CMSC 25400: Machine Learning Winter 2019

Recitation 2: Matrix Derivatives

2.1 Minimizing/Maximizing Functions

In machine learning, many problems we’ll want to solve can be cast as minimizing (or maximizing) a function
J:RY = R.
Examples:

e the sum of square errors in least squares: J(0) = ||y — X 0|3

e the sum of square distances to cluster centers in KMeans: Jq,42 = Z?Zl ercj d(z,m;)?

e the Rayleigh Quotient: 2’ Az

T x

Recall from lecture, we can often use gradient descent to minimize such a function J

60+0

until{convergence}{
0+ 0—aVeJ(0)

}

So we just need to be able to compute VgJ. Note: the subscripted 8 in VgJ means that we are taking the
gradient or the derivative with respect to 8. When the context is clear, we may drop the 8 subscript in VgJ
for convenience. Suppose 8 € R?. This gradient V.J is given by:
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2.1.1 Useful Matrix Derivatives

Most of the kinds of functions we’ll end up computing the gradient of can be expressed in terms of matrix-
vector and vector-vector operations. So first we’ll take a look at some useful matrix derivatives that show
up over and over again. In the following identities, let w € R%, 2 € R¢, A € R4*4,

Ve(wlx) = w (2.1)
Ve(z'w) = w (2.2)
Ve(zTz) = 2z (2.3)
Va(x” Azx) (A+ ANz (2.4)
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Proof: V (wlz) =w
Consider the ith index of V(wTx):
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Repeating this for all indices of vector & and plugging this back into the definition of the gradient, we see
that:
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The derivation for V(z?w) = w and V4 (x?x) = 2z are identical. [ |

Proof: V,(zTAz) = (A+ AT)z

ZZTA:E = ZZAiijiwj
(2]
= Ak,kl'% + Z Ak’jkaj + Z Ai’k(L'i.’Ej + Z Z Aiyj.’bi(L'j
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J [
= [Az]; +[ATz];

where [Ax]; denotes index k of the vector Ax. Repeating this for all other indices and plugging them into
the definition of the gradient, we see that: Vg(z7 Az) = (A + AT)x [

2.2 Least Squares

In the least squares problem, we are given data: X € R"*¢ y € R™. Our goal is to find some weight vector
0 € R? that minimizes the sum of square errors:

J(0) =ly — X6|* = (y — X0)" (y — X0)

Before we compute the gradient, expand J:

J(6) (y—X0)"(y— X0)
= (" -0"X")(y—X06)

= yly—y"X0-60"XTy+0"X7X0

Notice that every term is now in the form matrix/vector operations that we already saw in the matrix
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identities from the previous section. Taking the gradients of each of the individual terms:

Vo(y"y) 0
Vo(—y'X0) = —XTy (Apply 2.1 with w = XTy)
Vo(—0TXTy) = —XTy (Apply 2.2 with w = XTy)
Vo(0'XTX0) = (XTX+(XTX)1)6 (Apply 2.4 with A = XTX)
= 2x7Xxe6
Putting this all together:
VeoJ = —2XTy+2X7X60

At a minimum, the gradient will be 0. So setting this to 0 and solving for @ gives us the normal equations:

0 = —2XxTy+2xTX0
2XTxe = 2X7y
0 = (XTX)'XTy

Note: during recitation I had incorrectly written: Vo(—y? X0) = —y7 X. A student corrected me on this,
but I didn’t register this even after he explained it a few times. Apologies. This is now corrected in the
derivation above.

2.3 Rayleigh Quotient using Lagrange Multipliers

In the first homework, we asked you to prove that given a real symmetric matrix A, the maximal eigenvector
z2T Ax
zTx *

maximizes the Rayleigh Quotient:

Suppose we added the constraint that & be unit length, 27« = 1, allowing us to ignore the &’z in the
denominator. Note that _#— is already a unit vector in the direction of & so we haven’t really changed our
problem by forcing x to be a unit vector. Now this is precisely the sort of constrained optimization problem
that we can use Lagrange multipliers to solve.

Let the function we’d like to minimize be: f(x) = 2”7 Az, and the constraint we must satisfy be g(x) = 0,
where g(x) = 7z — 1. Applying the method of Lagrange multipliers gives us:

Vf = AVg
V(z'Az) = MV(z'z-1)
(A+ ATz = 2\
2Ax = 2)\x
Ax = Az

This tells us that the unit vector  maximizing the Rayleigh quotient must be an eigenvector of A. So the
maximal eigenvector will maximize the Rayleigh Quotient.


https://en.wikipedia.org/wiki/Lagrange_multiplier
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