CMSC 25400: Machine Learning

Winter 2019

Recitation 2: Matrix Derivatives

2.1Minimizing/Maximizing Functions

In machine learning, many problems we'll want to solve can be cast as minimizing (or maximizing) a function $J: \mathbb{R}^d \to \mathbb{R}$.

Examples:

- the sum of square errors in least squares: $J(\theta) = ||y X\theta||_2^2$
- the sum of square distances to cluster centers in KMeans: $J_{avg^2} = \sum_{j=1}^k \sum_{x \in C_i} d(x, m_j)^2$
- the Rayleigh Quotient: $\frac{x^T A x}{x^T x}$

Recall from lecture, we can often use gradient descent to minimize such a function J

$$\begin{array}{c} \pmb{\theta} \leftarrow \pmb{0} \\ \texttt{until} \{\texttt{convergence}\} \{ \\ \pmb{\theta} \leftarrow \pmb{\theta} - \alpha \nabla_{\pmb{\theta}} J(\pmb{\theta}) \\ \} \end{array}$$

So we just need to be able to compute $\nabla_{\theta}J$. Note: the subscripted θ in $\nabla_{\theta}J$ means that we are taking the gradient or the derivative with respect to θ . When the context is clear, we may drop the θ subscript in $\nabla_{\theta} J$ for convenience. Suppose $\theta \in \mathbb{R}^d$. This gradient ∇J is given by:

$$\nabla J = \begin{bmatrix} \frac{\partial J}{\partial \theta_1} \\ \frac{\partial J}{\partial \theta_2} \\ \vdots \\ \frac{\partial J}{\partial \theta_d} \end{bmatrix}$$

Useful Matrix Derivatives 2.1.1

Most of the kinds of functions we'll end up computing the gradient of can be expressed in terms of matrixvector and vector-vector operations. So first we'll take a look at some useful matrix derivatives that show up over and over again. In the following identities, let $w \in \mathbb{R}^d$, $x \in \mathbb{R}^d$, $A \in \mathbb{R}^{d \times d}$.

$$\nabla_{\boldsymbol{x}}(\boldsymbol{w}^{T}\boldsymbol{x}) = \boldsymbol{w} \tag{2.1}$$

$$\nabla_{\boldsymbol{x}}(\boldsymbol{x}^{T}\boldsymbol{w}) = \boldsymbol{w} \tag{2.2}$$

$$\nabla_{\boldsymbol{x}}(\boldsymbol{x}^{T}\boldsymbol{x}) = 2\boldsymbol{x} \tag{2.3}$$

$$\nabla_{\boldsymbol{x}}(\boldsymbol{x}^{T}\boldsymbol{A}\boldsymbol{x}) = (\boldsymbol{A} + \boldsymbol{A}^{T})\boldsymbol{x} \tag{2.4}$$

$$\nabla_{\boldsymbol{x}}(\boldsymbol{x}^T\boldsymbol{w}) = \boldsymbol{w} \tag{2.2}$$

$$\nabla_{\boldsymbol{x}}(\boldsymbol{x}^T\boldsymbol{x}) = 2\boldsymbol{x} \tag{2.3}$$

$$\nabla_{\boldsymbol{x}}(\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}) = (\boldsymbol{A} + \boldsymbol{A}^T) \boldsymbol{x} \tag{2.4}$$

Proof: $\nabla_{\boldsymbol{x}}(\boldsymbol{w}^T\boldsymbol{x}) = \boldsymbol{w}$

Consider the *i*th index of $\nabla_{\boldsymbol{x}}(\boldsymbol{w}^T\boldsymbol{x})$:

$$\frac{\partial}{\partial x_i}(\boldsymbol{w}^T\boldsymbol{x}) = \frac{\partial}{\partial x_i}(\sum_j w_j x_j) = w_i$$

Repeating this for all indices of vector \boldsymbol{x} and plugging this back into the definition of the gradient, we see that:

$$abla_{oldsymbol{x}}(oldsymbol{w}^Toldsymbol{x}) = egin{bmatrix} w_1 \ dots \ w_d \end{bmatrix} = oldsymbol{w}$$

The derivation for $\nabla_{\boldsymbol{x}}(\boldsymbol{x}^T\boldsymbol{w}) = \boldsymbol{w}$ and $\nabla_{\boldsymbol{x}}(\boldsymbol{x}^T\boldsymbol{x}) = 2\boldsymbol{x}$ are identical.

Proof: $\nabla_{\boldsymbol{x}}(\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}) = (\boldsymbol{A} + \boldsymbol{A}^T) \boldsymbol{x}$

$$\begin{aligned} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} &= \sum_i \sum_j A_{i,j} x_i x_j \\ &= A_{k,k} x_k^2 + \sum_{j \neq k} A_{k,j} x_k x_j + \sum_{i \neq k} A_{i,k} x_i x_j + \sum_{i \neq k} \sum_{j \neq k} A_{i,j} x_i x_j \\ \frac{\partial}{\partial x_k} (\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}) &= 2A_{k,k} x_k + \sum_{j \neq k} A_{k,j} x_j + \sum_{i \neq k} A_{i,k} x_i x_j + 0 \\ \frac{\partial}{\partial x_k} (\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}) &= \sum_j A_{k,j} x_j + \sum_i A_{i,k} x_i x_j \\ &= [\boldsymbol{A} \boldsymbol{x}]_k + [\boldsymbol{A}^T \boldsymbol{x}]_k \end{aligned}$$

where $[Ax]_k$ denotes index k of the vector Ax. Repeating this for all other indices and plugging them into the definition of the gradient, we see that: $\nabla_x(x^TAx) = (A + A^T)x$

2.2 Least Squares

In the least squares problem, we are given data: $X \in \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^n$. Our goal is to find some weight vector $\theta \in \mathbb{R}^d$ that minimizes the sum of square errors:

$$J(\boldsymbol{\theta}) = ||\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}||^2 = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta})^T(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta})$$

Before we compute the gradient, expand J:

$$J(\theta) = (\mathbf{y} - \mathbf{X}\theta)^T (\mathbf{y} - \mathbf{X}\theta)$$

$$= (\mathbf{y}^T - \theta^T \mathbf{X}^T) (\mathbf{y} - \mathbf{X}\theta)$$

$$= \mathbf{y}^T \mathbf{y} - \mathbf{y}^T \mathbf{X}\theta - \theta^T \mathbf{X}^T \mathbf{y} + \theta^T \mathbf{X}^T \mathbf{X}\theta$$

Notice that every term is now in the form matrix/vector operations that we already saw in the matrix

identities from the previous section. Taking the gradients of each of the individual terms:

$$\nabla_{\boldsymbol{\theta}}(\boldsymbol{y}^{T}\boldsymbol{y}) = 0$$

$$\nabla_{\boldsymbol{\theta}}(-\boldsymbol{y}^{T}\boldsymbol{X}\boldsymbol{\theta}) = -\boldsymbol{X}^{T}\boldsymbol{y} \qquad \text{(Apply 2.1 with } \boldsymbol{w} = \boldsymbol{X}^{T}\boldsymbol{y})$$

$$\nabla_{\boldsymbol{\theta}}(-\boldsymbol{\theta}^{T}\boldsymbol{X}^{T}\boldsymbol{y}) = -\boldsymbol{X}^{T}\boldsymbol{y} \qquad \text{(Apply 2.2 with } \boldsymbol{w} = \boldsymbol{X}^{T}\boldsymbol{y})$$

$$\nabla_{\boldsymbol{\theta}}(\boldsymbol{\theta}^{T}\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{\theta}) = (\boldsymbol{X}^{T}\boldsymbol{X} + (\boldsymbol{X}^{T}\boldsymbol{X})^{T})\boldsymbol{\theta} \qquad \text{(Apply 2.4 with } \boldsymbol{A} = \boldsymbol{X}^{T}\boldsymbol{X})$$

$$= 2\boldsymbol{X}^{T}\boldsymbol{X}\boldsymbol{\theta}$$

Putting this all together:

$$\nabla_{\boldsymbol{\theta}} J = -2\boldsymbol{X}^T \boldsymbol{y} + 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta}$$

At a minimum, the gradient will be **0**. So setting this to **0** and solving for θ gives us the normal equations:

$$0 = -2X^{T}y + 2X^{T}X\theta$$
$$2X^{T}X\theta = 2X^{T}y$$
$$\theta = (X^{T}X)^{-1}X^{T}y$$

Note: during recitation I had incorrectly written: $\nabla_{\boldsymbol{\theta}}(-\boldsymbol{y}^T\boldsymbol{X}\boldsymbol{\theta}) = -\boldsymbol{y}^T\boldsymbol{X}$. A student corrected me on this, but I didn't register this even after he explained it a few times. Apologies. This is now corrected in the derivation above.

2.3 Rayleigh Quotient using Lagrange Multipliers

In the first homework, we asked you to prove that given a real symmetric matrix A, the maximal eigenvector maximizes the Rayleigh Quotient: $\frac{x^T A x}{x^T x}$.

Suppose we added the constraint that \boldsymbol{x} be unit length, $\boldsymbol{x}^T\boldsymbol{x}=1$, allowing us to ignore the $\boldsymbol{x}^T\boldsymbol{x}$ in the denominator. Note that $\frac{\boldsymbol{x}}{\boldsymbol{x}^T\boldsymbol{x}}$ is already a unit vector in the direction of \boldsymbol{x} so we haven't really changed our problem by forcing \boldsymbol{x} to be a unit vector. Now this is precisely the sort of constrained optimization problem that we can use Lagrange multipliers to solve.

Let the function we'd like to minimize be: $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$, and the constraint we must satisfy be $g(\mathbf{x}) = 0$, where $g(\mathbf{x}) = \mathbf{x}^T \mathbf{x} - 1$. Applying the method of Lagrange multipliers gives us:

$$\nabla f = \lambda \nabla g$$

$$\nabla (\mathbf{x}^T \mathbf{A} \mathbf{x}) = \lambda \nabla (\mathbf{x}^T \mathbf{x} - 1)$$

$$(\mathbf{A} + \mathbf{A}^T) \mathbf{x} = 2\lambda \mathbf{x}$$

$$2\mathbf{A} \mathbf{x} = 2\lambda \mathbf{x}$$

$$\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$$

This tells us that the unit vector x maximizing the Rayleigh quotient must be an eigenvector of A. So the maximal eigenvector will maximize the Rayleigh Quotient.