^T h)^2)^2} \right] = 3E[(a_i^T h)^4](1 + o(1)),
\]

and so

\[
E \left[\sum_i 3(a_i^T h)^4 - (a_i^T h)^6 \right] = \sum_i 3E[(a_i^T h)^4](1 + o(1)).
\]

Next, we shall find an upper bound on \(E[\sum_i (a_i^T h)^4]\). The length of \(h\) and its direction are independent, therefore

\[
E \left[\sum_i (a_i^T h)^4 \right] = \sum_i \|a_i\|^4 E[\|h\|^4] E \left[\frac{(a_i^T h)^4}{\|a_i\|^4 \|h\|^4} \right].
\]

A direct integration by parts tells us that if the distribution of \(X\) is \(N[0, 1]\), then \(E[X^4] = 3\). Therefore,

\[
E \left[\frac{(a_i^T h)^4}{\|a_i\|^4 \|h\|^4} \right] = \frac{3 + o(1)}{n^2}.
\]

\(E[\|h\|^4]\) is equal to \(r^4(1 + o(1))\) and so

\[
E \left[\sum_i (a_i^T h)^4 \right] = \sum_i \left(\frac{3 + o(1)}{n^2} \right) \|a_i\|^4 r^4.
\]

This implies that

\[
E \left[\sum_i \frac{3(a_i^T h)^4}{(1 - (a_i^T h)^2)^2} \right] = \frac{9 + o(1)}{n^2} \sum_i \|a_i\|^4 r^4
\]
\[
\leq \frac{9 + o(1)}{n^2} \sum_i \|a_i\|^2 r^4
\]
\[
= \frac{(9 + o(1)) r^4}{n}.
\]
In (62), we used the fact that $\sum_i a_i a_i^T = I$ and so $\|a_i\|^2 \leq 1$ for each i. Together, Markov’s inequality and (63) yield the following.

$$
\mathbb{P} \left[\sum_i 3(a_i^T h)^4 - (a_i^T h)^6 \geq \frac{c_2 r^4}{n} \right] \leq \mathbb{P} \left[\sum_i \frac{3(a_i^T h)^4}{(1 - (a_i^T h)^2)^2} \geq \frac{c_2 r^4}{n} \right] \leq \frac{9 + o(1)}{c_2}.
$$

(64)

Also,

$$
\mathbb{P}[\|h\|^2 \geq r^2(1 - \frac{c_1}{n})] = \mathbb{P}[\|h\|^2 \geq r^n(1 - \frac{c_1}{n})^{n/2}] \leq 1 - e^{-\frac{c_1}{2}} + o(1).
$$

(66)

We infer from (65) and (67) that

$$
\mathbb{P} \left[\|h\|^2 + \sum_i 3(a_i^T h)^4 - (a_i^T h)^6 \geq r^2(1 - \frac{c_1 - c_2 r^2}{n}) \right] \leq 1 - e^{-\frac{c_1}{2}} + \frac{9}{c_2} + o(1).
$$

(68)

(69)

Setting c_1 to c and c_2 to $\frac{18}{c}$ proves the lemma.

Lemma 12. Let w be a point chosen uniformly at random from D_x. Then, for any positive constant c, independent of n,

$$
\mathbb{P} \left[\|y - w\|^2 - \|x - w\|^2 \geq \frac{\|y - x\|^2}{(1 - r)^2} + \frac{(3 + 2\sqrt{6})r \|y - x\|_x}{\sqrt{n}} \|x - w\|^2 \geq r^2(1 - \frac{c}{n}) \right] \leq 2r^2 + \frac{\text{erfc}(3/2)}{2} + o(1).
$$

Proof. $\|y\|^2$ can be bounded above in terms of $\|y\|_w$ as follows.

$$
\|y\|^2 \leq y^T \left(\sum_i \frac{a_i a_i^T}{(1 - a_i^T w)^2} \right) y \leq \left(\sup_i \frac{1}{(1 - a_i^T w)^2} \right) \sum_i y^T a_i a_i^T y.
$$

(70)

(71)

For each i, $\|a_i\| \leq 1$, therefore

$$
\left(\sup_i \frac{1}{(1 - a_i^T w)^2} \right) \sum_i y^T a_i a_i^T y \leq \frac{\|y\|_w^2}{(1 - r)^2}.
$$

(72)

Let $E_{w,c}$ be the event that $\|w\|^2_0 \leq 1 - \frac{c}{n}$.

By Theorem 11,

$$
\mathbb{P} \left[-2 \langle y, w \rangle \geq \frac{2r \eta \|y\|_w}{\sqrt{n}} \bigg| E_{w,c} \right] \leq \frac{1 - \text{erf}(\eta)}{2} + o(1).
$$

(73)
\[(\langle y, w \rangle_o - \langle y, w \rangle_w)^2 \] can be bounded above using the Cauchy-Schwarz inequality as follows.

\[
(\langle y, w \rangle_o - \langle y, w \rangle_w)^2 = \left(w^T \left(1 - \sum_i \frac{a_i a_i^T}{(1 - a_i^T w)^2} \right) y \right)^2 \\
= \left(\sum_i \frac{w^T a_i((1 - a_i^T w)^2 - 1)a_i^T y}{(1 - a_i^T w)^2} \right)^2 \\
\leq \left(\sum_i \frac{(w^T a_i((1 - a_i^T w)^2 - 1))^2}{(1 - a_i^T w)^4} \right) \left(\sum_i (a_i^T y)^2 \right).
\]

Let \(\alpha \) be a standard one-dimensional Gaussian random variable whose variance is 1 and mean is 0 (i.e. having distribution \(N[0, 1] \)). Since \(r < \frac{1}{2} \) and each \(\|a_i\| = \|a_i\|_o \) is less or equal to 1, it follows from Theorem 11 that conditional on \(E_{w,c} \),

\[
\frac{(nw^T a_i((1 - a_i^T w)^2 - 1))^2}{4r^2\|a_i\|^2(1 - a_i^T w)^4}
\]

converges in distribution to the distribution of \(\alpha^4 \), whose expectation can be shown using integration by parts to be 3. So,

\[
\mathbb{E} \left[\sum_i \frac{(w^T a_i((1 - a_i^T w)^2 - 1))^2}{(1 - a_i^T w)^4} \bigg| E_{w,c} \right] \leq \sum_i \left(\frac{4}{n^2} \right) \|a_i\|^4_o \alpha^4(3 + o(1)) \\
\leq \left(\frac{12 + o(1)}{n^2} \right) r^4 \sum_i \|a_i\|^2_o \\
= \frac{(12 + o(1))r^4}{n}.
\]

Thus by Markov’s inequality,

\[
P \left[\sum_i \frac{(w^T a_i((1 - a_i^T w)^2 - 1))^2}{(1 - a_i^T w)^4} \geq \frac{12\eta_2 r^4}{n} \bigg| E_{w,c} \right] \leq \frac{1 + o(1)}{\eta_2}.
\] \hspace{1cm} (74)

\(\sum_i (a_i^T y)^2 \) is equal to \(\|y\|^2_o \). Therefore (74) implies that

\[
P \left[(\langle y, w \rangle_o - \langle y, w \rangle_w)^2 \geq \frac{12\eta_2 r^4}{n} \frac{\|y\|^2_o}{n} \right] \leq \frac{1 + o(1)}{\eta_2}.
\] \hspace{1cm} (75)

Putting (73) and (75) together, we see that

\[
P \left[-2\langle y, w \rangle_w \geq \frac{2\eta_1 \|y\|_o}{\sqrt{n}} + 2\sqrt{\frac{12\eta_2 r^4}{n}} \|y\|_o^2 \bigg| E_{w,c} \right] \leq \frac{1 - \text{erf}(\eta_1)}{2} + \frac{1 + o(1)}{\eta_2}
\] \hspace{1cm} (76)

Conditional on \(E_{w,c} \), \(\|w\|^2_w \) is less or equal to \(r(1 - \frac{\epsilon}{\eta_2}) \).

Therefore, using \(\text{erfc}(x) \) to denote \(1 - \text{erf}(x) \),

\[
P \left[\|y - w\|^2_w - \|w\|^2_w \geq \frac{\|y\|^2_o}{(1 - r)^2} + \frac{2\eta_1 r \|y\|_o}{\sqrt{n}} \left(\eta_1 + r\sqrt{12\eta_2} \right) \bigg| E_{w,c} \right] \leq \eta_1^{-1} + \frac{\text{erfc}(\eta_1)}{2} + o(1).
\]

18
Setting \(\eta_1 = 3/2 \) and \(\eta_2 = \frac{1}{2r^2} \), gives

\[
P \left[\frac{\|y - w\|_2^2}{\sqrt{n}} \geq \left(\frac{3 + 2\sqrt{6}}{\sqrt{n}} \right) r \|y\|_o \right| E_{w,c} \right] \leq 2r^2 + \frac{\text{erfc}(3/2)}{2} + o(1). \tag{77}
\]

Lemma 13. Let \(c \) be a positive constant and \(E_{w,c} \) be the event that \(\|x - w\|_x^2 \leq 1 - \frac{c}{n} \). Then, if \(w \) is a point chosen uniformly at random from \(D_x \), for any positive constants \(\eta \) and \(\eta_1 \),

\[
P \left[\frac{\|y - w\|_y^2}{\sqrt{n}} - \frac{\|x - w\|_x^2}{\sqrt{n}} \geq \left(\frac{\sqrt{3}r + \|y - x\|_x}{\sqrt{n}} \right) \left(\|y - x\|_x \right) \right| E_{w,c} \right] \leq \frac{2r^2}{\eta^2} + \frac{\text{erfc}(\eta_1)}{2} + o(1).
\]

Proof.

\[
\|y - w\|_y^2 = \|y\|_o^2 + \|w\|_o^2 - 2\langle w, y \rangle_y \tag{78}
\]

\[
\leq \|y\|_o^2 + \|w\|_o^2 \tag{79}
\]

\[
+ \sqrt{\left(\|w\|_o^2 - \|w\|_o^2 \right)^2 - 2\langle w, y \rangle_o + 2\|\langle w, y \rangle_o - \langle w, y \rangle_y \|^2}. \tag{80}
\]

We shall obtain probabilistic upper bounds on each term in (80).

\[
\left(\|w\|_y^2 - \|w\|_o^2 \right)^2 = \left(\left(\sum_i (w^T a_i \left(1 - \frac{(1 - a_i^T y)^2}{1 - a_i^T y} \right) \right) \right)^2 \tag{81}
\]

\[
\leq \left(\sum_i (w^T a_i)^4 \right) \left(\sum_i \left(\frac{1 - (1 - a_i^T y)^2}{1 - a_i^T y} \right)^2 \right) \tag{82}
\]

\[
= \left(\sum_i (w^T a_i)^4 \right) \left(\sum_i 4 (a_i^T y)^2 (1 + o(1)) \right) \tag{83}
\]

\[
= (4 + o(1)) \|y\|_o^2 \sum_i (w^T a_i)^4. \tag{84}
\]

In inferring (83) from (82) we have used the fact that \(\|y\|_o \) is \(O(\frac{1}{\sqrt{n}}) \) which is \(o(1) \). As was stated in (59) in slightly different terms,

\[
E \left[(w^T a_i)^4 \right] = \|a_i\|^4 r^4 (3 + o(1)) \frac{1}{n^2}.
\]

Therefore by Markov’s inequality, for any constant \(c \),

\[
E \left[\sum_i (w^T a_i)^4 \right] \|w\|_o^2 \leq r^2 \left(1 - \frac{c}{n} \right) = \sum_i \|a_i\|^4 r^4 (3 + o(1)) \frac{1}{n^2}
\]

\[
\leq \frac{r^4 (3 + o(1)) \sum_i \|a_i\|^2}{n} = \frac{r^4 (3 + o(1))}{n}.
\]
Therefore,
\[
\mathbb{P}\left[\left(\|w\|^2_y - \|w\|^2_o \right)^2 \geq \eta^2 \frac{12 \|y\|^2 r^4}{n} \right] \leq \frac{1 + o(1)}{\eta^2}. \tag{85}
\]

By Theorem 11, as \(n \to \infty \), the distribution of \(\frac{\sqrt{n} \langle w, y \rangle_o}{\|y\|_o} \) converges in distribution to \(N[0,1] \). Therefore
\[
\mathbb{P}\left[(-2\langle w, y \rangle_o) \geq \frac{2\eta r\|y\|_o}{\sqrt{n}} \left| \|w\|_o^2 \leq r^2 \left(1 - \frac{c}{n} \right) \right| \leq \frac{\text{erf}(\eta_1)}{2} + o(1). \tag{86}
\]

Finally, we need similar tail bounds for \((\langle w, y \rangle_o - \langle w, y \rangle_y)^2 \). Note that
\[
(\langle w, y \rangle_o - \langle w, y \rangle_y)^2 = \left(w^T \left(\sum_i a_i a_i^T \left(\frac{1 - (1 - a_i^T y)^2}{(1 - a_i^T y)^2} \right) \right) y \right)^2 \tag{87}
\]
\[
\leq \left(\sum_i (w^T a_i a_i^T y)^2 \right) \left(\sum_i \left(\frac{1 - (1 - a_i^T y)^2}{(1 - a_i^T y)^2} \right)^2 \right) \tag{88}
\]
\[
= \left(\sum_i (w^T a_i a_i^T y)^2 \right) \left(\sum_i (4 + o(1))(a_i^T y)^2 \right) \tag{89}
\]
\[
= (4 + o(1)) \left(\sum_i (w^T a_i a_i^T y)^2 \right) \|y\|^2_o. \tag{90}
\]

It suffices now to obtain a tail bound on \(\sum_i (w^T a_i a_i^T y)^2 \). By Theorem 11,
\[
\mathbb{E}\left[\sum_i (w^T a_i a_i^T y)^2 \|w\|_o^2 \leq r^2 \left(1 - \frac{c}{n} \right) \right] \leq \left(\sum_i \|a_i a_i^T y\|^2 \right) \frac{r^2(1 + o(1))}{n} \leq \left(\sum_i (a_i^T y)^2 \right) \frac{r^2(1 + o(1))}{n} \leq \frac{\|y\|_o^2 r^2 (1 + o(1))}{n}. \tag{91}
\]

Therefore,
\[
\mathbb{P}\left[(\langle w, y \rangle_o - \langle w, y \rangle_y)^2 \leq \frac{4\eta^2\|y\|^4 r^2}{n} \right] \leq \frac{1 + o(1)}{\eta^2}. \tag{91}
\]

Putting together (85), (86) and (91), we see that
\[
\mathbb{P}\left[\|y - w\|^2_y - \|w\|^2_o \geq \|y\|^2_y + \frac{2\eta\|y\|_o}{\sqrt{n}} \left(\sqrt{3} r + \frac{\eta_1}{\eta} + \|y\|_o \right) \left| E_{w,c} \right| \right] \leq \frac{2r^2}{\eta^2} + \frac{\text{erf}(\eta_1)}{2} + o(1).
\]

\[\square\]

B Bounds on the gradient of \(\ln \text{vol}(D_x) \)

Let the \(x \in \text{int}(P) \) and after a suitable affine transformation, let \(x \) be the origin and \(\| \cdot \| \) coincide with \(\| \cdot \|_x \). We shall obtain an upper bound of \(2\sqrt{n} \) on \(\nabla \ln \left(\frac{1}{\text{vol}(D_x)} \right) \bigg|_{z = o} = \| \nabla \ln H \|_o \).
Lemma 14. \(\| \nabla \ln \det H \|_x \leq 2\sqrt{n} \).

Proof. We shall normalize the \(b_i \) so that they are all equal to 1.

In this frame,
\[\sum a_i a_i^T = I, \] (92)
where \(I \) is the \(n \times n \) identity matrix, and for any vector \(v \),
\[\| v \|_o = \| v \|. \] (93)

If \(X \) is a matrix whose \(\ell_2 \rightarrow \ell_2 \) norm is less than 1, \(\log(I + X) \) can be assigned a unique value by equating it with the power series
\[\sum_{i=1}^{\infty} (-1)^{i-1} X^i / i. \]

Using this formalism when \(y \) is in a small neighborhood of the identity.

\[\ln \det H(y) = \text{trace } \ln H(y). \] (94)

In order to obtain an upper bound on \(\| \nabla \ln \det H \| \) at \(o \), it suffices to uniformly bound \(| \partial \ln \det H / \partial h | \) along all unit vectors \(h \), since
\[\| \nabla \ln \det H \| = \sup_{\| h \|=1} | \partial \text{trace } \ln H / \partial h |. \] (95)

\[\left[\partial \text{trace } \ln H / \partial h \right]_o \approx \lim_{\delta \to 0} \frac{1}{\delta} \left(\text{trace } \ln \left(\sum a_i a_i^T / (1 - \delta a_i^T h)^2 \right) - \ln I \right) \] (96)
\[= \sum 2(a_i^T h)(\text{trace } a_i a_i^T) \] (97)
\[= 2 \sum \| a_i \|^2 a_i^T h. \] (98)

The Semidefinite Cauchy-Schwarz inequality from Lemma 2 gives us the following.
\[(\sum \| a_i \|^2 a_i)(\sum \| a_i \|^2 a_i^T) \ll (\sum \| a_i \|^4)(\sum a_i a_i^T) \] (99)

\[\sum a_i a_i^T = I, \] so the magnitude of each vector \(a_i \) must be less or equal to 1, and \(\sum \| a_i \|^2 \) must equal \(n \).

Therefore
\[(\sum \| a_i \|^4)(\sum a_i a_i^T) = (\sum \| a_i \|^4)I \] (100)
\[\ll (\sum \| a_i \|^2)I \] (101)
\[= nI \] (102)

(99) and (102) imply that
\[(\sum \| a_i \|^2 a_i)(\sum \| a_i \|^2 a_i^T) \ll nI. \] (103)

(95), (98) and (103) together imply that
\[\| \nabla \ln \det H \| \leq 2\sqrt{n}. \] (104)
Without much additional effort, it is possible to prove the following lemma, which will be useful elsewhere.

Lemma 15. \(\ln \det H \) is a convex function.

Proof. Let \(\frac{\partial}{\partial h} \) represent partial differentiation along a unit vector. Recall that \(\sum_i a_i a_i^T = I \).

\[
\frac{\partial^2 \ln \det H}{(\partial h)^2} \bigg|_o = \lim_{\delta \to 0} \frac{1}{\delta^2} \left[\text{trace} \ln \left(\left(\sum_i a_i a_i^T \right) \left(\sum_i a_i a_i^T \right) - 2 \ln I \right) \right] \quad (105)
\]

\[
= \lim_{\delta \to 0} \frac{\text{trace} \left(\ln \left(\sum_i a_i a_i^T \left(\sum_{j \geq 0} (j + 1) (\delta a_i^T h)^j \right) \right) \right)}{\delta^2} \quad (106)
\]

\[
+ \frac{\text{trace} \left(\ln \left(\sum_i a_i a_i^T \left(\sum_{j \geq 0} (-\delta a_i^T h)^j \right) \right) \right)}{\delta^2} \quad (107)
\]

\[
= \lim_{\delta \to 0} \frac{\text{trace} \left(\sum_{k \geq 1} \left(-1 \right)^{k-1} \left(\sum_i a_i a_i^T \left(\sum_{j \geq 1} (j + 1) (\delta a_i^T h)^j \right) \right)^k \right)}{\delta^2} \quad (108)
\]

\[
+ \frac{\text{trace} \left(\sum_{k \geq 1} \left(-1 \right)^{k-1} \left(\sum_i a_i a_i^T \left(\sum_{j \geq 1} (j + 1) (-\delta a_i^T h)^j \right) \right)^k \right)}{\delta^2} \quad (109)
\]

The only terms in the numerators of (108) and (109) that matter are those involving \(\delta^2 \). So this simplifies to

\[
2 \sum_i \text{trace} a_i a_i^T (a_i^T h)^2 = 2 \sum_i \|a_i\|^2 (a_i^T h)^2 \\
\geq 2 \sum_i (a_i^T h)^4 \\
\geq 2 \frac{\left(\sum_i (a_i^T h)^2 \right)^2}{m} \\
= \frac{2}{m}
\]

This proves the lemma. \(\Box \)

Acknowledgements

We would like to thank Michael Todd for providing useful references. We are grateful to Emanuel Milman for a careful reading and numerous comments that helped to improve the presentation of this paper.

References

[2] “Projective re-normalization for improving the behavior of a homogeneous conic linear system,” *Mathematical Programming, Volume 118, Number 2*

[22] P. Vaidya, “An algorithm for linear programming which requires \(O((m+n)n^2 + (m+n)^{1.5}n) L \) arithmetic operations,” Mathematical Programming, 47 (1990) 175-201.