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Recitation 6: Kernel PCA, Ridge Regression

1 PCA

Recall in principal components analysis, we are interested in the following maximization problem. Given
data: x1, ...,xm ∈ Rd that has been centered (each index of the data vectors has mean 0), the first principal
component is the unit vector w whose projection onto the data is maximized:

w1 = arg max
||w||=1

1

m

m∑
i

(x>i w)2

As we’ve seen in lecture, this is an eigenvalue problem in disguise. Let X =

 | | |
x1 x2 . . . xm
| | |

 and

rewrite the maximization problem in the form of an inner product of this data matrix.

w1 = arg max
||w||=1

1

m
||X>w||2

= arg max
||w||=1

1

m
〈X>w,X>w〉

= arg max
||w||=1

1

m
w>X>X>w

This is exactly the Rayleigh Quotient that we saw in homework 1. So the w that maximizes wXX>w is
the eigenvector with largest eigenvalue of XX>.

1.1 Kernel PCA

Now instead suppose our data comes from some set X . We have some positive semidefinite kernel on this
set k : X × X → R, with the corresponding induced feature mapping φ : X → Rd. We’re interested in the
same sort of maximization above but in the feature space given by φ.

Let x1, ...,xm ∈ X and Φ =

 | | |
φ(x1) φ(x2) . . . φ(xm)
| | |

.

v1 = arg max
||v||=1

m∑
i=1

〈φ(xi),v〉2

= arg max
||v||=1

||Φ>v||2

= arg max
||v||=1

v>ΦΦ>v

1
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So v1 is the top eigenvector of ΦΦ>. We can say a bit more about the top principal component vector v1
if we consider the form it must take with respect to the feature mappings of the input data.

Lemma 1 The v1 that maximizes this sum of square projections onto the φ(xi)’s will be a linear combination
of the φ(xi)’s:

v1 =

m∑
i=1

αiφ(xi)

for some set of αi ∈ R. This can be equivalently written as: v1 = Φα, for α ∈ Rm.

Proof: Suppose v is an eigenvector of ΦΦ> =
∑m
i=1 φ(xi)φ(xi)

>:

ΦΦ>v =

n∑
i=1

φ(xi)φ(xi)
>v

λv =

n∑
i=1

φ(xi)φ(xi)
>v︸ ︷︷ ︸

∈R

v =
1

λ

n∑
i=1

(φ(xi)
>v)φ(xi)

Let αi = φ(xi)
>v

λ and we have our desired result.

Now let’s use this explicit form v1 = Φα in our computations and see what pops out:

ΦΦ>v1 = ΦΦ>Φα

λv1 = ΦKα

where K = Φ>Φ ∈ Rm×m is the Gram matrix of our input data: Ki,j = φ(xi)
>φ(xj) = k(xi,xj).

Hit both sides by Φ>:

Φ>λv1 = Φ>ΦKα

λΦ>Φα = Φ>ΦKα

λKα = KKα

Eliminating one K term from both sides gives us: Kα = λα, which tells us that the coefficient vector α of
v1, is in fact the top eigenvector of K. Note that K might not be full rank, but this will only be an issue
for the zero-eigenvalued eigenvectors, which will not be a top principal component in the first place.

An equivalent way of getting to this result is by directly plugging in v1 = Φα into our maximization problem:

max
||v||=1

v>1 ΦΦ>v1 = max
||v||=1

α>Φ>ΦΦ>Φα

= max
||v||=1

α>KKα

Thus, α must be the top eigenvector of K2. The eigenvectors of K2 are the same as the eigenvectors for
K. So computing the principal component of our data just boils down to finding the top eigenvector of the
Gram matrix K.
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2 Kernel Ridge Regression

Using the same notation as in the previous section, suppose we have some base set X , a positive semidefinite
kernel k : X × X → R, and the corresponding Reproducing Kernel Hilbert Space Hk induced by by our
kernel k. Given x1, ...xm ∈ X , with corresponding target values y1, ..., ym ∈ R, we have the Gram matrix
K, with entries: Ki,j = k(xi,xj). We’d like to learn some function f ∈ Hk that fits our data subject to an
additional regularization term:

f̂ = arg min
f∈Hk

[ m∑
i=1

(f(xi)− yi)2 + λ||f ||Hk︸ ︷︷ ︸
R[f ]

]

The Representer theorem tells us that f̂ must be of the form:

f̂(·) =

m∑
j=1

αjk(·,xj)

Plug this form of f̂ into the minimization expression R[f ]. First let’s consider the datafitting term of R[f ]:

m∑
i=1

(f̂(xi)− yi)2 =

m∑
i=1

(

m∑
j=1

αjk(xi,xj)− yi)2 (1)

= ||Kα− y||2 (2)

where y =

 y1...
ym

, α =

α1

...
αm

. The inner sum:
∑m
j=1 αjk(xi,xj) is the same as taking the dot product of

the ith row vector of K with α.

Now expanding the regularization term:

λ||f ||Hk
= λ〈

m∑
i=1

αik(·,xi),
m∑
j=1

αjk(·,xj)〉 (3)

= λ

m∑
i=1

m∑
j=1

αiαjk(xi,xj) (4)

= λα>Kα (5)

where we use the definition of the inner product of Hk: 〈k(·, x), k(·, y)〉 = k(x, y) and the linearity of the
inner product to go from eq(3) to eq(4). Plugging eq(2) and eq(5) back into R[f ]:

R[f ] = ||Kα− y||2 + λα>Kα

= α>K>Kα− 2α>K>y + y>y + λα>Kα
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Taking the gradient of R[f ] with respect to α and setting it to 0:

∇αR[f ] = 2K>Kα− 2K>y + 2λKα

0 = 2K>Kα− 2K>y + 2λKα

K2α+ λKα = Ky

(K2 + λK)α = Ky

α = (K2 + λK)−1Ky

= (K(K + λI))−1Ky

= (K + λI)−1K−1Ky

= (K + λI)−1y

K is symmetric so we can replace K> with K in the equations above. Evaluating f̂ on some new point
z ∈ X then boils down to computing the inner product between α = (K +λI)−1y with the vector of kernel

evaluations: kz =

 k(z,x1)
...

k(z,xm)


f̂(z) =

m∑
i=1

αik(z,xi) = α>kz

Something to think about: how does the penalty term λ||f ||Hk
affect the regularized risk minimization

problem? How does our solution, f̂ , change as we increase or decrease the parameter λ?
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