
CMSC 25400: Machine Learning Winter 2019

Recitation 2: Matrix Derivatives

2.1 Minimizing/Maximizing Functions

In machine learning, many problems we’ll want to solve can be cast as minimizing (or maximizing) a function
J : Rd → R.

Examples:

• the sum of square errors in least squares: J(θ) = ||y −Xθ||22

• the sum of square distances to cluster centers in KMeans: Javg2 =
∑k
j=1

∑
x∈Cj

d(x,mj)
2

• the Rayleigh Quotient: xTAx
xTx

Recall from lecture, we can often use gradient descent to minimize such a function J

θ ← 0
until{convergence }{

θ ← θ − α∇θJ(θ)
}

So we just need to be able to compute ∇θJ . Note: the subscripted θ in ∇θJ means that we are taking the
gradient or the derivative with respect to θ. When the context is clear, we may drop the θ subscript in ∇θJ
for convenience. Suppose θ ∈ Rd. This gradient ∇J is given by:

∇J =


∂J
∂θ1
∂J
∂θ2
...
∂J
∂θd



2.1.1 Useful Matrix Derivatives

Most of the kinds of functions we’ll end up computing the gradient of can be expressed in terms of matrix-
vector and vector-vector operations. So first we’ll take a look at some useful matrix derivatives that show
up over and over again. In the following identities, let w ∈ Rd,x ∈ Rd,A ∈ Rd×d.

∇x(wTx) = w (2.1)

∇x(xTw) = w (2.2)

∇x(xTx) = 2x (2.3)

∇x(xTAx) = (A+AT )x (2.4)
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Proof: ∇x(wTx) = w

Consider the ith index of ∇x(wTx):

∂

∂xi
(wTx) =

∂

∂xi
(
∑
j

wjxj) = wi

Repeating this for all indices of vector x and plugging this back into the definition of the gradient, we see
that:

∇x(wTx) =

w1

...
wd

 = w

The derivation for ∇x(xTw) = w and ∇x(xTx) = 2x are identical.

Proof: ∇x(xTAx) = (A+AT )x

xTAx =
∑
i

∑
j

Ai,jxixj

= Ak,kx
2
k +

∑
j 6=k

Ak,jxkxj +
∑
i 6=k

Ai,kxixj +
∑
i6=k

∑
j 6=k

Ai,jxixj

∂

∂xk
(xTAx) = 2Ak,kxk +

∑
j 6=k

Ak,jxj +
∑
i 6=k

Ai,kxixj + 0

∂

∂xk
(xTAx) =

∑
j

Ak,jxj +
∑
i

Ai,kxixj

= [Ax]k + [ATx]k

where [Ax]k denotes index k of the vector Ax. Repeating this for all other indices and plugging them into
the definition of the gradient, we see that: ∇x(xTAx) = (A+AT )x

2.2 Least Squares

In the least squares problem, we are given data: X ∈ Rn×d,y ∈ Rn. Our goal is to find some weight vector
θ ∈ Rd that minimizes the sum of square errors:

J(θ) = ||y −Xθ||2 = (y−Xθ)T (y−Xθ)

Before we compute the gradient, expand J :

J(θ) = (y−Xθ)T (y−Xθ)

= (yT − θTXT )(y−Xθ)

= yTy − yTXθ − θTXTy + θTXTXθ

Notice that every term is now in the form matrix/vector operations that we already saw in the matrix
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identities from the previous section. Taking the gradients of each of the individual terms:

∇θ(yTy) = 0

∇θ(−yTXθ) = −XTy (Apply 2.1 with w = XTy)

∇θ(−θTXTy) = −XTy (Apply 2.2 with w = XTy)

∇θ(θTXTXθ) = (XTX + (XTX)T )θ (Apply 2.4 with A = XTX)

= 2XTXθ

Putting this all together:

∇θJ = −2XTy + 2XTXθ

At a minimum, the gradient will be 0. So setting this to 0 and solving for θ gives us the normal equations:

0 = −2XTy + 2XTXθ

2XTXθ = 2XTy

θ = (XTX)−1XTy

Note: during recitation I had incorrectly written: ∇θ(−yTXθ) = −yTX. A student corrected me on this,
but I didn’t register this even after he explained it a few times. Apologies. This is now corrected in the
derivation above.

2.3 Rayleigh Quotient using Lagrange Multipliers

In the first homework, we asked you to prove that given a real symmetric matrix A, the maximal eigenvector

maximizes the Rayleigh Quotient:x
TAx
xTx

.

Suppose we added the constraint that x be unit length, xTx = 1, allowing us to ignore the xTx in the
denominator. Note that x

xTx
is already a unit vector in the direction of x so we haven’t really changed our

problem by forcing x to be a unit vector. Now this is precisely the sort of constrained optimization problem
that we can use Lagrange multipliers to solve.

Let the function we’d like to minimize be: f(x) = xTAx, and the constraint we must satisfy be g(x) = 0,
where g(x) = xTx− 1. Applying the method of Lagrange multipliers gives us:

∇f = λ∇g
∇(xTAx) = λ∇(xTx− 1)

(A+AT )x = 2λx

2Ax = 2λx

Ax = λx

This tells us that the unit vector x maximizing the Rayleigh quotient must be an eigenvector of A. So the
maximal eigenvector will maximize the Rayleigh Quotient.

https://en.wikipedia.org/wiki/Lagrange_multiplier
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