Recitation 6: Kernel PCA, Ridge Regression

1 PCA

Recall in principal components analysis, we are interested in the following maximization problem. Given data: $x_1, ..., x_m \in \mathbb{R}^d$ that has been centered (each index of the data vectors has mean 0), the first principal component is the unit vector w whose projection onto the data is maximized:

$$\boldsymbol{w_1} = \argmax_{||\boldsymbol{w}||=1} \frac{1}{m} \sum_{i}^{m} (\boldsymbol{x}_i^{\top} \boldsymbol{w})^2$$

As we've seen in lecture, this is an eigenvalue problem in disguise. Let $X = \begin{bmatrix} | & | & | & | \\ x_1 & x_2 & \dots & x_m \\ | & | & | & | \end{bmatrix}$ and rewrite the maximization problem in the form of an inner product of this data matrix.

$$w_1 = \underset{||\boldsymbol{w}||=1}{\operatorname{arg max}} \frac{1}{m} ||\boldsymbol{X}^\top \boldsymbol{w}||^2$$

$$= \underset{||\boldsymbol{w}||=1}{\operatorname{arg max}} \frac{1}{m} \langle \boldsymbol{X}^\top \boldsymbol{w}, \boldsymbol{X}^\top \boldsymbol{w} \rangle$$

$$= \underset{||\boldsymbol{w}||=1}{\operatorname{arg max}} \frac{1}{m} \boldsymbol{w}^\top \boldsymbol{X}^\top \boldsymbol{X}^\top \boldsymbol{w}$$

This is exactly the Rayleigh Quotient that we saw in homework 1. So the w that maximizes $wXX^{\top}w$ is the eigenvector with largest eigenvalue of XX^{\top} .

1.1 Kernel PCA

Now instead suppose our data comes from some set \mathcal{X} . We have some positive semidefinite kernel on this set $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, with the corresponding induced feature mapping $\phi: \mathcal{X} \to \mathbb{R}^d$. We're interested in the same sort of maximization above but in the feature space given by ϕ .

Let
$$m{x_1},...,m{x_m} \in \mathcal{X}$$
 and $m{\Phi} = \begin{bmatrix} | & | & | & | \\ \phi(m{x_1}) & \phi(m{x_2}) & \dots & \phi(m{x_m}) \\ | & | & | \end{bmatrix}$.
$$m{v_1} = \underset{||m{v}||=1}{\operatorname{arg max}} \sum_{i=1}^m \langle \phi(m{x_i}), m{v} \rangle^2$$

$$= \underset{||m{v}||=1}{\operatorname{arg max}} ||m{\Phi}^\top m{v}||^2$$

$$= \underset{||m{v}||=1}{\operatorname{arg max}} m{v}^\top m{\Phi} m{\Phi}^\top m{v}$$

So v_1 is the top eigenvector of $\Phi\Phi^{\top}$. We can say a bit more about the top principal component vector v_1 if we consider the form it must take with respect to the feature mappings of the input data.

Lemma 1 The v_1 that maximizes this sum of square projections onto the $\phi(x_i)$'s will be a linear combination of the $\phi(x_i)$'s:

$$v_1 = \sum_{i=1}^m \alpha_i \phi(x_i)$$

for some set of $\alpha_i \in \mathbb{R}$. This can be equivalently written as: $\mathbf{v_1} = \mathbf{\Phi} \alpha$, for $\alpha \in \mathbb{R}^m$.

Proof: Suppose v is an eigenvector of $\Phi\Phi^{\top} = \sum_{i=1}^{m} \phi(x_i)\phi(x_i)^{\top}$:

$$egin{array}{lcl} oldsymbol{\Phi} oldsymbol{\Phi}^ op oldsymbol{v} &=& \sum_{i=1}^n \phi(oldsymbol{x_i}) \phi(oldsymbol{x_i})^ op oldsymbol{v} \ \lambda oldsymbol{v} &=& \sum_{i=1}^n \phi(oldsymbol{x_i}) \underbrace{\phi(oldsymbol{x_i})^ op oldsymbol{v}}_{\in \mathbb{R}} \ oldsymbol{v} &=& rac{1}{\lambda} \sum_{i=1}^n (\phi(oldsymbol{x_i})^ op oldsymbol{v}) \phi(oldsymbol{x_i}) \end{array}$$

Let $\alpha_i = \frac{\phi(\mathbf{x}_i)^{\top} \mathbf{v}}{\lambda}$ and we have our desired result.

Now let's use this explicit form $v_1 = \Phi \alpha$ in our computations and see what pops out:

$$\Phi \Phi^{\top} v_1 = \Phi \Phi^{\top} \Phi \alpha$$
$$\lambda v_1 = \Phi K \alpha$$

where $\mathbf{K} = \mathbf{\Phi}^{\top} \mathbf{\Phi} \in \mathbb{R}^{m \times m}$ is the Gram matrix of our input data: $\mathbf{K}_{i,j} = \phi(\mathbf{x}_i)^{\top} \phi(\mathbf{x}_j) = k(\mathbf{x}_i, \mathbf{x}_j)$.

Hit both sides by Φ^{\top} :

$$\Phi^{\top} \lambda v_1 = \Phi^{\top} \Phi K \alpha$$
$$\lambda \Phi^{\top} \Phi \alpha = \Phi^{\top} \Phi K \alpha$$
$$\lambda K \alpha = K K \alpha$$

Eliminating one K term from both sides gives us: $K\alpha = \lambda \alpha$, which tells us that the coefficient vector α of v_1 , is in fact the top eigenvector of K. Note that K might not be full rank, but this will only be an issue for the zero-eigenvalued eigenvectors, which will not be a top principal component in the first place.

An equivalent way of getting to this result is by directly plugging in $v_1 = \Phi \alpha$ into our maximization problem:

$$egin{array}{lll} \max_{||v||=1} oldsymbol{v_1}^ op oldsymbol{\Phi}^ op oldsymbol{v_1} &=& \max_{||v||=1} oldsymbol{lpha}^ op oldsymbol{\Phi}^ op oldsymbol{\Phi} oldsymbol{\Phi}^ op oldsymbol{\Phi} oldsymbol$$

Thus, α must be the top eigenvector of K^2 . The eigenvectors of K^2 are the same as the eigenvectors for K. So computing the principal component of our data just boils down to finding the top eigenvector of the Gram matrix K.

2 Kernel Ridge Regression

Using the same notation as in the previous section, suppose we have some base set \mathcal{X} , a positive semidefinite kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, and the corresponding Reproducing Kernel Hilbert Space \mathcal{H}_k induced by by our kernel k. Given $x_1, ... x_m \in \mathcal{X}$, with corresponding target values $y_1, ..., y_m \in \mathbb{R}$, we have the Gram matrix K, with entries: $K_{i,j} = k(x_i, x_j)$. We'd like to learn some function $f \in \mathcal{H}_k$ that fits our data subject to an additional regularization term:

$$\hat{f} = \underset{f \in \mathcal{H}_k}{\operatorname{arg \, min}} \left[\underbrace{\sum_{i=1}^{m} (f(\boldsymbol{x_i}) - y_i)^2 + \lambda ||f||_{\mathcal{H}_k}}_{\mathcal{R}[f]} \right]$$

The Representer theorem tells us that \hat{f} must be of the form:

$$\hat{f}(\cdot) = \sum_{j=1}^{m} \alpha_j k(\cdot, \boldsymbol{x_j})$$

Plug this form of \hat{f} into the minimization expression $\mathcal{R}[f]$. First let's consider the datafitting term of $\mathcal{R}[f]$:

$$\sum_{i=1}^{m} (\hat{f}(\mathbf{x}_i) - y_i)^2 = \sum_{i=1}^{m} (\sum_{j=1}^{m} \alpha_j k(\mathbf{x}_i, \mathbf{x}_j) - y_i)^2$$
(1)

$$= ||K\alpha - y||^2 \tag{2}$$

where $\boldsymbol{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$, $\boldsymbol{\alpha} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_m \end{bmatrix}$. The inner sum: $\sum_{j=1}^m \alpha_j k(\boldsymbol{x_i}, \boldsymbol{x_j})$ is the same as taking the dot product of the ith row vector of \boldsymbol{K} with $\boldsymbol{\alpha}$.

Now expanding the regularization term:

$$\lambda ||f||_{\mathcal{H}_k} = \lambda \langle \sum_{i=1}^m \alpha_i k(\cdot, \boldsymbol{x_i}), \sum_{j=1}^m \alpha_j k(\cdot, \boldsymbol{x_j}) \rangle$$
 (3)

$$= \lambda \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j k(\boldsymbol{x_i}, \boldsymbol{x_j})$$
 (4)

$$= \lambda \boldsymbol{\alpha}^{\top} \boldsymbol{K} \boldsymbol{\alpha} \tag{5}$$

where we use the definition of the inner product of \mathcal{H}_k : $\langle k(\cdot,x), k(\cdot,y) \rangle = k(x,y)$ and the linearity of the inner product to go from eq(3) to eq(4). Plugging eq(2) and eq(5) back into $\mathcal{R}[f]$:

$$\mathcal{R}[f] = ||K\alpha - y||^2 + \lambda \alpha^\top K \alpha$$
$$= \alpha^\top K^\top K \alpha - 2\alpha^\top K^\top y + y^\top y + \lambda \alpha^\top K \alpha$$

Taking the gradient of $\mathcal{R}[f]$ with respect to α and setting it to 0:

$$\nabla_{\boldsymbol{\alpha}} \mathcal{R}[f] = 2\boldsymbol{K}^{\top} \boldsymbol{K} \boldsymbol{\alpha} - 2\boldsymbol{K}^{\top} \boldsymbol{y} + 2\lambda \boldsymbol{K} \boldsymbol{\alpha}$$

$$\boldsymbol{0} = 2\boldsymbol{K}^{\top} \boldsymbol{K} \boldsymbol{\alpha} - 2\boldsymbol{K}^{\top} \boldsymbol{y} + 2\lambda \boldsymbol{K} \boldsymbol{\alpha}$$

$$\boldsymbol{K}^{2} \boldsymbol{\alpha} + \lambda \boldsymbol{K} \boldsymbol{\alpha} = \boldsymbol{K} \boldsymbol{y}$$

$$(\boldsymbol{K}^{2} + \lambda \boldsymbol{K}) \boldsymbol{\alpha} = \boldsymbol{K} \boldsymbol{y}$$

$$\boldsymbol{\alpha} = (\boldsymbol{K}^{2} + \lambda \boldsymbol{K})^{-1} \boldsymbol{K} \boldsymbol{y}$$

$$= (\boldsymbol{K} (\boldsymbol{K} + \lambda \boldsymbol{I}))^{-1} \boldsymbol{K} \boldsymbol{y}$$

$$= (\boldsymbol{K} + \lambda \boldsymbol{I})^{-1} \boldsymbol{K}^{-1} \boldsymbol{K} \boldsymbol{y}$$

$$= (\boldsymbol{K} + \lambda \boldsymbol{I})^{-1} \boldsymbol{y}$$

 \pmb{K} is symmetric so we can replace \pmb{K}^{\top} with \pmb{K} in the equations above. Evaluating \hat{f} on some new point $\pmb{z} \in \mathcal{X}$ then boils down to computing the inner product between $\pmb{\alpha} = (\pmb{K} + \lambda \pmb{I})^{-1} \pmb{y}$ with the vector of kernel

evaluations:
$$\pmb{k_z} = \begin{bmatrix} k(\pmb{z}, \pmb{x_1}) \\ \vdots \\ k(\pmb{z}, \pmb{x_m}) \end{bmatrix}$$

$$\hat{f}(\pmb{z}) = \sum_{i=1}^m \alpha_i k(\pmb{z}, \pmb{x_i}) = \pmb{\alpha}^\top \pmb{k_z}$$

Something to think about: how does the penalty term $\lambda ||f||_{\mathcal{H}_k}$ affect the regularized risk minimization problem? How does our solution, \hat{f} , change as we increase or decrease the parameter λ ?