Recitation 6: Kernel PCA, Ridge Regression

1 PCA

Recall in principal components analysis, we are interested in the following maximization problem. Given data: $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m} \in \mathbb{R}^{d}$ that has been centered (each index of the data vectors has mean 0), the first principal component is the unit vector \boldsymbol{w} whose projection onto the data is maximized:

$$
\boldsymbol{w}_{\mathbf{1}}=\underset{\|\boldsymbol{w}\|=1}{\arg \max } \frac{1}{m} \sum_{i}^{m}\left(\boldsymbol{x}_{\boldsymbol{i}}^{\top} \boldsymbol{w}\right)^{2}
$$

As we've seen in lecture, this is an eigenvalue problem in disguise. Let $\boldsymbol{X}=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ x_{1} & x_{2} & \ldots & x_{m} \\ \mid & \mid & & \mid\end{array}\right]$ and rewrite the maximization problem in the form of an inner product of this data matrix.

$$
\begin{aligned}
\boldsymbol{w}_{\boldsymbol{1}} & =\underset{\|\boldsymbol{w}\|=1}{\arg \max } \frac{1}{m}\left\|\boldsymbol{X}^{\top} w\right\|^{2} \\
& =\underset{\|\boldsymbol{w}\|=1}{\arg \max } \frac{1}{m}\left\langle\boldsymbol{X}^{\top} \boldsymbol{w}, \boldsymbol{X}^{\top} \boldsymbol{w}\right\rangle \\
& =\underset{\|\boldsymbol{w}\|=1}{\arg \max } \frac{1}{m} \boldsymbol{w}^{\top} \boldsymbol{X}^{\top} \boldsymbol{X}^{\top} \boldsymbol{w}
\end{aligned}
$$

This is exactly the Rayleigh Quotient that we saw in homework 1. So the \boldsymbol{w} that maximizes $\boldsymbol{w} \boldsymbol{X} \boldsymbol{X}^{\top} \boldsymbol{w}$ is the eigenvector with largest eigenvalue of $\boldsymbol{X} \boldsymbol{X}^{\top}$.

1.1 Kernel PCA

Now instead suppose our data comes from some set \mathcal{X}. We have some positive semidefinite kernel on this set $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, with the corresponding induced feature mapping $\phi: \mathcal{X} \rightarrow \mathbb{R}^{d}$. We're interested in the same sort of maximization above but in the feature space given by ϕ.
Let $\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{m}} \in \mathcal{X}$ and $\boldsymbol{\Phi}=\left[\begin{array}{cccc}\mid & \mid & & \mid \\ \phi\left(\boldsymbol{x}_{1}\right) & \phi\left(\boldsymbol{x}_{\mathbf{2}}\right) & \ldots & \phi\left(\boldsymbol{x}_{\boldsymbol{m}}\right) \\ \mid & \mid & & \mid\end{array}\right]$.

$$
\begin{aligned}
\boldsymbol{v}_{\mathbf{1}} & =\underset{\|\boldsymbol{v}\|=1}{\arg \max } \sum_{i=1}^{m}\left\langle\phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right), \boldsymbol{v}\right\rangle^{2} \\
& =\underset{\|\boldsymbol{v}\|=1}{\arg \max }\left\|\boldsymbol{\Phi}^{\top} \boldsymbol{v}\right\|^{2} \\
& =\underset{\|\boldsymbol{v}\|=1}{\arg \max } \boldsymbol{v}^{\top} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\top} \boldsymbol{v}
\end{aligned}
$$

So $\boldsymbol{v}_{\mathbf{1}}$ is the top eigenvector of $\boldsymbol{\Phi} \boldsymbol{\Phi}^{\top}$. We can say a bit more about the top principal component vector $\boldsymbol{v}_{\mathbf{1}}$ if we consider the form it must take with respect to the feature mappings of the input data.

Lemma 1 The $\boldsymbol{v}_{\mathbf{1}}$ that maximizes this sum of square projections onto the $\phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$'s will be a linear combination of the $\phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right)$'s:

$$
\boldsymbol{v}_{\mathbf{1}}=\sum_{i=1}^{m} \alpha_{i} \phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right)
$$

for some set of $\alpha_{i} \in \mathbb{R}$. This can be equivalently written as: $\boldsymbol{v}_{\mathbf{1}}=\boldsymbol{\Phi} \boldsymbol{\alpha}$, for $\boldsymbol{\alpha} \in \mathbb{R}^{m}$.
Proof: Suppose \boldsymbol{v} is an eigenvector of $\boldsymbol{\Phi} \boldsymbol{\Phi}^{\top}=\sum_{i=1}^{m} \phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right) \phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right)^{\top}$:

$$
\begin{aligned}
\boldsymbol{\Phi} \boldsymbol{\Phi}^{\top} \boldsymbol{v} & =\sum_{i=1}^{n} \phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right) \phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right)^{\top} \boldsymbol{v} \\
\lambda \boldsymbol{v} & =\sum_{i=1}^{n} \phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right) \underbrace{\phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right)^{\top} \boldsymbol{v}}_{\in \mathbb{R}} \\
\boldsymbol{v} & =\frac{1}{\lambda} \sum_{i=1}^{n}\left(\phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right)^{\top} \boldsymbol{v}\right) \phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right)
\end{aligned}
$$

Let $\alpha_{i}=\frac{\phi\left(\boldsymbol{x}_{i}\right)^{\top} \boldsymbol{v}}{\lambda}$ and we have our desired result.
Now let's use this explicit form $\boldsymbol{v}_{\mathbf{1}}=\boldsymbol{\Phi} \boldsymbol{\alpha}$ in our computations and see what pops out:

$$
\begin{aligned}
\boldsymbol{\Phi} \boldsymbol{\Phi}^{\top} \boldsymbol{v}_{1} & =\boldsymbol{\Phi} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} \boldsymbol{\alpha} \\
\lambda \boldsymbol{v}_{\mathbf{1}} & =\boldsymbol{\Phi} \boldsymbol{K} \boldsymbol{\alpha}
\end{aligned}
$$

where $\boldsymbol{K}=\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} \in \mathbb{R}^{m \times m}$ is the Gram matrix of our input data: $\boldsymbol{K}_{i, j}=\phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right)^{\top} \phi\left(\boldsymbol{x}_{\boldsymbol{j}}\right)=k\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right)$.
Hit both sides by $\boldsymbol{\Phi}^{\top}$:

$$
\begin{aligned}
\boldsymbol{\Phi}^{\top} \lambda \boldsymbol{v}_{\mathbf{1}} & =\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} \boldsymbol{K} \boldsymbol{\alpha} \\
\lambda \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} \boldsymbol{\alpha} & =\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} \boldsymbol{K} \boldsymbol{\alpha} \\
\lambda \boldsymbol{K} \boldsymbol{\alpha} & =\boldsymbol{K} \boldsymbol{\alpha}
\end{aligned}
$$

Eliminating one \boldsymbol{K} term from both sides gives us: $\boldsymbol{K} \boldsymbol{\alpha}=\lambda \boldsymbol{\alpha}$, which tells us that the coefficient vector $\boldsymbol{\alpha}$ of $\boldsymbol{v}_{\mathbf{1}}$, is in fact the top eigenvector of \boldsymbol{K}. Note that \boldsymbol{K} might not be full rank, but this will only be an issue for the zero-eigenvalued eigenvectors, which will not be a top principal component in the first place.

An equivalent way of getting to this result is by directly plugging in $\boldsymbol{v}_{\boldsymbol{1}}=\boldsymbol{\Phi} \boldsymbol{\alpha}$ into our maximization problem:

$$
\begin{aligned}
\max _{\|v\|=1} \boldsymbol{v}_{\mathbf{1}}^{\top} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\top} \boldsymbol{v}_{\mathbf{1}} & =\max _{\|v\|=1} \boldsymbol{\alpha}^{\top} \boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\top} \mathbf{\Phi} \boldsymbol{\alpha} \\
& =\max _{\|v\|=1} \boldsymbol{\alpha}^{\top} \boldsymbol{K} \boldsymbol{K} \boldsymbol{\alpha}
\end{aligned}
$$

Thus, $\boldsymbol{\alpha}$ must be the top eigenvector of \boldsymbol{K}^{2}. The eigenvectors of \boldsymbol{K}^{2} are the same as the eigenvectors for \boldsymbol{K}. So computing the principal component of our data just boils down to finding the top eigenvector of the Gram matrix \boldsymbol{K}.

2 Kernel Ridge Regression

Using the same notation as in the previous section, suppose we have some base set \mathcal{X}, a positive semidefinite kernel $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, and the corresponding Reproducing Kernel Hilbert Space \mathcal{H}_{k} induced by by our kernel k. Given $\boldsymbol{x}_{\mathbf{1}}, \ldots \boldsymbol{x}_{\boldsymbol{m}} \in \mathcal{X}$, with corresponding target values $y_{1}, \ldots, y_{m} \in \mathbb{R}$, we have the Gram matrix \boldsymbol{K}, with entries: $\boldsymbol{K}_{i, j}=k\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right)$. We'd like to learn some function $f \in \mathcal{H}_{k}$ that fits our data subject to an additional regularization term:

$$
\hat{f}=\underset{f \in \mathcal{H}_{k}}{\arg \min }[\underbrace{\sum_{i=1}^{m}\left(f\left(\boldsymbol{x}_{\boldsymbol{i}}\right)-y_{i}\right)^{2}+\lambda\|f\|_{\mathcal{H}_{k}}}_{\mathcal{R}[f]}]
$$

The Representer theorem tells us that \hat{f} must be of the form:

$$
\hat{f}(\cdot)=\sum_{j=1}^{m} \alpha_{j} k\left(\cdot, \boldsymbol{x}_{\boldsymbol{j}}\right)
$$

Plug this form of \hat{f} into the minimization expression $\mathcal{R}[f]$. First let's consider the datafitting term of $\mathcal{R}[f]$:

$$
\begin{align*}
\sum_{i=1}^{m}\left(\hat{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)-y_{i}\right)^{2} & =\sum_{i=1}^{m}\left(\sum_{j=1}^{m} \alpha_{j} k\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right)-y_{i}\right)^{2} \tag{1}\\
& =\|\boldsymbol{K} \boldsymbol{\alpha}-\boldsymbol{y}\|^{2} \tag{2}
\end{align*}
$$

where $\boldsymbol{y}=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{m}\end{array}\right], \boldsymbol{\alpha}=\left[\begin{array}{c}\alpha_{1} \\ \vdots \\ \alpha_{m}\end{array}\right]$. The inner sum: $\sum_{j=1}^{m} \alpha_{j} k\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right)$ is the same as taking the dot product of the i th row vector of \boldsymbol{K} with $\boldsymbol{\alpha}$.

Now expanding the regularization term:

$$
\begin{align*}
\lambda\|f\|_{\mathcal{H}_{k}} & =\lambda\left\langle\sum_{i=1}^{m} \alpha_{i} k\left(\cdot, \boldsymbol{x}_{\boldsymbol{i}}\right), \sum_{j=1}^{m} \alpha_{j} k\left(\cdot, \boldsymbol{x}_{\boldsymbol{j}}\right)\right\rangle \tag{3}\\
& =\lambda \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} k\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}}\right) \tag{4}\\
& =\lambda \boldsymbol{\alpha}^{\top} \boldsymbol{K} \boldsymbol{\alpha} \tag{5}
\end{align*}
$$

where we use the definition of the inner product of $\mathcal{H}_{k}:\langle k(\cdot, x), k(\cdot, y)\rangle=k(x, y)$ and the linearity of the inner product to go from eq(3) to eq(4). Plugging eq(2) and eq(5) back into $\mathcal{R}[f]$:

$$
\begin{aligned}
\mathcal{R}[f] & =\|\boldsymbol{K} \boldsymbol{\alpha}-\boldsymbol{y}\|^{2}+\lambda \boldsymbol{\alpha}^{\top} \boldsymbol{K} \boldsymbol{\alpha} \\
& =\boldsymbol{\alpha}^{\top} \boldsymbol{K}^{\top} \boldsymbol{K} \boldsymbol{\alpha}-2 \boldsymbol{\alpha}^{\top} \boldsymbol{K}^{\top} \boldsymbol{y}+\boldsymbol{y}^{\top} \boldsymbol{y}+\lambda \boldsymbol{\alpha}^{\top} \boldsymbol{K} \boldsymbol{\alpha}
\end{aligned}
$$

Taking the gradient of $\mathcal{R}[f]$ with respect to $\boldsymbol{\alpha}$ and setting it to $\mathbf{0}$:

$$
\begin{aligned}
\nabla_{\boldsymbol{\alpha}} \mathcal{R}[f] & =2 \boldsymbol{K}^{\top} \boldsymbol{K} \boldsymbol{\alpha}-2 \boldsymbol{K}^{\top} \boldsymbol{y}+2 \lambda \boldsymbol{K} \boldsymbol{\alpha} \\
\mathbf{0} & =2 \boldsymbol{K}^{\top} \boldsymbol{K} \boldsymbol{\alpha}-2 \boldsymbol{K}^{\top} \boldsymbol{y}+2 \lambda \boldsymbol{K} \boldsymbol{\alpha} \\
\boldsymbol{K}^{2} \boldsymbol{\alpha}+\lambda \boldsymbol{K} \boldsymbol{\alpha} & =\boldsymbol{K} \boldsymbol{y} \\
\left(\boldsymbol{K}^{2}+\lambda \boldsymbol{K}\right) \boldsymbol{\alpha} & =\boldsymbol{K} \boldsymbol{y} \\
\boldsymbol{\alpha} & =\left(\boldsymbol{K}^{2}+\lambda \boldsymbol{K}\right)^{-1} \boldsymbol{K} \boldsymbol{y} \\
& =(\boldsymbol{K}(\boldsymbol{K}+\lambda \boldsymbol{I}))^{-1} \boldsymbol{K} \boldsymbol{y} \\
& =(\boldsymbol{K}+\lambda \boldsymbol{I})^{-1} \boldsymbol{K}^{-1} \boldsymbol{K} \boldsymbol{y} \\
& =(\boldsymbol{K}+\lambda \boldsymbol{I})^{-1} \boldsymbol{y}
\end{aligned}
$$

\boldsymbol{K} is symmetric so we can replace \boldsymbol{K}^{\top} with \boldsymbol{K} in the equations above. Evaluating \hat{f} on some new point $\boldsymbol{z} \in \mathcal{X}$ then boils down to computing the inner product between $\boldsymbol{\alpha}=(\boldsymbol{K}+\lambda \boldsymbol{I})^{-1} \boldsymbol{y}$ with the vector of kernel evaluations: $\boldsymbol{k}_{\boldsymbol{z}}=\left[\begin{array}{c}k\left(\boldsymbol{z}, \boldsymbol{x}_{\boldsymbol{1}}\right) \\ \vdots \\ k\left(\boldsymbol{z}, \boldsymbol{x}_{\boldsymbol{m}}\right)\end{array}\right]$

$$
\hat{f}(\boldsymbol{z})=\sum_{i=1}^{m} \alpha_{i} k\left(\boldsymbol{z}, \boldsymbol{x}_{\boldsymbol{i}}\right)=\boldsymbol{\alpha}^{\top} \boldsymbol{k}_{\boldsymbol{z}}
$$

Something to think about: how does the penalty term $\lambda\|f\|_{\mathcal{H}_{k}}$ affect the regularized risk minimization problem? How does our solution, \hat{f}, change as we increase or decrease the parameter λ ?

