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Abstract
In this paper, we propose Covariant Compositional Networks
(CCNs), state-of-the-art generalized convolution graph neural
networks for learning graphs. By applying higher-order graph
representations and tensor contraction operations that are
permutation-invariant with respect to the set of vertices, CCNs
address the representation limitation of all existing neural
networks for learning graphs. To efficiently implement graph
neural networks, which require expensive tensor operations,
we designed our custom deep learning framework in C++,
GraphFlow, that supports dynamic computation graphs, auto-
matic and symbolic differentiation, as well as tensor/matrix
implementation in CUDA to speed up computation with GPUs.
For an application of graph neural networks in quantum chem-
istry and molecular dynamics, we investigate the efficiency of
CCNs in simulating Density Functional Theory (DFT) which
is the most successful and widely used (yet computationally
expensive) approach to computing the electronic structure of
matter. We obtain a very promising result and outperform other
state-of-the-art models on the Harvard Clean Energy Project
molecular dataset.

Index Terms: graph neural network, message passing, repre-
sentation theory, density functional theory, molecular dynamics

1. Introduction
In the field of machine learning, standard objects such as
vectors, matrices, and tensors have been carefully studied and
successfully applied to various areas including computer vision,
natural language processing, speech recognition, etc. However,
none of these standard objects are effecitve at capturing the
structure of molecules, social networks, or the World Wide
Web, all of which have a rich underlying graph structure. Thus
there is a need for native graph representation and extensions
of Support Vector Machine and Convolution Neural Networks
to graphs.

To represent graphs in general and molecules specifically,
a proposed model must be permutation-invariant and rotation-
invariant. In addition, to apply kernel methods to graphs, a
proposed kernel must be positive semi-definite. Many graph
kernels and graph similarity functions have been introduced
by researchers. Among them, one of the most successful
and efficient is the Weisfeiler-Lehman graph kernel, which
aims to build a multi-level, hierarchical representation of a
graph [1]. However, a limitation of kernel methods is their
quadratic space usage and quadratic time complexity. In this
paper, we address this drawback by proposing Dictionary
Weisfeiler-Lehman graph features in combination with Morgan
circular fingerprints. The common idea in the family of
Weisfeiler-Lehman graph kernel is to hash the sub-structures

of a graph. Extending this idea, we arrive at the simplest form
of graph neural networks in which the fixed hashing function is
replaced by a learnable one such as a non-linearity mapping.
The details of this idea are given in Section 3.1. We detail
the graph neural network baselines, such as Neural Graph
Fingerprint [6] and Learning Convolutional Neural Networks
[9], in Section 3.2. In the context of graphs, the sub-structures
can be viewed as a set of vertex feature vectors. We utilize the
convolution operation to introduce higher-order representations
for each vertex, from zero-order as a vector to first-order as a
matrix and second-order as a 3-order tensor; this is described
in Section 3.3. Also in this section, we introduce the notions of
tensor contractions and tensor products to keep the size of all
tensors manageable. Our generalized convolution graph neural
network as described in the preceding paragraph is named a
Covariant Compositional Network.

Current Deep Learning frameworks including Tensor-
Flow [12], PyTorch [13], Mxnet [15], Theano [14] show
limitations for constructing dynamic computation graphs along
with specialized tensor operations. There is a need for a flexible
programming framework for graph neural networks addressing
both these drawbacks. With this motivation, we designed our
deep learning framework in C++, GraphFlow, for our long-term
machine learning research. All of our experiments have
been implemented efficiently within GraphFlow. In addition,
GraphFlow is parallelized with CPU/GPU multi-threading.
Implementation of GraphFlow is described in Chapter 4. We
carefully evaluate the performance improvements of Graph-
Flow before and after parallelization in various experiments,
from testing tensor/matrix operations to training on a small
molecular dataset. The increased efficiency from paralleliza-
tion allows for deeper networks to be trained in a reasonable
timeframe; the resulting performance gain is significant. These
analyses are given in Chapter 5. Finally, we apply our methods
to the Harvard Clean Energy Project (HCEP) molecular dataset
[2]. The visualizations, experiments and empirical results from
this experiment are detailed in Chapter 5. Chapter 6 concludes
and presents future research directions.

2. Related Work
The notion of graph kernel was first introduced by Kondor and
Lafferty in [3]. Borgwardt and colleagues proposed the state-
of-the-art Weisfeiler-Lehman graph kernel, based on the fa-
mous Weisfeiler-Lehman test for graph isomorphism [1]. N.
M. Kriege, P. L. Giscard and R. C. Wilson applied the Hun-
garian matching algorithm to define a more robust Weisfeiler-
Lehman graph kernel [4]. The convolution operation on graphs
from Section 3.3, as well as graph neural networks for learning
molecular fingerprints, are mentioned by other authors [5], [6],
and [7], without implementation of an efficient tensor contrac-
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Figure 1: Two molecules with adjacency matrices in HCEP

(a) C18H9N3OSSe (b) C22H15NSeSi

tion algorithm.

3. Methods
3.1. Graph Kernel

3.1.1. Positive Semi-definite Kernel

Say we’re given two undirected graphs G1 = (V1, E1) and
G2 = (V2, E2). Further assume each vertex is associated with
a feature vector f : V → Ω. A positive semi-definite graph
kernel between G1 and G2 is defined as:

Kgraph(G1, G2) =
1

|V1|
· 1

|V2|
·
∑

v1∈V1

∑
v2∈V2

kbase(f(v1), f(v2))

where kbase is any base kernel and can be:

• Linear: kbase(x, y) = 〈x, y〉norm = xT y/(‖x‖ · ‖y‖)
• Quadratic: kbase(x, y) = (〈x, y〉norm + q)2

• RBF: kbase(x, y) = exp(−γ‖x− y‖2)

3.1.2. Weisfeiler-Lehman Graph Features

We combine the Weisfeiler-Lehman graph kernel [1] and
Morgan circular fingerprints into the Dictionary Weisfeiler-
Lehman graph feature algorithm. To capture the substructures
of a graph, we define a Weisfeiler-Lehman subtree at level l
rooted at a vertex v to be the shortest-path subtree that includes
all vertices reachable from v by a path of length at most 2l.
Each subtree is represented by a multiset of vertex labels. We
build the Weisfeiler-Lehman dictionary by finding all subtree
representations of every graph in the dataset. The graph feature
or fingerprint is a frequency vector in which each component
corresponds to the frequency of a particular dictionary element.

Formally, we have a set of N graphs G = {G(1), .., G(N)}
where G(i) = (V (i), E(i)) (1 ≤ i ≤ N). Let fG : V → Ω be
the initial feature vector for each vertex of graph G = (V,E).
Let SG

k (v) be the set of vectors for vertex v ∈ V of graph G at
Weisfeiler-Lehman level k.

function Dictionary Weisfeiler-Lehman
01. Universal dictionary: D ← ∅
02. for i = 1→ N :

03. Initialize the WL level 0
04. for each v ∈ V (i):
05. SG(i)

0 (v)← {fG(i)

(v)}
06. D ← D ∪ {SG(i)

0 (v)}
07. end for
08. Build the WL level 1, 2, .., K
09. for k = 1→ K:
10. for each v ∈ V (i):
11. SG(i)

k (v)← SG(i)

k−1 (v)

12. for each (u, v) ∈ E(i):
13. SG(i)

k (v)← SG(i)

k (v) ∪ SG(i)

k−1 (u)
14. end for
15. D ← D ∪ {SG(i)

k (v)}
16. end for
17. end for
18. end for
19. S ← {SG(1)

0 , .., SG(N)

0 , .., SG(1)

K , .., SG(N)

K }
20. return D, S
end function

3.1.3. Histogram-Alignment Graph Features

The optimal-assignment Weisfeiler-Lehman graph kernel [4]
computes the original Weisfeiler-Lehman graph kernel, then ap-
plies the Hungarian matching algorithm for bipartite graphs to
find the optimal matching between the two sets of vertex feature
vectors of the two graphs. One drawback of this approach is
the time complexity of the matching algorithm, which is poly-
nomial but O(n5). To address this problem, we construct a
multi-level histogram of frequencies as the fingerprint for each
graph, and compare histograms directly. This method is known
as Histogram-alignment Weisfeiler-Lehman graph features.

3.2. Graph Neural Networks

In this section, we discuss the two state-of-the-art graph neu-
ral networks that are our baseline models: Neural Graph Fin-
gerprint (NGF) proposed by Duvenaud et al [6], and Learning
Convolutional Neural Networks (LCNN) proposed by Niepert
et al [9]. However, these two models have their own drawbacks:

• NGF is limited in representation power since each ver-
tex is only represented by a multi-channel vector (and
each channel is represented by only a single scalar). In
our terminology we classify this type of representation
as zero-order. To empower the vertex representation, we
introduce first-order and second-order representations in
which each channel is representated by a vector and a
matrix, and consequently the vertex representations are
a matrix and 3-order tensor, respectively.

• LCNN is not permutation invariant because it uses the
Weisfeiler-Lehman algorithm to rank the vertices into a
particular ordering (note that finding an optimal order-
ing of the set of vertices is an NP-hard problem). This
means LCNN is not invariant under a permutation of the
vertices. To address this issue, we apply tensor contrac-
tion and tensor product operations over higher-order rep-
resentations of vertices in a way such that the resulting
features are perfectly equivariant.

3.2.1. Neural Graph Fingerprint [6]

In this section we describe the NGF model. First of all, we
define a simple message passing scheme. Fix an input graph
G = (V,E,A), where V is the set of vertices, E is the set of
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edges and matrix A ∈ {0, 1}|V |×|V | is the corresponding adja-
cency matrix. The goal is to learn an unknown class of functions
parameterized by {W1, ..,WT , u} under the following genera-
tive model:

1. The inputs are vectors f(v) ∈ <d for each vertex v ∈ V .
We call the vector embedding f the multi-dimensional
vertex label function.

2. We assume some learnable weight matrix Wi ∈ <d×d

associated with level i of the neural network. For each
of T levels, we update the vector stored at vertex v using
Wi.

3. Finally, we assume some learnable weight vector u ∈
<d. We add up the iterated vertex labels and dot prod-
uct the result with u. This can be thought of as a linear
regression on top of the graph neural network.

More formally, we define the T -iteration label propagation al-
gorithm on graph G. Let ht(v) ∈ <d be the vertex embedding
of vertex v at iteration t ∈ {0, . . . , T}. At t = 0, we initialize
h0(v) = f(v). At t ∈ {1, .., T}, we update ht−1 to ht at a
vertex v using the values on v’s neighbors:

ht(v) = ht−1(v) +
1

|N (v)|
∑

w∈N (v)

ht−1(w) (1)

where N (v) = {w ∈ V |(v, w) ∈ E} denotes the set of adja-
cent vertices to v. We can write the label propagation algorithm
in a matrix form. Let Ht ∈ <|V |×d denote the vertex embed-
ding matrix in which the v-th row of Ht is the embedding of
vertex v at iteration t. Equation (1) is equivalent to:

Ht = (I|V | +D−1 ·A) ·Ht−1 (2)

where I|V | is the identity matrix of size |V | × |V | and D is the
diagonal matrix with entries equal to the vertex degrees. Note
that it is also common to define another label propagation algo-
rithm via the normalized graph Laplacian [7]:

Ht = (I|V | −D−1/2AD−1/2) ·Ht−1 (3)

From the label propagation algorithms, we build the simplest
form of graph neural networks [5, 6, 7]. Suppose that iteration
t is associated with a learnable matrix Wt ∈ <d×d and a
component-wise nonlinearity function σ; in our case σ is the
sigmoid function. We imagine that each iteration now becomes
a layer of the graph neural network. We assume that each
graph G has input labels f and a learning target LG ∈ <. The
forward pass of the graph neural network (GNN) is described
by the following algorithm:

function Forward(G = (V,E,A), T ∈ N)
01. Initialize W0,W1, ..,WT ∈ <d×d

02. Layer 0: L0 = σ(H0 ·W0)
03. Layer t ∈ {1, .., T}: Lt = σ(Ht ·Wt)
04. Compute the graph feature: fG =

∑
v∈V LT (v) ∈ <d

05. Linear regression on layer T + 1
06. Minimize: ‖〈u, fG〉 − LG‖22 where u ∈ <d is learnable
end function

Learnable matrices Wi and learnable vector u are opti-
mized by the back-propagation algorithm as used when training
a conventional multi-layer feed-forward neural network.

To build on the Neural Graph Fingerprint, we can also

introduce quadratic and cubic aggregation rules. These can
be considered a special case of our general model of tensor
contractions to be introduced in Section 3.3. In detail, the linear
aggregation rule can be defined as the summation of feature
vectors in a neighborhood N (v) of vertex v at level l − 1.
This yields a permutation invariant representation of vertex v at
level l:

φlinear
l (v) =

∑
w∈N (v)

hl−1(w)

where φlinear
l (v) ∈ <d and hl−1(w) ∈ <d are zero-order rep-

resentations such that each of d channels is represented by a
single scalar. Extending this we formulate the quadratic aggre-
gation rule, φquadratic

l (v):

φquadratic
l (v) = diag

( ∑
u∈N (v)

∑
w∈N (v)

hl−1(u)hl−1(w)T
)

where hl−1(u)hl−1(w)T ∈ <d×d is the outer-product of the
level (l− 1)-th representation of vertices u and w in the neigh-
borhood N (v). Again φquadratic

l (v) ∈ <d is still zero-order.
Finally, we extend to the cubic aggregation rule for φcubic

l (v):

φcubic
l (v) = diag

( ∑
u,w,t∈N (v)

hl−1(u)⊗hl−1(w)⊗hl−1(t)

)

where hl−1(u) ⊗ hl−1(w) ⊗ hl−1(t) ∈ <d×d×d is the tensor
product of three rank-1 vectors, and we obtain the zero-order
φcubic
l (v) ∈ <d by taking the diagonal of the resulting 3-order

tensor.

Moreover, it is slightly unnatural to limit the iteration to
only the set of adjacent vertices N (v) of v. Another way to
extend N (v) is to use different neighborhoods at different
levels or layers of the network, for example:

• At level l = 0: N0(v) = {v}
• At level l > 0:

Nl(v) = Nl−1(v) ∪
⋃

w∈B(v,1)

Nl−1(w)

where B(v, 1) denotes the set of vertices are at distance
1 from the center v.

In Section 3.3, we will discuss further this hierarchical exten-
sion of neighborhoods captured in the definition of a receptive
field.

3.2.2. Learning Convolutional Neural Networks [9]

The idea of LCNNs can be summarized as flattening a graph
into a fixed-size sequence. Suppose that the maximum number
of vertices over the entire dataset is N . Consider an input graph
G = (V,E). If |V | < N then we add N − |V | dummy vertices
into V to ensure every graph in the dataset has the same
number of vertices. For each vertex v ∈ V , LCNN fixes the
size of its neighborhood Ω(v) as K. In the case |Ω(v)| < K,
again we add K − |Ω(v)| dummy vertices into Ω(v) to ensure
that every neighborhood of every vertex has exactly the same
number of vertices. Let d : V × V → {0, .., |V | − 1} denote
the shortest-path distance between any pair of vertices in G.
Let σ : V → < denote the hashing function obtained via the
Weisfeiler-Lehman graph isomorphism test. Based on σ, we
can obtain a sub-optimal ranking of vertices. The neighborhood
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Ω(v) of vertex v is constructed by the following algorithm:

function Contruct-Neighbor (v ∈ V )
01. Ω(v)← ∅
02. for each distance l ∈ 0, .., |V | − 1:
03. for each vertex w ∈ V :
04. if d(v, w) = l:
05. Ω(v)← Ω(v) ∪ {w}
06. end if
07. end for
08. if |Ω(v)| ≥ K:
09. break
10. end if
11. end for
12. if |Ω(v)| < K:
13. Add K − |Ω(v)| dummy vertices into Ω(v)
14. end if
15. Suppose Ω(v) = {v1, .., vK}
16. Sort Ω(v)← {vi1 , .., viK} such that σ(vit) < σ(vit+1)
17. Return Ω(v)
end function

We also have an algorithm to flatten the input graph G
as follows into a sequence of N ×K vertices:

function Flatten-Graph (G = (V,E))
01. Suppose that V = {v1, .., v|V |}
02. Sort V̄ ← {vi1 , .., vi|V |} such that σ(vit) < σ(vit+1)

03. Output sequence S ← ∅
04. for each v ∈ V̄ :
05. Add Ω(v) at the end of S
06. end for
07. return S
end function

Suppose that each vertex is associated with a fixed-size
input feature vector of L channels. By the Flatten-Graph
algorithm, we can produce a feature matrix of size L× (NK).
We can apply the standard convolution operation as a 1-
dimensional Convolutional Neural Network on the columns of
this matrix. On top of LCNN is a fully-connected layer for
regression tasks or classification tasks.

3.3. Covariant Compositional Networks

3.3.1. Generic Algorithm

Covariant Compositional Networks are designed to have a hier-
archical and multi-scale structure with multiple levels or layers
that capture the structure of the input graph, from local scale to
global scale. Furthermore, the data carried at the various lev-
els of the network is built in such a way that representations of
higher levels are built based on representations of lower levels,
and critically all representations have permutation and rotation
invariance. First of all, we recursively define a generalization
of the neighborhood of a vertex, the hierarchical receptive field
Ωl(v) of a vertex v at level l:

• Ω0(v) = {v}
• Ωl(v) = Ωl−1(v) ∪

⋃
w∈B(v,1) Ωl−1(w)

The receptive field should be thought of as the set of vertices
centered at v, with the parameter l describing how “deep” we
look out from v. The data for v at level l of the CCN will
be aggregated from Ωl(v) via a generalized message passing
scheme. Based on the definition of Ωl(v), we generalize the

vertex represetation fl(v) to higher-order representations.
The zero-order representation limits fl(v) to be a vector of d
channels as discussed in Section 3.2.

The first-order representation allows each of the d chan-
nels of fl(v) to be represented by a vector of size |Ωl(v)| in
which each element of this vector corresponds to a vertex in
the receptive field Ωl(v). Thus in the first-order representation,
fl(v) ∈ <|Ωl(v)|×d where each row of fl(v) is a zero-order
representation of d channels of a vertex in Ωl(v) at level l − 1.

More generally, the second-order representation allows
each channel of d channels of fl(v) to be represented
by a symmetric matrix of size |Ωl(v)| × |Ωl(v)|. Thus,
fl(v) ∈ |Ωl(v)| × |Ωl(v)| × d is a 3-order tensor.

The first-order aggregation rule can be defined as follows:

φfirst
l (v) =

∑
w∈Ωl(v)

Xl(v, w)fl−1(w)

where fl−1(w) ∈ <|Ωl−1(w)|×d for each w ∈ Ωl(v), and
Xl(v, w) ∈ {0, 1}|Ωl(v)|×|Ωl−1(w)| is a permutation matrix de-
fined as follows:

• Xl(v, w)ij = 1: if Ωl(v)i = Ωl−1(w)j

• Xl(v, w)ij = 0: otherwise

This permutation matrix arranges vertices in Ωl−1(w) into the
correct position in Ωl(v). Remark that Ωl−1(w) ⊆ Ωl(v). By
definition, the first-order aggregation rule gives us the first-order
representation φfirst

l (v) ∈ <|Ωl(v)|×d. The second-order ag-
gregation rule can be defined as follows:

φsecond
l (v) =

∑
w∈Ωl(v)

Xl(v, w)⊗ fl−1(w)⊗Xl(v, w)T

where fl−1(w) ∈ <|Ωl−1(w)|×|Ωl−1(w)|×d for each w, oper-
atior ⊗ is the broad-casting matrix-tensor multiplication, and
Xl(v, w) ∈ <|Ωl(v)|×|Ωl−1(w)| is the permutation matrix de-
fined as above. The second-order aggregation rule gives us the
second-order representation φsecond

l (v) ∈ <|Ωl(v)|×|Ωl(v)|×d.

The generic learning rule can be expressed as:

fl(v) = σ
(
bl +Wl ⊗ φl(v)

)
where φl(v) can be obtained by zero-order, first-order or
second-order aggregation rules; learnable weight matrix
Wl ∈ <d×d; learnable bias vector bl ∈ <d; operator ⊗
represents broad-casting matrix-tensor multiplication in the
sense that we apply an affine transformation to the d channels
of φl(v); and σ is a non-linearity function. In our case, we
choose the non-linearity to be Leaky ReLU. We can see that
fl(v) has the same number of channels as in the previous level,
but in practice we can reduce the number of channels by half
after each level to increase the robustness of the whole network;
in particular Wl ∈ <bd/2c×d and bl ∈ <bd/2c.

Suppose that the network has T levels. On the top level,
for an input graph of |V | vertices, we obtain |V | tensors
{fT (v1), .., fT (v|V |)}. For each tensor, we shrink it into a
d-dimensional vector by summation such that we get the set of
size |V | of d-dimensional vectors {f̂T (v1), .., f̂T (v|V |)}. The
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graph G is then represented by:

fT (G) =
∑
v∈V

f̂T (v)

in which each channel of fT (G) is a scalar. Based on fT (G),
we can apply a fully-connected layer (linear regression, softmax
or multi-layer perceptron) for regression or classification tasks.

3.3.2. Tensor Stacking

To strengthen the first-order and second-order representations,
instead of summing up the lower-level vertex representations as
in Section 3.3.2, we stack them into a higher-order tensor:

φfirst
l (v) = Φ

{
Xl(v, w)fl−1(w)

∣∣ w ∈ Ωl(v)
}

φsecond
l (v) = Φ

{
Xl(v, w)⊗fl−1(w)⊗Xl(v, w)T

∣∣w ∈ Ωl(v)
}

where Φ{.} denotes the tensor stacking operation. Thus, the
first-order aggregation rule returns a 3-order tensor:

φfirst
l (v) ∈ <|Ωl(v)|×|Ωl(v)|×d

and similarly the second-order aggregation rule returns a 4-
order tensor:

φsecond
l (v) ∈ <|Ωl(v)|×|Ωl(v)|×|Ωl(v)|×d

3.3.3. Tensor Product

To capture more structure of a graph, we introduce a tensor
product between the aggregated representation with the reduced
adjacency matrix:

φ̂second
l (v)← φsecond

l (v)⊗AΩl(v)

where AΩl(v) ∈ {0, 1}|Ωl(v)|×|Ωl(v)| such that AΩl(v)(i, j) =
1 if and only if there is an edge between two vertices Ωl(v)i
and Ωl(v)j . The operator ⊗ denotes a tensor product operation
resulting in a 6-order tensor:

φ̂second
l (v) ∈ <|Ωl(v)|×|Ωl(v)|×|Ωl(v)|×|Ωl(v)|×|Ωl(v)|×d

For notational simplicity, we denote φ̂second
l (v) as φsecond

l (v)
with an understanding that φsecond

l (v) is obtained by tensor
stacking first and then tensor product with the reduced adja-
cency matrix.

Instead of tensor product with the reduced adjacency ma-
trix AΩl(v), we can replace AΩl(v) by the normalized graph
Laplacian restricted to Ωl(v). Formally

LΩl(v) = I|Ωl(v)| −D−1/2

Ωl(v)AΩl(v)D
−1/2

Ωl(v)

where I is the identity matrix and D is the diagonal matrix of
vertex degree, or the Coulomb matrix in some physical applica-
tions.

3.3.4. Virtual Indexing System

One of the most challenging problems is dealing with extremely
high-order tensors:

φfirst
l (v) ∈ <|Ωl(v)|×|Ωl(v)|×d

φsecond
l (v) ∈ <|Ωl(v)|×|Ωl(v)|×|Ωl(v)|×|Ωl(v)|×|Ωl(v)|×d

We cannot directly store these huge tensors in the memory.
We need to emphasize that this problem is very difficult both
from the perspective of systems and algorithms. For example,
if the receptive field Ωl(v) has 10 vertices and the number
of channels is d = 10, then to store φfirst

l (v) we need 103

floating-point numbers, and to store φsecond
l (v) we need 106

floating-point numbers. Moreover, if the graph has |V | vertices,
each vertex v requires that many floating-point numbers. We
also have to take into account that the neural network has T
levels, and at each level we must construct the representation
for each vertex. The approximate amount of memory is
O(T × |V | × |Ωl(v)|5 × d). For even very small values this is
infeasible on existing machines.

We propose our solution, the Virtual Indexing System,
inspired by virtual machines in Operating Systems. One
observation is that these huge tensors are very sparse and easy
to compute component-wise. Instead of explictly stacking
lower-order tensors into a higher-order one, we only keep the
list of pointers pointing to these lower-order tensors. When we
want to get a value of the result tensor, we can easily search the
corresponding value via the list of pointers. Moreover, instead
of explicitly computing the tensor product with the reduced
adjacency matrix, we can just store the pointer to the reduced
adjacency matrix. When we want the value at position indexed
by (a, b, c, d, e, f), we search for the value at position indexed
by (a, b, c, f) of the stacked tensor and the value at position
indexed by (d, e) of the reduced adjacency matrix, and then
multiply these two values. We should remark that to access
index (a, b, c, f) of the stacked tensor, we need to go through
the list of pointers as explained above.

The memory gain is significant: we only need O(1) memory
space for both tensor stacking and tensor product operations.
The running time is proportional to the number of accesses to
the result tensor.

3.3.5. Tensor Contraction

The tensor contraction operation is a reduction from high-order
tensors into low-order tensors that respects symmetry and per-
mutation invariance. Formally, for the first-order, the tensor
contraction is defined as a function:

F : <|Ωl(v)|×|Ωl(v)| → <|Ωl(v)|

and for the second-order, the tensor contraction is defined as a
function:

S : <|Ωl(v)|×|Ωl(v)|×|Ωl(v)|×|Ωl(v)|×|Ωl(v)| → <|Ωl(v)|×|Ωl(v)|

Again, we cannot implement the tensor contraction explicitly
but only via the Virtual Indexing System. We apply the tensor
contraction for each of d channels separately and then concate-
nate the resulting tensors. Counting the number of distinct ten-
sor contractions, for first-order there are 2 unique ways to con-
tract: sum all elements, or take the trace. In addition, one can
introduce a Hadamard-type contraction by taking the diagonal.
By the symmetry of indices, for second-order representations,
there are exactly 18 unique ways to contract. In conclusion, af-
ter tensor stacking, tensor product (for the second-order only)
and tensor contraction, the first-order representation is:

φfirst
l (v) ∈ <|Ωl(v)|×2d
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and the second-order representation is:

φsecond
l (v) ∈ <|Ωl(v)|×|Ωl(v)|×18d

The sizes are very manageable now. We apply the learnable
matricies W first

l ∈ <d×2d and W second
l ∈ <d×18d to avoid

exponentially growth in the number of channels. In detail:

φfirst
l (v) · (W first

l )T ∈ <|Ωl(v)|×d

W second
l ⊗ φsecond

l (v) ∈ <|Ωl(v)|×|Ωl(v)|×d

3.3.6. Gated Recurrent Unit / Long Short-Term Memory

Long Short-Term Memory (LSTM), first proposed by Schmid-
huber and colleagues in 1997, is a special kind of Recurrent
Neural Network that was designed for learning sequential and
time-series data [10]. LSTM is widely applied across many cur-
rent state-of-the-art Deep Learning models in various aspects
of machine learning including natural language processing,
speech recognition, and computer vision. The Gated Recurrent
Unit (GRU) model was introduced by Bengio and colleagues in
2014 in the context of sequential modeling [11]. GRU can be
understood as a simplication of LSTM.

In the spirit of modeling language, throughout the neural
network from level 0 to level T , all representations of a vertex
v can be written as a sequence:

f0(v)→ f1(v)→ ..→ fT (v)

in which fl(v) is more global than fl−1(v), and fl−1(v) is more
local than fl(v). One can think of the sequence of representa-
tions as a sentence of words as in natural language processing.
We can embed GRU / LSTM at each level of our network in the
sense that GRU / LSTM at level l will learn to choose whether
to select fl(v) as the final representation or reuse one of the
previous level representations {f0(v), .., fl−1(v)}. This idea,
inherited from Gated Graph Sequence Neural Networks of Li et
al[11], is captured perfectly inside our Covariant Compositional
Network model.

4. GraphFlow Deep Learning Framework
4.1. Motivation

Many deep learning frameworks have been proposed over the
last decade. Among them, the most successful ones are Tensor-
Flow [12], PyTorch [13], Mxnet [15], Theano [14]. However,
none of these frameworks are completely suitable for graph neu-
ral networks in the domain of molecular applications with high
complexity tensor operations due to the following reasons:

• None of these frameworks support tensor contractions or
other sophisticated tensor operations. Moreover, they are
not flexible enough for an implementation of the Virtual
Indexing System for efficient and low-cost tensor opera-
tions.

• The most widely used deep learning framework, Ten-
sorFlow, is incapable of constructing dynamic computa-
tion graphs during runtime, which are essential for the
dynamic size and structure of graph neural networks.
To get rid of static computation graphs, Google Re-
search has proposed an extension of TensorFlow called
TensorFlow-fold, but TensorFlow-fold has not com-
pletely solved the flexibility problem [16].

To address all these drawbacks, we implement from scratch our
GraphFlow Deep Learning Framework in C++11 with the
following criteria:

1. Supports symbolic / automatic differentiation that allows
users to construct any kind of neural networks with-
out explicitly writing the complicated back-propagation
code each time.

2. Supports dynamic computation graphs: a partial compu-
tation graph is constructed before training and the rest
is constructed during runtime depending on the size and
structure of the input graphs.

3. Supports sophisticated tensor / matrix operations via the
Virtual Indexing System.

4. Supports tensor / matrix operations implemented in
CUDA for computation acceleration by GPUs.

4.2. Overview

GraphFlow is designed with the philosophy of Object Oriented
Programming (OOP). There are several classes divided into the
following groups:

1. Data structures: Entity, Vector, Matrix,
Tensor, etc. Each of these components contain two
arrays of floating-point numbers: value for storing the
actual values, gradient for storing the gradients (that
is, the partial derivative of the loss function) for the pur-
pose of automatic differentiation. Also, each class has
two functions forward() and backward(). Call-
ing forward() will evaluate the network values and
callingbackward() will compute the gradients for use
in back-propogation. Based on the OOP philosophy,
Vector inherits from Entity, and both Matrix and
Tensor inherit from Vector, etc. This is of essen-
tial importance because polymorphism allows us to con-
struct the computation graph of the neural network as
a Directed Acyclic Graph (DAG) of Entity such that
forward() and backward() functions of different
classes can be called with object casting.

2. Operators: Matrix Multiplication, Tensor Contraction,
Convolution, etc.

For example, the matrix multiplication class MatMul
inherits from Matrix class, and has 2 constructor
parameters in Matrix type. Suppose that we have an
object A of type MatMul that has 2 Matrix inputs
B and C. In the forward() pass, A computes its
value as A = B * C and stores it into value array.
In the backward() pass, A gets the gradients into
gradient (as flowing from the loss function) and
increases the gradients of B and C.

It is important to note that our computation graph
is a DAG and we find a topological ordering to eval-
uate value and gradient in the correct order.
That means A -> forward() is called after both
B -> forward() and C -> forward(), and
A -> backward() is called before both B ->
backward() and C -> backward().

3. Optimization algorithms: Stochastic Gradient De-
scent (SGD), SGD with Momentum, Adam, AdaGrad,
AdaMax, AdaDelta, etc. These algorithms are imple-
mented into separate drivers: these drivers get the val-
ues and gradients of learnable parameters computed by
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the computation graph and then optimize the values of
learnable parameters algorithmically.

4. Neural Networks objects: These are classes of neu-
ral network architectures implemented with the core of
GraphFlow, including graph neural networks (for exam-
ple, CCN, NGF and LCNN), convolutional neural net-
works, recurrent neural networks (for example, GRU and
LSTM), multi-layer perceptron, etc. Each class has mul-
tiple supporting functions: load the trained learnable pa-
rameters from files, save them into files, learning with
mini-batch or without mini-batch, using multi-threading
or not, etc.

A diagram of the GraphFlow architecture is contained in the
Appendix.

4.3. Parallelization

4.3.1. Efficient Matrix Multiplication in GPU

Multiple operations of a neural network can be expressed as
matrix multiplication. A fast implementation of matrix multi-
plication is extremely important for a deep learning framework.
We have implemented two versions of matrix multiplication in
CUDA: one using naive kernel functions that accesses matri-
ces directly from the global memory of the GPU, and one us-
ing a more sophisticated kernel function using shared memory
in which the shared memory of each GPU block contains two
blocks of the two input matrices. The second approach avoids
the latency of reading from the GPU global memory. Suppose
that each GPU block can execute up to 512 threads concurrently,
we select the block size to be 22 x 22. The second approach out-
performs the first approach in our stress experiments.

4.3.2. Efficient Tensor Contraction in CPU

Tensor stacking, tensor product, and tensor contraction play the
most important role in the success of Covariant Compositional
Networks. Among them, tensor contraction is the most difficult
operation to implement efficiently due to the complexity of its
algorithm. Let us consider the second-order tensor product:

φl(v)⊗AΩl(v)

where φl(v) ∈ <|Ωl(v)|×|Ωl(v)|×|Ωl(v)|×d is the result
from tensor stacking operation of vertex v at level l, and
AΩl(v) ∈ {0, 1}|Ωl(v)|×|Ωl(v)| is the restricted adjacency
matrix to the receptive field Ωl(v). With the Virtual Indexing
System, we do not compute the full tensor product result,
indeed we compute some elements of it when necessary.

The task is to reduce the tensor product φl(v) ⊗ AΩl(v), a 6-
order tensor, into a 3-order tensor of size |Ωl(v)|× |Ωl(v)|×d.
As discussed in Section 3.3.5, because of symmetry, there are
exactly 18 unique ways to contract in the second-order case.
Suppose that our CPU has N < 18 cores; assuming that we
can run all these cores concurrently, we launch N threads such
that each thread processes d18/Ne contractions. There can be
some threads doing more or fewer contractions.

One challenge is about synchronization: we have to en-
sure that the updating operations are atomic.

4.3.3. Efficient Tensor Contraction in GPU

The real improvement in performance comes from the GPU.
Thus, in practice, we do not use the tensor contraction with

multi-threading in CPU. Because we are experimenting on
Tesla GPU K80, we have an assumption that each block of
GPU can launch 512 threads and a GPU grid can execute 8 con-
current blocks. In GPU global memory, φl(v) is stored as a
float array of size |Ωl(v)| × |Ωl(v)| × |Ωl(v)| × d, and the re-
duced adjacency matrix AΩl(v) is stored as a float array of size
|Ωl(v)| × |Ωl(v)|. We divide the job to GPU in such a way that
each thread processes a part of φl(v) and a part of AΩl(v). We
assign the computation work equally among threads based on
the estimated asymptotic complexity. This process is depicted
pictorially in Figure 2.

Figure 2: Achieving parallelization on GPU

Again, synchronization is also a real challenge: all the up-
dating operations must be atomic. However, having too many
atomic operations can slow down our concurrent algorithm.
That is why we have to design our GPU algorithm with the min-
imum possible number of atomic operations. We obtain a much
better performance with GPU after careful consideration of all
factors.

4.3.4. CPU Multi-threading in Gradient Computation

Given a minibatch of M training examples, it is a natural
idea to separate the gradient computation jobs into multiple
threads such that each thread processes exactly one training
example at a time before processing the next example. We
must make sure that there is no overlap among these threads.
After completing the gradient computations from all these M
training examples, we sum up all gradients, average them by
M , and apply a variant of Stochastic Gradient Descent to op-
timize the neural networks before moving to the next minibatch.

Technically, suppose that we can execute T threads con-
current at a time for gradient computation jobs. Before every
training starts, we initialize exactly T identical dynamic
computation graphs by GraphFlow. Given a minibatch of M
training examples, we distribute the examples to T threads,
each thread uses a different dynamic computation graph for its
gradient computation job. By this method, there is absolutely
no overlap and our training is completely synchronous.

The minibatch training with CPU multi-threading is de-
scribed by Figure 3:
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Figure 3: CPU multi-threading for gradient computation
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5. Experiments and Results
5.1. Matrix Multiplication

To demonstrate the efficiency of our GPU matrix multiplication,
we establish several performance tests and measure the running
time against anO(N3) CPU matrix multiplication. The sizes of
the test matrices are N ∈ {128, 256, 512, 1024}. In the largest
case, we observe that GPU gives a factor of 200x improvement.
Table 1 gives the details.

Method N = 128 N = 256 N = 512 N = 1024
CPU 22 ms 379 ms 2,274 ms 15,932 ms
GPU < 1 ms 4 ms 15 ms 70 ms

Table 1: GPU vs CPU matrix multiplication

Figure 4: GPU vs CPU matrix multiplication running time (mil-
liseconds) in log10 scale

5.2. Tensor Contraction

We also compare the GPU implementation of tensor contraction
with the CPU implementation. We must remark that the com-
plexity of tensor contraction is O(18 × |Ωl(v)|5 × d), which
grows exponentially with the size of receptive field |Ωl(v)| and
grows linearly with the number of channels. We have a con-
stant 18 as the number of unique contractions in the second-
order case. We have several tests with the size of the receptive
field |Ωl(v)| ranging across {5, 10, 20, 35} and the number of
channels d ranging across {10, 20}. In the largest case with

Table 2: GPU and CPU tensor contraction

|Ωl(v)| d Floating-points CPU GPU
5 10 562,500 3 ms 3 ms
5 20 1,125,000 7 ms 1 ms

10 10 18,000,000 56 ms 1 ms
10 20 36,000,000 103 ms 3 ms
20 10 576,000,000 977 ms 18 ms
20 20 1,152,000,000 2,048 ms 27 ms
35 10 9,453,937,500 12,153 ms 267 ms
35 20 18,907,875,000 25,949 ms 419 ms

Figure 5: GPU vs CPU tensor contraction running time (mil-
liseconds) in log10 scale

|Ωl(v)| = 35 and d = 20, we observe that GPU gives a factor
of approximately 62x speedup. Table 2 gives the details.

5.3. Putting all operations together

In this experiment, we generate synthetic random input graphs
by the Erdos-Renyi p = 0.5 model. The number of vertices |V |
ranges across {10, 15, 20, 25}. We fix the maximum size of the
receptive field |Ωl(v)| as 10 and 15, the number of channels d
as 10, and the number of layers of the neural network L as 6.
In the largest case of the graph with 25 vertices, GPU gives a
factor of approximately 6x speedup. Table 3 gives the details.

Table 3: GPU and CPU network evaluation

|V | Max |Ωl(v)| d L CPU GPU
10 10 10 6 1,560 ms 567 ms
15 10 10 6 1,664 ms 543 ms
20 15 10 6 7,684 ms 1,529 ms
25 15 10 6 11,777 ms 1,939 ms

5.4. Small Molecular Dataset

This is the total training and testing time on a small dataset of
4 molecules CH4, NH3, H20, C2H4 with 1,024 epochs. Af-
ter each epoch, we evaluate the neural network immediately.
CCN 1D denotes the Covariant Compositional Networks with
the first-order representation and the number of layers ranging
across {1, 2, 4, 8, 16}. CCN 2D denotes the Covariant Compo-
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sitional Networks using a second-order representation and the
number of layers ranging across {1, 2}. The number of chan-
nels is d = 10 in all settings. In this experiment, we use 4
threads for the training minibatches of 4 molecules and com-
pare the running time with the single thread case. All models
are fully converged.

Table 4: Single thread vs Multiple threads

Model Layers Single-thread Multi-thread
CCN 1D 1 1,836 ms 874 ms
CCN 1D 2 4,142 ms 1,656 ms
CCN 1D 4 9,574 ms 3,662 ms
CCN 1D 8 (deep) 20,581 ms 7,628 ms
CCN 1D 16 (very deep) 42,532 ms 15,741 ms
CCN 2D 1 35 seconds 10 seconds
CCN 2D 2 161 seconds 49 seconds

5.5. HCEP Dataset

The Harvard Clean Energy Project (HCEP) dataset [2] contains
2.3 million molecules that are potential future solar energy
materials. By the computationally expensive Density Func-
tional Theory (which should be less computationally expensive
once efficient quantum computers hit the market), the authors
of HCEP computed the Power Conversion Energy (PCE) for
each molecule. PCE values are continuous ranging from 0 to
11. For our experiments, we extract 50,000 molecules and
allocate 30,000 molecules for training, 10,000 molecules for
validation, and 10,000 molecules for testing. Each molecule is
given by a SMILES code. We transform the SMILES codes
into adjacancy matrices where each atom is a vertex and the
atom type is the input vertex label.

When using the Dictionary Weisfeiler-Lehman graph ker-
nel, we investigated the number of non-isomorphic receptive
fields across this dataset. In the set of 50,000 molecules that
we selected, there are in total 11,172 different receptive fields
of level 3. This number is very manageable as the size of the
dictionary. We also applied sparse Support Vector Regression
to these sparse feature vectors and obtained good results.

5.5.1. Visualization

For the purpose of visualization, we rounded PCE values to
the nearest integer. We applied Principal Component Analy-
sis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-
SNE) [8] on the feature vectors produced by both Weisfeiler-
Lehman (WL) graph kernel and our Covariant Compositional
Networks.

Figure 6: WL feature vectors with PCA and t-SNE

Figure 7: CCN 1D feature vectors with PCA and t-SNE

Figure 8: CCN 2D feature vectors with PCA and t-SNE

We observe that our CCN models give a much better vi-
sualization in the 2-dimensional visualization. We can see the
separations among the clusters where each cluster is associated
with a (rounded integer) PCE value.

5.5.2. Regression tasks

Using the Weisfeiler-Lehman (WL) graph kernel, we apply
Linear regression, Gaussian Process and SVM for the task of
regressing PCE values. We find the optimal hyperparameters
in the validation set. For linear regression, the regularization
parameter C ∈ {0, 10−4, 10−3, 10−2, 10−1, 1, 10, 100}. For
Gaussian Process, we choose a Radial Basis Function (RBF)
kernel with the optimal σ = 2, with the noise parameter
selected from the range from 0 to 100. For SVM, the RBF
kernel is chosen with σ = 0.01, and regualarization parameter
C = 100.

Regarding training our Covariant Compositional Networks, for
the first-order representation (CCN 1D), we selected the best
architecture among setups with the number of layers as 1, 2,
3, 4, 5, 6, and 7. CCN 1D gives the best result with 7 levels.
For the second-order representation (CCN 2D), the number of
layers is 1 and 2. CCN 2D gives the best result with a single
level. The number of channels is fixed as 10. We employ
Stochastic Gradient Descent with Adam optimization. The
learning rate is initially 10−3 and linearly decayed to 10−6 in
106 iterations. The batch size is fixed as 64. The maximum
number of epochs is 1024 in all settings.

We also compare with two other state-of-the-art graph
neural networks: Neural Graph Fingerprint (NGF) and Learn-
ing Convolutional Neural Networks (LCNN). NGF has the
maximum of 3 levels and the number of hidden states is 10.
LCNN has 2 convolutional layers. In all graph neural networks
settings, we always have a linear regression on top of the
network.

We estimate the performance of our models in both Mean
Average Error (MAE) and Root Mean Square Error (RMSE). In
both metrics, Covariant Compositional Networks outperform
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Weisfeiler-Lehman graph kernel, Neural Graph Fingerprint and
Learning Convolutional Neural Networks. We observe that
training for higher-order representations is increasingly more
difficult since the size of the representation grows exponen-
tially. Some techniques have been used to solve this problem,
for example thresholding the maximum size of receptive fields.
More training is probably required to obtain the full potential
of higher-order representations.

Table 5: HCEP dataset

Model Test MAE Test RMSE
WL + Linear Regression 0.805 1.096
WL + Gaussian Process 0.760 1.093

WL + Support Vector Machine 0.878 1.202
NGF 0.851 1.177

LCNN 0.718 0.973
CCN 1D 0.216 0.291
CCN 2D 0.340 0.449

Figure 9: Testing errors vs Number of training epochs. Top:
MAE. Bottom: RMSE

6. Conclusion and Future Research
We extended the state-of-the-art Weisfeiler-Lehman graph
kernel and generalized convolution operation for Covariant

Figure 10: Distributions of the predicted PCE values and the
expected PCE values. Top: CCN 1D. Bottom: CCN 2D

Compositional Networks using higher-order representations.
We obtained very promising results and outperformed two other
current state-of-the-art graph neural networks, Neural Graph
Fingerprint and Learning Convolutional Neural Networks, on
a subset the Harvard Clean Energy Project dataset. Thanks to
parallelization, we significantly improved our empirical results.

We are developing our custom Deep Learning framework
in C++, GraphFlow, which supports automatic and symbolic
differentitation, dynamic computation graph as well as complex
tensor / matrix operations in CUDA with GPU computation
acceleration. We expect that this framework will enable us
to design more flexible, efficient graph neural networks with
molecular applications at a large scale in the future.
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