Recitation 2: Matrix Derivatives

2.1 Minimizing/Maximizing Functions

In machine learning, many problems we'll want to solve can be cast as minimizing (or maximizing) a function $J: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

Examples:

- the sum of square errors in least squares: $J(\boldsymbol{\theta})=\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\theta}\|_{2}^{2}$
- the sum of square distances to cluster centers in KMeans: $J_{a v g^{2}}=\sum_{j=1}^{k} \sum_{x \in C_{j}} d\left(\boldsymbol{x}, \boldsymbol{m}_{\boldsymbol{j}}\right)^{2}$
- the Rayleigh Quotient: $\frac{\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{T} \boldsymbol{x}}$

Recall from lecture, we can often use gradient descent to minimize such a function J

$$
\begin{aligned}
& \boldsymbol{\theta} \leftarrow \mathbf{0} \\
& \text { until\{convergence }\}\{ \\
& \quad \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\alpha \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) \\
& \}
\end{aligned}
$$

So we just need to be able to compute $\nabla_{\boldsymbol{\theta}} J$. Note: the subscripted $\boldsymbol{\theta}$ in $\nabla_{\boldsymbol{\theta}} J$ means that we are taking the gradient or the derivative with respect to $\boldsymbol{\theta}$. When the context is clear, we may drop the $\boldsymbol{\theta}$ subscript in $\nabla_{\boldsymbol{\theta}} J$ for convenience. Suppose $\boldsymbol{\theta} \in \mathbb{R}^{d}$. This gradient ∇J is given by:

$$
\nabla J=\left[\begin{array}{c}
\frac{\partial J}{\partial \theta_{j}} \\
\frac{\partial J}{\partial \theta_{2}} \\
\vdots \\
\frac{\partial J}{\partial \theta_{d}}
\end{array}\right]
$$

2.1.1 Useful Matrix Derivatives

Most of the kinds of functions we'll end up computing the gradient of can be expressed in terms of matrixvector and vector-vector operations. So first we'll take a look at some useful matrix derivatives that show up over and over again. In the following identities, let $\boldsymbol{w} \in \mathbb{R}^{d}, \boldsymbol{x} \in \mathbb{R}^{d}, \boldsymbol{A} \in \mathbb{R}^{d \times d}$.

$$
\begin{align*}
\nabla_{\boldsymbol{x}}\left(\boldsymbol{w}^{T} \boldsymbol{x}\right) & =\boldsymbol{w} \tag{2.1}\\
\nabla_{\boldsymbol{x}}\left(\boldsymbol{x}^{T} \boldsymbol{w}\right) & =\boldsymbol{w} \tag{2.2}\\
\nabla_{\boldsymbol{x}}\left(\boldsymbol{x}^{T} \boldsymbol{x}\right) & =2 \boldsymbol{x} \tag{2.3}\\
\nabla_{\boldsymbol{x}}\left(\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}\right) & =\left(\boldsymbol{A}+\boldsymbol{A}^{T}\right) \boldsymbol{x} \tag{2.4}
\end{align*}
$$

Proof: $\nabla_{\boldsymbol{x}}\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)=\boldsymbol{w}$
Consider the i th index of $\nabla_{\boldsymbol{x}}\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)$:

$$
\frac{\partial}{\partial x_{i}}\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)=\frac{\partial}{\partial x_{i}}\left(\sum_{j} w_{j} x_{j}\right)=w_{i}
$$

Repeating this for all indices of vector \boldsymbol{x} and plugging this back into the definition of the gradient, we see that:

$$
\nabla_{\boldsymbol{x}}\left(\boldsymbol{w}^{T} \boldsymbol{x}\right)=\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{d}
\end{array}\right]=\boldsymbol{w}
$$

The derivation for $\nabla_{\boldsymbol{x}}\left(\boldsymbol{x}^{T} \boldsymbol{w}\right)=\boldsymbol{w}$ and $\nabla_{\boldsymbol{x}}\left(\boldsymbol{x}^{T} \boldsymbol{x}\right)=2 \boldsymbol{x}$ are identical.
Proof: $\nabla_{\boldsymbol{x}}\left(\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}\right)=\left(\boldsymbol{A}+\boldsymbol{A}^{T}\right) \boldsymbol{x}$

$$
\begin{aligned}
\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} & =\sum_{i} \sum_{j} A_{i, j} x_{i} x_{j} \\
& =A_{k, k} x_{k}^{2}+\sum_{j \neq k} A_{k, j} x_{k} x_{j}+\sum_{i \neq k} A_{i, k} x_{i} x_{j}+\sum_{i \neq k} \sum_{j \neq k} A_{i, j} x_{i} x_{j} \\
\frac{\partial}{\partial x_{k}}\left(\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}\right) & =2 A_{k, k} x_{k}+\sum_{j \neq k} A_{k, j} x_{j}+\sum_{i \neq k} A_{i, k} x_{i} x_{j}+0 \\
\frac{\partial}{\partial x_{k}}\left(\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}\right) & =\sum_{j} A_{k, j} x_{j}+\sum_{i} A_{i, k} x_{i} x_{j} \\
& =[\boldsymbol{A} \boldsymbol{x}]_{k}+\left[\boldsymbol{A}^{T} \boldsymbol{x}\right]_{k}
\end{aligned}
$$

where $[\boldsymbol{A} \boldsymbol{x}]_{k}$ denotes index k of the vector $\boldsymbol{A} \boldsymbol{x}$. Repeating this for all other indices and plugging them into the definition of the gradient, we see that: $\nabla_{\boldsymbol{x}}\left(\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}\right)=\left(\boldsymbol{A}+\boldsymbol{A}^{T}\right) \boldsymbol{x}$

2.2 Least Squares

In the least squares problem, we are given data: $\boldsymbol{X} \in \mathbb{R}^{n \times d}, \boldsymbol{y} \in \mathbb{R}^{n}$. Our goal is to find some weight vector $\boldsymbol{\theta} \in \mathbb{R}^{d}$ that minimizes the sum of square errors:

$$
J(\boldsymbol{\theta})=\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\theta}\|^{2}=(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\theta})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\theta})
$$

Before we compute the gradient, expand J :

$$
\begin{aligned}
J(\boldsymbol{\theta}) & =(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\theta})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\theta}) \\
& =\left(\boldsymbol{y}^{T}-\boldsymbol{\theta}^{T} \boldsymbol{X}^{T}\right)(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\theta}) \\
& =\boldsymbol{y}^{T} \boldsymbol{y}-\boldsymbol{y}^{T} \boldsymbol{X} \boldsymbol{\theta}-\boldsymbol{\theta}^{T} \boldsymbol{X}^{T} \boldsymbol{y}+\boldsymbol{\theta}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\theta}
\end{aligned}
$$

Notice that every term is now in the form matrix/vector operations that we already saw in the matrix
identities from the previous section. Taking the gradients of each of the individual terms:

$$
\begin{array}{rlrl}
\nabla_{\boldsymbol{\theta}}\left(\boldsymbol{y}^{T} \boldsymbol{y}\right) & =0 & \\
\nabla_{\boldsymbol{\theta}}\left(-\boldsymbol{y}^{T} \boldsymbol{X} \boldsymbol{\theta}\right) & =-\boldsymbol{X}^{T} \boldsymbol{y} & & \text { (Apply 2.1 with } \left.\boldsymbol{w}=\boldsymbol{X}^{T} \boldsymbol{y}\right) \\
\nabla_{\boldsymbol{\theta}}\left(-\boldsymbol{\theta}^{T} \boldsymbol{X}^{T} \boldsymbol{y}\right) & =-\boldsymbol{X}^{T} \boldsymbol{y} & & \text { (Apply 2.2 with } \left.\boldsymbol{w}=\boldsymbol{X}^{T} \boldsymbol{y}\right) \\
\nabla_{\boldsymbol{\theta}}\left(\boldsymbol{\theta}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\theta}\right) & =\left(\boldsymbol{X}^{T} \boldsymbol{X}+\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{T}\right) \boldsymbol{\theta} & & \text { (Apply 2.4 with } \left.\boldsymbol{A}=\boldsymbol{X}^{T} \boldsymbol{X}\right) \\
& =2 \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\theta} & &
\end{array}
$$

Putting this all together:

$$
\nabla_{\boldsymbol{\theta}} J=-2 \boldsymbol{X}^{T} \boldsymbol{y}+2 \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\theta}
$$

At a minimum, the gradient will be $\mathbf{0}$. So setting this to $\mathbf{0}$ and solving for $\boldsymbol{\theta}$ gives us the normal equations:

$$
\begin{aligned}
\mathbf{0} & =-2 \boldsymbol{X}^{T} \boldsymbol{y}+2 \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\theta} \\
2 \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\theta} & =2 \boldsymbol{X}^{T} \boldsymbol{y} \\
\boldsymbol{\theta} & =\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}
\end{aligned}
$$

Note: during recitation I had incorrectly written: $\nabla_{\boldsymbol{\theta}}\left(-\boldsymbol{y}^{T} \boldsymbol{X} \boldsymbol{\theta}\right)=-\boldsymbol{y}^{T} \boldsymbol{X}$. A student corrected me on this, but I didn't register this even after he explained it a few times. Apologies. This is now corrected in the derivation above.

2.3 Rayleigh Quotient using Lagrange Multipliers

In the first homework, we asked you to prove that given a real symmetric matrix A, the maximal eigenvector maximizes the Rayleigh Quotient: $\frac{\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{T} \boldsymbol{x}}$.
Suppose we added the constraint that \boldsymbol{x} be unit length, $\boldsymbol{x}^{T} \boldsymbol{x}=1$, allowing us to ignore the $\boldsymbol{x}^{T} \boldsymbol{x}$ in the denominator. Note that $\frac{\boldsymbol{x}}{\boldsymbol{x}^{T} \boldsymbol{x}}$ is already a unit vector in the direction of \boldsymbol{x} so we haven't really changed our problem by forcing \boldsymbol{x} to be a unit vector. Now this is precisely the sort of constrained optimization problem that we can use Lagrange multipliers to solve.

Let the function we'd like to minimize be: $f(\boldsymbol{x})=\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}$, and the constraint we must satisfy be $g(\boldsymbol{x})=0$, where $g(\boldsymbol{x})=\boldsymbol{x}^{T} \boldsymbol{x}-1$. Applying the method of Lagrange multipliers gives us:

$$
\begin{aligned}
\nabla f & =\lambda \nabla g \\
\nabla\left(\boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}\right) & =\lambda \nabla\left(\boldsymbol{x}^{T} \boldsymbol{x}-1\right) \\
\left(\boldsymbol{A}+\boldsymbol{A}^{T}\right) \boldsymbol{x} & =2 \lambda \boldsymbol{x} \\
2 \boldsymbol{A} \boldsymbol{x} & =2 \lambda \boldsymbol{x} \\
\boldsymbol{A} \boldsymbol{x} & =\lambda \boldsymbol{x}
\end{aligned}
$$

This tells us that the unit vector \boldsymbol{x} maximizing the Rayleigh quotient must be an eigenvector of \boldsymbol{A}. So the maximal eigenvector will maximize the Rayleigh Quotient.

